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AN ASYMPTOTIC PRESERVING SCHEME BASED ON A NEW
FORMULATION FOR NLS IN THE SEMICLASSICAL LIMIT

CHRISTOPHE BESSE, RÉMI CARLES, AND FLORIAN MÉHATS

Abstract. We consider the semiclassical limit for the nonlinear Schrödinger
equation. We introduce a phase/amplitude representation given by a system
similar to the hydrodynamical formulation, whose novelty consists in including
some asymptotically vanishing viscosity. We prove that the system is always
locally well-posed in a class of Sobolev spaces, and globally well-posed for a fixed
positive Planck constant in the one-dimensional case. We propose a second order
numerical scheme which is asymptotic preserving. Before singularities appear in
the limiting Euler equation, we recover the quadratic physical observables as well
as the wave function with mesh size and time step independent of the Planck
constant. This approach is also well suited to the linear Schrödinger equation.

1. Introduction and main results

1.1. Motivation. We consider the cubic, defocusing, nonlinear Schrödinger equa-
tion (NLS)

iε∂tu
ε +

ε2

2
∆uε = |uε|2uε, (t, x) ∈ R+ × Rd, (1.1)

with WKB type initial data

uε(0, x) = a0(x)eiφ0(x)/ε, (1.2)

the functions a0 and φ0 being real-valued. The aim of this article is to construct an
Asymptotic Preserving (AP) numerical scheme for this equation in the semiclassical
limit ε → 0. We seek a scheme which provides an approximation of the solution
uε with an accuracy, for fixed numerical parameters ∆t, ∆x, that is not degraded
as the scaled Planck constant ε goes to zero. In other terms, such a scheme is
consistent with (1.1) for all fixed ε > 0, and when ε → 0 converges to a consistent
approximation of the limit equation, which is the compressible, isentropic Euler
equation (1.4). The difficulty here is that, when ε is small, the solution uε becomes
highly oscillatory with respect to the time and space variables, and converges to its
limit only in a weak sense. In order to follow these oscillations without reducing ∆t
and ∆x at the size of ε, which may be computationally demanding, our construction
relies on a fluid reformulation of (1.1), well adapted to the semiclassical limit.

In kinetic theory, plasma physics and radiative transfer, the interest in AP
schemes has considerably grown in the recent years since the pioneer works on
the subject [19, 26, 31, 36]. Among a long list of works on this topic, we can men-
tion [33, 28, 11, 39, 7, 20, 25, 16, 21, 38, 23]. For the Schrödinger equation, fewer
works exist. In the stationary case, one can cite [3] which proposes a WKB-type
transformation in order to filter out the oscillations in space. In the time-dependent
case, the usual numerical methods for solving the nonlinear Schrödinger equation –
finite-difference schemes [51, 24, 1, 34], time-splitting methods [46, 50, 9], relaxation
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scheme [8] or even symplectic methods [48] – are designed in order to guarantee the
convergence of the discrete wave function uε when ε > 0 is fixed. As it is analyzed
for instance in [44, 45] for the case of finite-differences or in [37] for Runge-Kutta
schemes, these methods suffer from the oscillations in the semiclassical regime if the
time and space steps are not shrunk. Note however that, among these methods, the
status of splitting methods is particular. Indeed, in the linear case, it is shown in
[5] (see also the recent review article [32]) by Wigner techniques that, if the space
step ∆x has to follow the parameter ε when it becomes small, the time step can be
chosen independently of ε (before the appearance of caustics) if we are only inter-
ested in getting a good approximation of the quadratic observables associated to uε.
Still, none of these methods is Asymptotic Preserving in the sense defined above.

The quantum fluid reformulation of the Schrödinger equation provides a natural
framework for the construction of AP numerical methods. The Madelung transform
[42] is a polar decomposition of the solution of (1.1), written as

uε(t, x) = aε(t, x)eiφ
ε(t,x)/ε,

where the amplitude aε and the phase φε are real-valued. Inserting this ansatz into
(1.1) yields the system of quantum hydrodynamics (QHD), or Madelung equations,
satisfied by ρε = (aε)2 and vε = ∇φε:

∂tρ
ε + div (ρεvε) = 0, ρε|t=0 = (a0)2,

∂tv + vε · ∇vε +∇ρε =
ε2

2
∇
(

∆
√
ρε√
ρε

)
, vε|t=0 = ∇φ0.

(1.3)

This system takes the form of the compressible Euler equation (with the pressure
law p(ρ) = ρ2/2), with an additional term testifying for the quantum character
of the equation, the so-called Bohm potential ε

2

2 ∇
(

∆
√
ρε√
ρε

)
. Two comments are in

order. First, the term in ε does not appear any more as a singular perturbation
and, in the limit ε → 0, the quantum pressure disappears, leading formally to the
compressible, isentropic Euler equation{

∂tρ+ div (ρv) = 0, ρ|t=0 = (a0)2,

∂tv + v · ∇v +∇ρ = 0, v|t=0 = ∇φ0,
(1.4)

which is the semiclassical limit of our problem (actually valid before the appearance
of shocks). Second, the fluid-like form of this system enables to consider many
numerical methods originated from computational fluid mechanics.

For the linear Schrödinger equation, the Madelung formulation is at the heart
of the method of quantum trajectories (or Bohmian dynamics), see [52], which are
based on a Lagrangian resolution of this system. In Eulerian coordinates, the work
[22] also exploits this formulation to construct Asymptotic-Preserving schemes for
(1.3). Unfortunately, the main drawback of the QHD system is the form of the
quantum potential, which becomes singular as the density ρε vanishes (see [13] for
a recent survey). Hence, these methods do not provide AP schemes in the presence
of vacuum. Another point of view was recently developed in [15] for the nonlinear
equation (1.1), taking advantage of another fluid reformulation of the equation – due
to Grenier [29] – which tolerates the presence of vacuum. In the next Subsection 1.2,
we present in detail this formulation relying on a complex amplitude version of
Madelung transform. However, as we will see, the drawback of this reformulation is
that this system may develop singularities even for fixed ε > 0, whereas the solution
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of NLS remains smooth. Then, in the last Subsection 1.3 of this introduction, we
present a modification in order to remedy this problem and preserve the regularity
of the solution. The new QHD model that we propose contains a viscosity term in
the equation for the velocity, but is still equivalent to the original equation (1.1).

1.2. Backgrounds on NLS and its semiclassical limit. In this section, we recall
some known results on the Cauchy problem for NLS (1.1) and on its semiclassical
limit as ε→ 0. For details on this subject, we refer to the textbooks [17] and [12].

The following result is standard in the case ε = 1, and can easily be deduced
when ε ∈ (0, 1], by scaling arguments.

Proposition 1.1. Let d 6 3, and uε0 ∈ H1(Rd).

(i) There exists a unique solution uε ∈ C(R;H1(Rd))∩L8/d
loc (R;W 1,4(Rd)) to (1.1),

such that uε|t=0 = uε0. Moreover, the following conservations hold:

Mass:
d

dt
‖uε(t)‖2L2 = 0.

Momentum:
d

dt
Im

∫
Rd

uε(t, x)∇uε(t, x)dx = 0.

Energy:
d

dt

(
‖ε∇uε(t)‖2L2 + ‖uε(t)‖4L4

)
= 0.

(ii) If in addition uε0 ∈ Hk(Rd) for k ∈ N, k > 2, then uε ∈ C(R;Hk(Rd)).

Note that, if uε = aεeiφ
ε/ε with φε ∈ R, the above three conservation laws become

d

dt
‖aε(t)‖2L2 = 0. (1.5)

d

dt

(
Im

∫
Rd

aε(t, x)∇aε(t, x)dx+
1

ε

∫
Rd

|aε(t, x)|2∇φε(t, x)dx

)
= 0.

d

dt

(
‖ε∇aε(t) + iaε(t)∇φε(t)‖2L2 + ‖aε(t)‖4L4

)
= 0. (1.6)

Let us now describe the limit ε → 0 for (1.1). The toolbox for studying semi-
classical Schrödinger equations contains a variety of methods, depending on the
quantities we are interested in. If one is only interested in a description of the
dynamics of quadratic observables, such as the mass, current or energy densities,
the Wigner transform is well adapted and has been applied to linear Schrödinger
equations and Schrödinger-Poisson systems [27, 41, 55]; on the other hand, it is not
adapted to the study of NLS [14]. Still for a description of quadratic observables,
the modulated energy method [10, 54, 40, 2] enables to treat the nonlinear equation
(1.1). Yet, for a pointwise description of the wavefunction uε, WKB techniques are
more convenient. We refer to [12] for a presentation of WKB analysis of Schrödinger
equations.

In the case of (1.1), also referred to as supercritical geometric optics in this
context, the justification of the WKB expansion was done by Grenier [29]. Let us
briefly present his idea. As we said above, the main inconvenience of the QHD
system (1.3) is the singularity of the Bohm potential at the zeroes of the function
ρε (i.e. at the zeroes of the wavefunction uε). Looking again for solutions uε under
the form

uε(t, x) = aε(t, x)eiφ
ε(t,x)/ε, (1.7)
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but allowing now aε to take complex values, Grenier proposed to define aε and φε
as the solutions of the system

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε, aε|t=0 = a0,

∂tφ
ε +

1

2
|∇φε|2 + |aε|2 = 0, φε|t=0 = φ0.

(1.8)

This system, which is formally equivalent to (1.1), can also be expressed in terms
of the unknowns aε and vε = ∇φε. Differentiating with respect to x the second
equation in (1.8), we find, using the fact that vε is irrotational: ∂ta

ε + vε · ∇aε +
1

2
aε div vε = i

ε

2
∆aε, aε|t=0 = a0,

∂tv
ε + vε · ∇vε +∇|aε|2 = 0, vε|t=0 = ∇φ0.

(1.9)

The important remark made in [29] is to notice that the above system is hyperbolic
symmetric, perturbed by a skew-symmetric term. In the limit case ε = 0, and if a0 is
real-valued and nonnegative, (1.9) is the Euler equation (1.4) written in symmetric
form (see e.g. [43, 18]): ∂ta+ v · ∇a+

1

2
adiv v = 0, a|t=0 = a0,

∂tv + v · ∇v +∇|a|2 = 0, v|t=0 = ∇φ0.
(1.10)

This remark enables to obtain, in small time (but independent of ε ∈ [0, 1]), uniform
estimates of the solution (aε, vε) of (1.9) in Sobolev norms and prove the convergence
of these quantities to the solution (a, v) of (1.10), as long as this solution exists and
is smooth. From the numerical point of view, the regular structure of (1.9), in
particular when aε vanishes or has very small values, is an advantage compared to
(1.3), and is at the basis of the schemes constructed in [15].

1.3. New model and main results. A drawback of (1.9) is that large time ex-
istence results (for fixed ε > 0) do not seem available. In particular, it is not
known whether (1.9) still has a smooth solution past the time where the solution
to (1.10) has ceased to be smooth (such a time necessarily exists if φ0 and a0 are
compactly supported, regardless of their size, from [43] — see also [53]). A practical
consequence of this fact is that a numerical method based on (1.9), such as the
one proposed in [15], may not approximate correctly the original equation (1.1) on
arbitrary time intervals, for fixed ε > 0.

To overcome this issue, we use the degree of freedom given by (1.7) in a manner
which is slightly different from the approach introduced by E. Grenier. From (1.7),
we have

iε∂tu
ε +

ε2

2
∆uε − |uε|2uε = −

(
∂tφ

ε +
1

2
|∇φε|2 + |aε|2

)
aεeiφ

ε/ε

+ iε

(
∂ta

ε +∇φε · ∇aε +
1

2
aε∆φε − i ε

2
∆aε

)
eiφ

ε/ε.
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Introduce the viscous term ε2aεeiφ
ε/ε∆φε, and reorder the terms so as to consider

the new system
∂ta

ε +∇φε · ∇aε +
1

2
aε∆φε = i

ε

2
∆aε − iεaε∆φε, aε|t=0 = a0,

∂tφ
ε +

1

2
|∇φε|2 + |aε|2 = ε2∆φε, φε|t=0 = φ0.

(1.11)

Proceeding like above, we get the following new system: ∂ta
ε + vε · ∇aε +

1

2
aε div vε = i

ε

2
∆aε − iεaε div vε, aε|t=0 = aε0,

∂tv
ε + vε · ∇vε + 2 Re (aε∇aε) = ε2∆vε, vε|t=0 = ∇φ0.

(1.12)

We recover physical observables, respectively particle, current and energy densities,
thanks to the following formula

ρε = |aε|2

jε = ε Im(aε∇aε) + ρεvε,

eε = |ε∇aε + iaεvε|2 + |aε|4.
(1.13)

Remark 1.2 (Linear case). In the case of a linear Schrödinger equation

iε∂tu
ε +

ε2

2
∆uε = V uε,

we will see that the introduction of this artificial diffusion is even more striking than
in the nonlinear framework; see Subsection 4.1.

Remark 1.3 (Irreversibility). Our choice for introducing the viscous term in (1.11)
makes the system irreversible (in time), while (1.1) is reversible. To solve the
Schrödinger equation backward in time, it suffices to change the signs to

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε + iεaε∆φε, aε|t=0 = a0,

∂tφ
ε +

1

2
|∇φε|2 + |aε|2 = −ε2∆φε, φε|t=0 = φ0.

Let us now present our main theoretical results on this system. Our first result
concerns the local in time well-posedness of the Cauchy problem in any dimension,
for fixed values of ε > 0.

Theorem 1.4. Let (a0, φ0) ∈ Hs(Rd) × Hs+1(Rd), with s > d/2 + 1. Then the
following holds.
(i) The system (1.12) admits a unique maximal solution (aε, vε) ∈ C([0, T εmax);Hs×
Hs).
(ii) There exists T > 0 independent of ε ∈ [0, 1] such that T εmax > T . Moreover, the
L∞([0, T ];Hs ×Hs) norm of (aε, vε) is bounded uniformly in ε ∈ [0, 1].
(iii) Defining φε ∈ C([0, T εmax);Hs+1) by

φε(t, x) = φ0(x)−
∫ t

0

(
1

2
|vε(s, x)|2 + |aε(s, x)|2 − ε2 div vε(s, x)

)
ds, (1.14)

then the function
uε = aεeiφ

ε/ε ∈ C([0, T εmax);Hs)

is the unique solution to (1.1) satisfying (1.2).
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Remark 1.5. In fact, the proof of this theorem provides a criteria of global exis-
tence for the solution to (1.12). Indeed, we shall prove that the lifespan T εmax is
independent of s > d/2 + 1 and that

T εmax <∞ =⇒
∫ T ε

max

0

(
‖(aε, vε)(t)‖W 1,∞ + ‖aε(t)‖2L∞

)
dt =∞. (1.15)

Our second result states the convergence of the solution to (1.12) towards the
solution of the Euler equation, as ε→ 0.

Notation. For two positive numbers αε and βε, the notation αε . βε means that
there exists C > 0 independent of ε such that for all ε ∈ (0, 1], αε 6 Cβε.

Theorem 1.6. Let s > d/2 + 3, and (a0, φ0) ∈ Hs×Hs+1. Let T > 0 such that the
Euler equation (1.4) has a unique solution (ρ, v) ∈ C([0, T ];Hs×Hs). Then (1.10)
has a unique solution (a, v) ∈ C([0, T ];Hs ×Hs). Moreover, for ε > 0 sufficiently
small, we have T εmax > T and

‖(aε, vε)− (a, v)‖L∞([0,T ];Hs−2×Hs−2) . ε.

Theorems 1.4 and 1.6 are not different from the corresponding results obtained by
Grenier in [29] on his system (1.9). We now state a global existence result for fixed
ε > 0 in dimension one, that is not available on (1.9). This result takes advantage
of the viscous term in the second equation of (1.12).

Theorem 1.7. Suppose d = 1 and let (a0, φ0) ∈ Hs ×Hs+1, with s > 2. Then for
ε > 0 fixed, the solution to (1.12) is global in time, in the sense that T εmax = ∞ in
Theorem 1.4.

This article is organized as follows. Section 2 is devoted to the proofs of our
three theorems: the local existence result in Subsection 2.1, the semiclassical limit
in Subsection 2.2 and the global existence result in Subsection 2.3. Section 3 is
of different nature and concerns numerics. We describe a second-order Asymptotic
Preserving numerical scheme for NLS, based on the reformulation (1.12), and we
give the results of numerical experiments, in dimensions 1 and 2. We show that
our scheme is indeed AP before the formation of singularities in the Euler equation,
which means that the time and space steps ∆t and ∆x can be taken independently
of ε. After the formation of singularities, we show that, in order to get a good
approximation of the solution, we need to take ∆t and ∆x of order O(ε). At the
end of the article, in Section 4, we sketch two extensions of our results: we discuss on
the case of the linear Schrödinger equation, then we discuss on other nonlinearities.

2. Proofs of the main theorems

This section is devoted to the proofs of our main results stated in Theorems 1.4,
1.6 and 1.7.

2.1. Local existence. In this paragraph, we show the local existence of a smooth
maximal solution to (1.12).
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Proof of Theorem 1.4. Items (i) and (ii): local existence and uniform estimates.
Following [29], introduce the vector-valued unknown function

U ε =


Re aε

Im aε

vε1
...
vεd

 =


aε1
aε2
vε1
...
vεd

 ∈ Rd+2.

In terms of this unknown function, (1.12) reads

∂tU
ε +

d∑
j=1

Aj(U ε)∂jU
ε =

ε

2
LU ε + ε2DU ε + ε

d∑
j=1

Bj(U ε)∂jU
ε, (2.1)

where the (k, `)16k,`6d+2 elements of the matrices Aj(U) ∈Md+2(R) are given by

Ajk,k(U) = Uj+2 for k = 1, . . . , d+ 2

Aj1,j+2(U) = U1/2, Aj2,j+2(U) = U2/2

Ajj+2,1(U) = 2U1, Ajj+2,2(U) = 2U2

Ajk,`(U) = 0 otherwise.

The linear operator L is given by

L =

 0 −∆ 0 . . . 0
∆ 0 0 . . . 0
0 0 0d×d

 .

A first important remark is that even though L is a differential operator of order two,
it causes no loss of regularity in the energy estimates, since it is skew-symmetric.
Also, (2.1) is hyperbolic symmetric (or symmetrizable). Indeed, let

S =

(
I2 0
0 1

4Id

)
. (2.2)

This matrix is symmetric and positive, and SAj is symmetric for all k

SAj(U) ∈ Sd+2(R), ∀U ∈ Rd+2.

The diffusive term D is given by

D =

0 0 0 . . . 0
0 0 0 . . . 0
0 0 Id×d∆

 .

Finally, the matrices Bj , defined analogously to Aj , are given by{
Bj

1,j+2(U) = U2, Bj
2,j+2(U) = −U1

Bj
k,`(U) = 0 otherwise.

When the right-hand side of (2.1) is zero, local existence of a unique solution in Hs

with s > d/2 + 1 is a consequence of standard quasilinear analysis for hyperbolic
symmetric systems; see e.g. [49]. The important point in energy estimates consists
in computing

d

dt
〈Λs(SU ε),ΛsU ε〉 , Λ = (1−∆)1/2,
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and taking advantage of symmetry to obtain, thanks to tame estimates,
d

dt
〈Λs(SU ε),ΛsU ε〉 6 C‖U ε‖W 1,∞ 〈Λs(SU ε),ΛsU ε〉 ,

for some constant C depending only on A and d.
In the case of the complete system (2.1), we first recall that as noticed in [29],

the term L does not alter the above energy estimate, since SL is skew-symmetric,
so we have

d

dt
〈Λs(SU ε),ΛsU ε〉 6 C‖U ε‖W 1,∞ 〈Λs(SU ε),ΛsU ε〉+ 2ε2 〈SΛsDU ε,ΛsU ε〉

+ 2ε
d∑
j=1

〈
SΛs

(
Bj(U ε)∂jU

ε
)
,ΛsU ε

〉
.

In terms of (vε, aε), the first new term reads

2ε2 〈SΛsDU ε,ΛsU ε〉 =
ε2

2

d∑
k=1

∫
∆ (Λsvεk) Λsvεk = −ε

2

2

∫
|∇Λsvε|2.

For the second new term, we have

2ε
〈
SΛs

(
Bj(U ε)∂jU

ε
)
,ΛsU ε

〉
=
ε

2

∫
Λs
(
aε2∂jv

ε
j

)
Λsaε1 −

ε

2

∫
Λs
(
aε1∂jv

ε
j

)
Λsaε2.

By Kato–Ponce commutator estimates [35],∥∥Λs
(
aεk∂jv

ε
j

)
− aεkΛs∂jvεj

∥∥
L2 . ‖∇aεk‖L∞‖vεj‖Hs + ‖aεk‖Hs‖∇vε‖L∞ .

Then using Cauchy–Schwarz and Young inequalities,∣∣∣∣∫ aεkΛ
s∂jv

ε
jΛ

saε`

∣∣∣∣ 6 ‖∇Λsvε‖L2‖aεkΛsaε`‖L2 6 δε‖∇Λsvε‖2L2 +
1

4δε
‖aεkΛsaε`‖2L2 .

Choosing δ > 0 sufficiently small and independent of ε, we infer
d

dt
〈Λs(SU ε),ΛsU ε〉+

ε2

4
‖∇Λsvε‖2L2 . ‖U ε‖W 1,∞‖U ε‖2Hs + ‖aε‖2L∞‖aε‖2Hs . (2.3)

The local existence result then follows easily by adapting the standard arguments
from [49]. In view of the energy estimate (2.3), we also infer (1.15). The lifespan
T εmax of the maximal solution to (1.12) must be expected to actually depend on
ε. For instance, if φ0, a0 ∈ C∞0 (Rd), then from [43], T 0

max < ∞, regardless of the
dimension d. On the other hand, we prove further (proof of Theorem 1.7) that if
d = 1, T εmax =∞ for all ε > 0.

Item (iii): uε is solution of the original NLS problem. Define φε by (1.14). Let
us prove that (aε, φε) ∈ C([0, T εmax);Hs × Hs+1) solves the system (1.11). Since
(aε, vε) ∈ C([0, T εmax);Hs×Hs), we readily have φε ∈ C([0, T εmax);Hs−1). Moreover,
vε is irrotational: indeed, curl vε satisfies a homogeneous equation (see e.g. [4,
p. 291]), it is zero at time t = 0, so curl vε ≡ 0. Set Ωε = Dvε − ∇vε, where Dvε
stands for the Jacobian matrix of vε, and ∇vε stands for its transposed matrix. It
solves

∂tΩ
ε + vε · ∇Ωε + Ωε ·Dvε +∇vε · Ωε = ε2∆Ωε.

As a consequence, ∇|vε|2 = 2vε · ∇vε. We then deduce from (1.14) and from the
second equation of (1.12)

∂t (∇φε − vε) = ∇∂tφε − ∂tvε = 0,
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so we infer from the initial condition vε|t=0 = ∇φ0 = ∇φε|t=0 that vε = ∇φε. There-
fore, ∇φε ∈ C([0, T εmax);Hs), hence

φε ∈ C([0, T εmax);Hs+1).

Replacing vε with ∇φε in (1.14) shows that φε solves the first equation in (1.11),
and the second equation in (1.11) is obviously satisfied.

Now, define uε by (1.7). The property uε ∈ C([0, T ε];Hs) is straightforward,
since Hs(Rd) is an algebra. It is clear that uε solves (1.1) and (1.2). Since

C([0, T ε];Hs(Rd)) ⊂ C([0, T ε];H1(Rd)) ∩ L8/d([0, T ε];W 1,4(Rd)),

uniqueness stems from Proposition 1.1. �

2.2. Convergence towards the Euler equation. In this subsection, we study
the semiclassical limit of (1.12).

Proof of Theorem 1.6. The proof proceeds as for [29, Theorem 1.2]. First, The-
orem 1.4 yields a solution (a, v) ∈ C([0, T 0

max);Hs × Hs). Necessarily, T 0
max > T

(where T is an existence time for the Euler equation), for if we had T 0
max 6 T , then by

uniqueness for (1.4), (|a|2, v) = (ρ, v) ∈ L∞([0, T ];Hs ×Hs). The equation for a in
(1.10) then shows that a ∈ L∞([0, T ];Hs−1), hence (a, v) ∈ L∞([0, T ];Hs−1 ×Hs),
which is impossible if T 0

max 6 T : this yields the first part of the theorem.
To prove the error estimate, introduce the vector-valued unknown U , associated

to (a, v). We know that U ∈ C([0, T ];Hs). Consider the error W ε = U ε − U . It
solves

∂tW
ε +

d∑
j=1

(
Aj(U ε)∂jU

ε −Aj(U)∂jU
)

=
ε

2
LU ε + ε2DU ε + ε

d∑
j=1

Bj(U ε)∂jU
ε.

Rewrite this equation as:

∂tW
ε +

d∑
j=1

Aj(U ε)∂jW
ε = −

d∑
j=1

(
Aj(U ε)−Aj(U)

)
∂jU +

ε

2
LW ε +

ε

2
LU

+ ε2DW ε + ε2DU + ε

d∑
j=1

Bj(U ε)∂jU
ε.

The operator on the left hand side is the same operator as in (2.1). The term LW ε

is not present in the energy estimates, since it is skew-symmetric. The term εLU is
considered as a source term: it is of order ε, uniformly in L∞([0, T ];Hs−2). Next,
the first term on the right hand side is a semi-linear perturbation:∥∥(Aj(U ε)−Aj(U)

)
∂jU

∥∥
Hs−2 6

∥∥(Aj(U ε)−Aj(U)
)∥∥
Hs−2 ‖U‖Hs−1

.
∥∥(Aj(W ε + U)−Aj(U)

)∥∥
Hs−2

6 C (‖W ε‖L∞ , ‖U‖Hs−1) ‖W ε‖Hs−2 ,

where we have used tame estimates. Finally, we know that W ε is bounded in
L∞([0, T ] × Rd), as the difference of two bounded terms. The terms involving D
and B are treated in a similar way, by adapting the estimates used in the proof of
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Theorem 1.4. We end up with

d

dt

〈
SΛs−2W ε,Λs−2W ε

〉
+
ε2

4
‖∇Λs−2W ε‖2L2 . ε‖W ε‖Hs−2 + ‖W ε‖2Hs−2

. ε2 +
〈
SΛs−2W ε,Λs−2W ε

〉
,

and the result follows from Gronwall lemma. �

2.3. Global existence result in one dimension. In this section, we consider
(1.12) with ε > 0 fixed, in dimension d = 1. To prove a global existence result, we
shall need finer estimates than (2.3), in particular for low order derivatives.

Proof of Theorem 1.7. For s = 0 and s = 1, (1.12) can be refined, and this will be
useful to prove a global existence result.

L2 estimates. Multiplying the second equation in (1.12) by aε, integrating in space,
and considering the real part yields:

d

dt
‖aε(t)‖2L2 = 0.

We have simply recovered the conservation of mass (1.5).
Multiplying now the first equation in (1.12) by vε and integrating in space, we

take advantage of the dimensional one:
1

2

d

dt
‖vε(t)‖2L2 + ε2‖∂xvε(t)‖2L2 .

∫
|aε(t, x)|2|∂xvε(t, x)|dx. (2.4)

Ḣ1 estimates. Differentiating (1.12) in space, multiplying then the first equation by
∂xv

ε, the second by ∂xaε, and integrating, we find (thanks to the symmetrizer):
d

dt

(
‖∂xvε(t)‖2L2 + 4‖∂xaε(t)‖2L2

)
+ ε2‖∂2

xv
ε(t)‖2L2

.
(
‖∂xvε(t)‖L∞ + ‖aε(t)‖L∞ + ‖aε(t)‖2L∞

) (
‖vε(t)‖2H1 + ‖aε(t)‖2H1

)
. (2.5)

Now, we have the tools to prove Theorem 1.7. In view of Remark 1.5, it suffices
to prove that for any fixed ε > 0,

vε, ∂xv
ε, aε, ∂xa

ε, |aε|2 ∈ L1
loc

(
[0,∞);L∞(Rd)

)
.

Since ε > 0 is fixed, we shall omit it in the notations, and fixed it equal to 1 in
(1.12). Using Item (iii) of Theorem 1.4, and in view of (1.6), we have the a priori
estimate

‖a(t)‖L4 . 1, ∀t > 0.

The refined L2 estimate (2.4) for v and Cauchy–Schwarz inequality yield
1

2

d

dt
‖v(t)‖2L2 + ‖∂xv(t)‖2L2 . ‖a(t)‖2L4‖∂xv(t)‖L2 . ‖∂xv(t)‖L2 .

Using Young’s inequality

‖∂xv(t)‖L2 6 δ‖∂xv(t)‖2L2 +
1

4δ
,

we infer, for δ > 0 sufficiently small,
d

dt
‖v(t)‖2L2 + ‖∂xv(t)‖2L2 . 1.
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Therefore,

‖v(t)‖2L2 +

∫ t

0
‖∂xv(τ)‖2L2dτ . 1 + t.

The Gagliardo–Nirenberg inequality yields∫ t

0
‖v(τ)‖L∞dτ .

∫ t

0
‖v(τ)‖1/2

L2 ‖∂xv(τ)‖1/2
L2 dτ . (1 + t)1/4

∫ t

0
‖∂xv(τ)‖1/2

L2 dτ

. (1 + t)1/4

∫ t

0

(
1 + ‖∂xv(τ)‖2L2

)
dτ . (1 + t)5/4,

where we have used the Young inequality. In view of (1.6), we infer

‖∂xa(t)‖L2 . 1 + ‖a(t)v(t)‖L2 . 1 + ‖v(t)‖L∞ ,

and the Gagliardo–Nirenberg inequality yields

‖a(t)‖L∞ . ‖a(t)‖1/2
L2 ‖∂xa(t)‖1/2

L2 . 1 + ‖v(t)‖1/2L∞ .

We infer ∫ t

0

(
‖a(τ)‖L∞ + ‖a(τ)‖2L∞

)
dτ . (1 + t)5/4.

It only remains to prove that ∂xv, ∂xa ∈ L1
loc([0,∞);L∞(R)). The Ḣ1 estimate (2.5)

yields∫ t

0
‖∂2

xv(τ)‖2L2dτ . 1 +

∫ t

0

(
‖∂xv(τ)‖L∞ + 1 + ‖a(τ)‖2L∞

) (
‖a(τ)‖2H1 + ‖v(τ)‖2H1

)
dτ

. 1 +

∫ t

0

(
‖∂xv(τ)‖L∞ + 1 + ‖a(τ)‖2L∞

) (
1 + ‖v(τ)‖2L∞ + ‖v(τ)‖2H1

)
dτ

. 1 +

∫ t

0

(
‖∂xv(τ)‖L∞ + 1 + ‖a(τ)‖2L∞

) (
1 + ‖v(τ)‖2H1

)
dτ,

from Sobolev embedding. Using an integration by parts and the Young inequality,
we find

‖∂xv(τ)‖2L2 6 ‖v(τ)‖L2‖∂2
xv(τ)‖L2

6
δ

‖∂xv(τ)‖L∞ + 1 + ‖a(τ)‖2L∞
‖∂2

xv(τ)‖2L2

+
‖∂xv(τ)‖L∞ + 1 + ‖a(τ)‖2L∞

4δ
‖v(τ)‖2L2 .

Taking δ > 0 sufficiently small, we infer:∫ t

0
‖∂2

xv(τ)‖2L2dτ . 1 + (1 + t)

∫ t

0

(
‖∂xv(τ)‖L∞ + 1 + ‖a(τ)‖2L∞

)
dτ

+ (1 + t)

∫ t

0

(
‖∂xv(τ)‖L∞ + 1 + ‖a(τ)‖2L∞

)2
dτ

. 1 + t2 + (1 + t)

∫ t

0
‖∂xv(τ)‖2L∞dτ + (1 + t)

∫ t

0
‖a(τ)‖4L∞dτ.
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We also have∫ t

0
‖a(τ)‖4L∞dτ . t+

∫ t

0
‖v(τ)‖2L∞dτ . t+

∫ t

0
‖v(τ)‖L2‖∂xv(τ)‖L2dτ

. t+
√

1 + t

∫ t

0
‖∂xv(τ)‖L2dτ . (1 + t)3/2,

and so ∫ t

0
‖∂2

xv(τ)‖2L2dτ . (1 + t)5/2 + (1 + t)

∫ t

0
‖∂xv(τ)‖2L∞dτ.

Now Gagliardo–Nirenberg and Cauchy–Schwarz inequalities yield∫ t

0
‖∂xv(τ)‖2L∞dτ .

∫ t

0
‖∂xv(τ)‖L2‖∂2

xv(τ)‖L2dτ

.

(∫ t

0
‖∂xv(τ)‖2L2dτ

)1/2(∫ t

0
‖∂2

xv(τ)‖2L2dτ

)1/2

.
√

1 + t

(
(1 + t)5/2 + (1 + t)

∫ t

0
‖∂xv(τ)‖2L∞dτ

)1/2

. (1 + t)7/4 + (1 + t)

(∫ t

0
‖∂xv(τ)‖2L∞dτ

)1/2

.

The Young inequality implies∫ t

0
‖∂xv(τ)‖2L∞dτ . (1 + t)2,

hence ∂xv ∈ L2
loc([0,∞);L∞) ⊂ L1

loc([0,∞);L∞).
Since ∂xa ∈ L1

loc([0,∞);L2), Gagliardo–Nirenberg shows that it suffices to prove
that ∂2

xa ∈ L1
loc([0,∞);L2) to conclude that ∂xa ∈ L1

loc([0,∞);L∞). For that, we
use again Item (iii) of Theorem 1.4, from which we now that aeiφ ∈ L1

loc([0,∞);H2).
Differentiating aeiφ twice, we have, since ∂xφ = v,

‖∂2
xa(t)‖L2 . ‖aeiφ‖H2 + ‖v∂xa‖L2 + ‖a∂xv‖L2 + ‖v2a‖L2

. ‖aeiφ‖H2 + ‖v‖L∞‖∂xa‖L2 + ‖a‖L∞‖∂xv‖L2 + ‖v‖2L∞ .

From the above estimate, we infer ∂2
xa ∈ L1

loc([0,∞);L2), which completes the proof
of the theorem. �

Remark 2.1 (Higher dimension). Even though we have obviously taken advantage
of the one-dimensional setting to use the embedding H1 ⊂ L∞, the true reason
why Theorem 1.7 is limited to d = 1 lies elsewhere. The refined L2 estimate (2.4)
becomes, if d > 2,

1

2

d

dt
‖vε(t)‖2L2 + ε2‖∇vε(t)‖2L2 .

∫ (
|aε(t, x)|2 + |vε(t, x)|2

)
|∇vε(t, x)|dx.

Note the appearance of the new term
∫
|vε(t, x)|2|∇vε(t, x)|dx: it correspond to the

fact that
∫
vε · (vε · ∇vε) is zero if d = 1, but not if d > 2 (in general). This aspect

seems to be the only real limitation to extend Theorem 1.7 to d > 2.
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3. Numerics

In this section, we define a second order numerical scheme for (1.12). Since ε is no
longer a singular perturbation parameter in this reformulation of NLS, this scheme
is naturally Asymptotic Preserving for our original problem in the semiclassical
limit ε → 0, as long as the solution of the Euler equation remains smooth. Since
we solve our problem in dimension 1 on a bounded interval and in dimension 2
on a rectangle, we add periodic boundary conditions to (1.1) or to (1.12), both
formulations remaining equivalent.

3.1. The AP numerical scheme. The nonlinear system to be solved reads
∂ta+ div(av) + (iε− 1

2
)a div v = i

ε

2
∆a ; a|t=0 = a0,

∂tv +∇
(
|v|2

2
+ |a|2

)
= ε2∆v ; v|t=0 = v0.

(3.1)

The semi-discretization in time is realized through a Strang splitting scheme. Let us
denote by ∆tn = tn−tn−1 the variable time step, such that tn =

∑n
k=1 ∆tk. On each

time step [tn, tn+1], we split (3.1) into two subsystems and apply the second-order
Strang splitting algorithm.

Step 1 for t ∈ [tn, tn + ∆tn+1

2 ]:{
∂ta1 = i

ε

2
∆a1 ; a1|t=tn = a|t=tn ,

∂tv1 = ε2∆v1 ; v1|t=tn = v|t=tn .

Step 2 for t ∈ [tn, tn + ∆tn+1]:
∂ta2 + div(a2v2) + (iε− 1

2
)a2 div v2 = 0 ; a2|t=tn = a

1|t=tn+
∆tn+1

2

,

∂tv2 +∇x
(
|v2|2

2
+ |a2|2

)
= 0 ; v2|t=tn = v

1|t=tn+
∆tn+1

2

.

Step 3 for t ∈ [tn, tn + ∆tn+1

2 ]:{
∂ta3 = i

ε

2
∆a3 ; a3|t=tn = a2|t=tn+1

,

∂tv3 = ε2∆v3 ; v3|t=tn = v2|t=tn+1
.

Then, (a3, v3)
|t=tn+

∆tn+1
2

is an approximation of (a, v)|t=tn+1
, solution to (3.1).

This splitting scheme enables to decouple the fluid part (step 2) from the parabolic
and Schrödinger parts (step 1 and 3), which allows a standard treatment of each
step. Note that for ε = 0, we recover exactly the Euler equations (1.10). We denote
by (an,ε, vn,ε) the numerical solution at time tn. In the spirit of [30], the following
result can be proven.

Proposition 3.1. Under the assumptions of Theorem 1.4, there exist ε0 > 0 and
C, c0 independent of ε ∈ [0, ε0] such that for all n ∈ N such that tn ∈ [0, T ], where
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T is as in Theorem 1.4 (ii), for all ∆tn ∈ (0, c0],∥∥∥|an,ε|2 − ρε(tn)
∥∥∥
L1(Rd)∩L∞(Rd)

6 C(max
n

∆tn)2,∥∥∥ε Im(an,ε∇an,ε) + |an,ε|2 vn,ε − jε(tn)
∥∥∥
L1(Rd)∩L∞(Rd)

6 C(max
n

∆tn)2.

We assume, without loss of generality, that we are in a periodic framework for
the space variable. This allows to solve steps 1 and 3 in a spectral way by using fast
Fourier transform, whereas for step 2, we use a Lax-Wendroff scheme (with direc-
tional splitting in dimension 2). The extension to Dirichlet or Neumann boundary
conditions would require to consider sine or cosine transforms in place of FFT. The
total scheme is consistent with (3.1), and second-order in time and space. Since the
Lax-Wendroff scheme is explicit, a Courant-Friedrich-Lewy condition is necessary
for stability:

∆tn 6 CFL
∆x

maxj

(
|vnj |+ |anj |

) .
where vnj denotes the approximation to v(tn, xj), xj being a node of the mesh
discretization of the computational domain Ω, and ∆x is the space discretization
parameter. In all our numerical experiments, we take CFL = 0.8.

3.2. Numerical experiments in dimension 1. In order to analyze the behavior
of the numerical solutions (3.1), we proceed like in [6], and compare the behavior
of numerical physical observables (1.13) computed by our AP numerical scheme
to a reference solution. Since exact solutions to (1.1) with initial data (1.2) are
not available, we numerically generated one thanks to the usual splitting method
described in [6], applied to (1.1)-(1.2) with a meshing strategy that ensures that the
time step ∆t . ε and the space step ∆x . ε. We consider the initial datum

a0(x) = e−25(x−0.5)2
,

v0(x) = −1
5∂x ln (e5(x−0.5) + e−5(x−0.5)),

with x ∈ [−1/2, 3/2]. In all our simulations, the smallest value of ε is 10−4. We then
discretize the x-interval with J = 215 subintervals and the time step is ∆t = ε/100.
We refer to the reference solution in a generic way by the notation uεref . With the
considered initial datum, new oscillations appear in the reference solution passed a
time T ∗ ∼ 0.10, meaning that singularities were created in the limit Euler system
(1.10). In Figures 1 and 2, we plot particle and current densities ρεref and jεref for
ε = 10−4 respectively at time t = 0.05 and t = 0.13, before and past formation of
shocks. We present on Figure 3 a zoom close to singularities which shows oscillations
on physical observables.

In order to show the asymptotic preserving property of our scheme, we compute
relative `1 errors at time tn thanks to the formula

errρε(tn) = ‖ρεref − ρn,ε‖1/‖ρεref‖1, ρn,εj = |an,εj |
2,

errjε(tn) = ‖jεref − jn,ε‖1/‖jεref‖1, jn,εj = ε Im(an,εj ∇a
n,ε
j ) + ρn,εj vn,εj ,

where the `1 norm is

‖u‖1 = ∆x

J−1∑
k=1

|uj |.
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Figure 1: Particle and current densities at time T ∗ = 0.05 and for ε = 10−4.
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Figure 2: Particle and current densities at time T ∗ = 0.13 and for ε = 10−4.

We evaluate the error function for different values of J = 2M , where M is an
integer here chosen in [4, 13], and various scaled Planck parameter ε in [10−4, 100].
We plot on Figures 4, 5, 6 and 7 the relative error on physical observables ρε and
jε computed with our AP schemes at time t = 0.05 and t = 0.13 respectively before
and after the formation of singularities. We clearly see that the error is proportional
to (∆x)2, independently of ε before formation of singularities. Indeed, the mean
slope of the error curves with respect to ∆x is close to the value 2 (subfigures (a)).
The independence with respect to ε appears in subfigures (b) where error curves
are flat. After the formation of shocks, the behavior of our scheme is very different
and the mesh parameters have to be reduced as ε→ 0 to get good accuracy.

For a comparison, we present the same study for the classical time splitting
scheme applied to (1.1)-(1.2) on Figures 8, 9, 10, 11. Thanks to the spectral accuracy
of Fast Fourier Transform, the error levels are smaller than for our AP scheme which
is only second order with respect to time and space variables. However, contrary to
our AP scheme, the error curves clearly depend on ε, the error being of order O(1)
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Figure 3: Zoom around singularity of density and current at time T ∗ = 0.13 and
for ε = 10−4.
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Figure 4: errρε(t = 0.05) for AP scheme

when ε is smaller than 2.10−3. In order to have good accuracy, it is required to take
∆x . ε.

To make our presentation complete, we present the reconstruction of uε thanks to
equation (1.14) with ε = 0.005. We therefore compute the phase φε with amplitude
aε and velocity vε. Since we have access to values of these quantities at every
discrete time tn, we approximate the time dependent integral thank to a simple
rectangular quadrature. We see that we can recover a very good approximation of
the wave function uε with very few points before the formation of singularities (see
Fig. 12). Obviously, one needs more points to have a good reconstruction of the
wave function passed the singularities (see Figs. 13 and 14).
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Figure 5: errjε(t = 0.05) for AP scheme
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Figure 6: errρε(t = 0.13) for AP scheme
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Figure 7: errjε(t = 0.13) for AP scheme
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Figure 8: errρε(t = 0.05) for time splitting scheme
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Figure 9: errjε(t = 0.05) for time splitting scheme
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Figure 10: errρε(t = 0.13) for time splitting scheme
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Figure 11: errjε(t = 0.13) for time splitting scheme
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Figure 12: Re(uε) at T = 0.05 for ε = 0.005
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Figure 13: Re(uε) at T = 0.13 for ε = 0.005
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Figure 14: Re(uε) at T = 0.13 for ε = 0.005

3.3. Numerical experiments in dimension 2. The previous subsection was de-
voted to one dimensional simulations. We present here the equivalent error anal-
ysis for the two dimensional case. The computational domain is now the square
[−0.5, 1.5]2 discretized with J points in each direction. We still need a reference
solution generated with Strang splitting scheme applied to equation (1.1)-(1.2). We
take Jref = 213 = 8192, so ∆x ∼ 2.5 10−4 and ∆t = ε/100. In a first test, the initial
datum is related to the one chosen for the one dimensional case

a0(x, y) = e−25 r2
,

v0(x) = −1

5
∇ ln (e5 r + e−5 r).

where r =
√

(x− 0.5)2 + (y − 0.5)2. We evaluate the error function for different
values of J = 2M , whereM is chosen in [4, 11], and various scaled Planck parameter
ε in [5.10−4, 100]. The formation time of singularities is as in one dimension situation
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located around 0.10. The reference particle and current densities for ε = 5.10−4

are represented on Figures 15 and 17 before and after formation of singularities.
We clearly see that a tiny front appears after shocks both in particle and current
densities. The wave function presents strong oscillations with new ones created past
the shock creation (see Fig. 17)

(a) ρref (b) jref

Figure 15: Contour plot of particle and current densities at time t = 0.05 and for
ε = 5.10−4

(a) ρref (b) jref

Figure 16: Contour plot of particle and current densities at time t = 0.13 and for
ε = 5.10−4

The error analysis results are equivalent to the ones obtained for one dimensional
simulation. We recover an independence of the error with respect to ε before the
formation of singularities (see Figs 18 and 19). We always need to take finer mesh
past the shocks formation (see Figs 20 and 21).
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(a) uε at time t = 0.05 (b) uε at time t = 0.13

Figure 17: Contour plot of real part of uε at times t = 0.05 and t = 0.13 and for
ε = 5.10−4
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Figure 18: errρε(t = 0.05) for AP scheme

The last computation concerns a non-symmetric solution. The aim of our simu-
lations is to show that we recover good qualitative properties, even for non radially
symmetric data. We consider here as initial datum a Maxwell distribution with two
temperatures θ1 = 0.05 and θ2 = 0.015 for the initial amplitude given by

a0 =
1√
4

1

2π
√
θ1

√
θ2

exp

(
−(x− 0.5)2

2θ1
− (y − 0.5)2

2θ2

)
.

The initial phase is reduced to φ0 = 0 (note that from (1.11), ∂tφ|t=0 = −|a0|2 6= 0,
so φ becomes instantaneously non-trivial). The scaled Planck factor ε is equal
to ε = 0.005 and the simulations are performed with J = 2048 intervals in each
direction. To distinguish the evolution for each direction (x, y), we make contour
plots of wave function and physical observables but also present slice for plane
x = 0.5 and y = 0.5 respectively on bottom right and upper right axes. The
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Figure 19: errjε(t = 0.05) for AP scheme
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Figure 20: errρε(t = 0.13) for AP scheme

solution has many oscillations in both directions before formation of singularities
(see the real part of the wave function uε on Fig. 22 at time t = 0.035). The
oscillatory nature is enhanced at time t = 0.08 mainly in y−direction (see Fig. 23).

We recover the good behavior of physical observables before the formation time
of singularities. Actually, we compare the particle densities computed by Strang
splitting scheme and our AP scheme at time t = 0.035 on Figures 24 and 25. The
similar representation for jε is available on Figures 28 and 29. Past the formation
time of singularities, the contour plots could be thought as equivalent both for
particle and current densities. The only noticeable differences can be seen on x = 0.5
and y = 0.5 plane slices (see Fig. 26, 27, 30 and 31).



AP SCHEME FOR NLS 25

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

∆ x

L
1
R

e
lE

rr
J

 

 

Slope 1.82

ε=1.0000

ε=0.6400

ε=0.3200

ε=0.1600

ε=0.0800

ε=0.0400

ε=0.0200

ε=0.0100

ε=0.0050

ε=0.0025

ε=0.0010

ε=0.0005

(a) Error w.r.t J = 2M

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ε

L
1
R

e
lE

rr
J

 

 

J=16

J=32

J=64

J=128

J=256

J=512

J=1024

J=2048

(b) Error w.r.t ε

Figure 21: errjε(t = 0.13) for AP scheme

Figure 22: Re(uε)(t = 0.035)

Figure 23: Re(uε)(t = 0.08)
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Figure 24: Strang ρε(t = 0.035)

Figure 25: AP ρε(t = 0.035)

Figure 26: Strang ρε(t = 0.08)
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Figure 27: AP ρε(t = 0.08)

Figure 28: Strang jε(t = 0.035)

Figure 29: AP jε(t = 0.035)



28 C. BESSE, R. CARLES, AND F. MÉHATS

Figure 30: Strang jε(t = 0.08)

Figure 31: AP jε(t = 0.08)
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4. Extension to other frameworks

4.1. The linear case: global solution of the viscous eikonal equation. The
advantage of introducing an artificial diffusion is more striking in the linear case.
Consider

iε∂tu
ε +

ε2

2
∆uε = Vextu

ε; uε|t=0 = a0e
iφ0/ε, (4.1)

with Vext = Vext(t, x) real-valued. As noticed in [22], using the Madelung transform
in this context is interesting only if vacuum can be avoided. Having the idea of
Grenier [29] in mind, the counterpart of (1.8) reads

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε, aε|t=0 = a0,

∂tφ
ε +

1

2
|∇φε|2 + Vext = 0, φε|t=0 = φ0.

We note that the two equations are decoupled: the second equation is of Hamilton-
Jacobi type (known as the eikonal equation in this context), and the solution must
be expected to develop singularities in finite time (see e.g. [12]), so this approach is
doomed to fail for large time. On the other hand, introducing the artificial diffusion
as in (1.11), we obtain

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε − iεaε∆φε, aε|t=0 = a0,

∂tφ
ε +

1

2
|∇φε|2 + Vext = ε2∆φε, φε|t=0 = φ0.

(4.2)

The system is still decoupled, but the good news is that the diffusion introduced into
the Hamilton-Jacobi equation smoothes the solution out. Therefore, this system can
be considered as a good candidate to obtain an AP scheme for the linear Schrödinger
equation, regardless of the presence of vacuum.

Instead of giving full details of the analogue of Theorems 1.4, 1.6 and 1.7, as well
as of their proofs, we shall simply give a functional framework where the viscous
eikonal equation can by solved globally in time. Since we consider the case ε > 0
only, we drop out the ε2 term in the viscous eikonal equation, and consider

∂tφeik +
1

2
|∇φeik|2 + Vext = ∆φeik; φeik(0, x) = φ0(x). (4.3)

For k > 1, let

SLk = {f ∈ Ck(Rd;R), ∂αf ∈ L∞(Rd), ∀1 6 |α| 6 k}.

For k > 2, let

SQk = {f ∈ Ck(Rd;R), ∂αf ∈ L∞(Rd), ∀2 6 |α| 6 k}.

The key result is the following:

Lemma 4.1. Let k > 2 and φ0 ∈ SLk, Vext ∈ L∞loc(R+; SLk). Then (4.3) has a
unique solution φeik ∈ C(R+; SLk−1).

Remark 4.2. No such global result must be expected in the larger class SQk. Indeed,
suppose d = 1, Vext = 0 and φ0(x) = −x2/2. If (4.3) had a solution φeik ∈
C(R+; QL2), then w = ∂2

xφeik ∈ C(R+;L∞) would solve

∂tw + v∂xw + w2 = ∂2
xw; w(0, x) = −1.
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The solution of this equation does not depend on x. It is given by w(t, x) = 1/(t−1),
hence a contradiction. However, in the periodic case x ∈ Td, this technical issue
disappears (see Remark 4.3 below).

Proof. The first step consists in constructing the gradient of φeik. Differentiating
(4.3) in space, we have to solve

∂tv + v · ∇v +∇Vext = ∆v; v(0, x) = ∇φ0(x). (4.4)

This equation is solved locally in time by a fixed point argument by using Duhamel’s
formula

v(t) = et∆∇φ0 −
∫ t

0
e(t−s)∆(v · ∇v)(s)ds−

∫ t

0
e(t−s)∆(∇Vext)(s)ds.

The right hand side is a contraction on{
w ∈ C

(
[0, T ];W k−1,∞

)
, ‖w‖L∞([0,T ];Wk−1,∞) 6 2‖∇φ0‖Wk−1,∞

}
,

provided that T > 0 is sufficiently small. This follows from the properties of the
heat kernel: for t > 0,

‖et∆f‖L∞ 6 ‖f‖L∞ ; ‖et∆∇f‖L∞ 6
C√
t
‖f‖L∞ .

The solution to (4.4) is then global, thanks to the maximum principle (see e.g. [47,
Proposition 52.8], which implies that v− 6 v 6 v+, where

∂tv± ∓ ‖∇Vext‖L∞x = 0; v±(0, x) = ±‖∇φ0‖L∞ .

Once such a solution v ∈ C(R+;W k−1,∞) is constructed, set

φeik(t) = φ0 −
∫ t

0

(
1

2
|v(s)|2 + Vext(s)− div v(s)

)
ds.

We check that ∂t(∇φeik − v) = ∇∂tφeik − ∂tv = 0. Therefore, v = ∇φeik, and φeik

solves (4.3). Rewriting (4.3) as

∂tφeik +
1

2
|v|2 + Vext = ∆φeik; φeik(0, x) = φ0(x),

Duhamel’s formula reads

φeik(t) = et∆φ0 −
∫ t

0
e(t−s)∆(|v(s)|2)ds−

∫ t

0
e(t−s)∆Vext(s)ds,

from which we conclude that φeik ∈ C(R+; SLk−1). �

Remark 4.3. In the periodic setting x ∈ Td = (R/(2πZ))d, it is natural to work in
the Wiener algebra

W =

f : Td → C, f(x) =
∑
j∈Zd

bje
ij·x with (bj)j∈Zd ∈ `1(Zd)

 ,

and for k > 0,
W k = {f : Td → C, ∂αf ∈W, ∀|α| 6 k}.

Then Lemma 4.1 is easily adapted by replacing SLk with W k.
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4.2. Other nonlinearities. One might believe that Theorem 1.7 is bound to the
cubic one-dimensional Schrödinger equation, which is completely integrable, and
that the two aspects are related. We show that this is not the case, since Theorem 1.7
remains valid for other nonlinearities (with d = 1). Consider now

iε∂tu
ε +

ε2

2
∆uε = f

(
|uε|2

)
uε, (t, x) ∈ R+ × Rd. (4.5)

We suppose that there exists δ > 0 such that f ′(y) > δ, for all y > 0.
Following [29], the only modification we have to make to recover the results in

Section 2.1 consists in replacing the symmetrizer (2.2) with

S =

(
I2 0
0 1

4f ′(a2
1+a2

2)
Id

)
.

From our assumption on f , S and its inverse S−1 are uniformly bounded, provided
that a is bounded. As a matter of fact, the exact assumption in [29] is f ′ > 0, and
all the results in Section 2.1 remain valid under this assumption.

The more precise assumption f ′(y) > δ becomes useful to prove that in dimension
d = 1, the solution is global. The main point to notice is that the conservation of
mass and momentum are the same as for (1.1), like in Proposition 1.1. On the other
hand, the conservation of energy becomes

d

dt

(
‖ε∇uε(t)‖2L2 +

∫
Rd

F
(
|uε(t, x)|2

)
dx

)
= 0,

where F is an anti-derivative of f ,

F (y) =

∫ y

0
f(r)dr.

By assumption,

F (y) >
δ

2
y2 + f(0)y,

so the potential energy controls the L4-norm:

‖uε(t)‖4L4 6
2

δ

(∫
Rd

F
(
|uε(t, x)|2

)
dx− f(0)‖uε(t)‖2L2

)
6

2

δ

(∫
Rd

F
(
|uε(t, x)|2

)
dx− f(0)‖uε(0)‖2L2

)
,

where we have used the conservation of mass in the last inequality. This implies an
estimate of the form

‖ε∇uε(t)‖2L2 + ‖uε(t)‖4L4 6 C,

with C independent of t > 0 and ε ∈ (0, 1]. Therefore, the analysis presented in
Section 2.3 can be repeated line by line.

Example 4.4. The assumption f ′ > δ > 0 is satisfied in the following cases:
• Cubic-quintic nonlinearity: f(y) = y + λy2, λ > 0.
• Cubic plus saturated nonlinearity: f(y) = δy + η y

1+λy , δ, η, λ > 0.
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