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Abstract

A robust circle criterion observer is designed and applied to neural mass models. At present, no existing circle criterion observers
apply to the considered models, i.e. the required linear matrix inequality is infeasible. Therefore, we generalise available results
to derive a suitable estimation algorithm. Additionally, the design also takes into account input uncertainty and measurement
noise. We show how to apply the observer to estimate the mean membrane potential of neuronal populations of a popular
single cortical column model from the literature.

Key words: system state observer; linear matrix inequality approach; brain models; biomedical.

1 Introduction

The observation of states plays a significant role in many
biological applications, most notably in brain research
where the sensors that can be physically implanted can-
not measure directly all variables of interest. The esti-
mation of states is therefore especially useful for the di-
agnosis and classification of neurological diseases, as well
as general neuroscientific studies for better understand-
ing of the human brain [9].

We focus on models that describe the activity of neurons
at the macroscopic level, i.e. the activity of populations
of neurons. They are known in the literature as ‘neural
mass models’ [3]. We consider a class of models that
includes a model that describes the visual pathway when
the brain is in an idle state [6], a model which replicates
alpha rhythms [10] and a model that describes epileptic
activity in the hippocampus [11]. The models mentioned
originate from the seminal work of Lopes da Silva in [8]
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and they all share the same mathematical structure:

ẋ=Ax+Gγ(Hx) +Bu

y =Cx+Dw, (1)

where the state vector is x ∈ R
n, the input is u ∈ R

r,
the measurement is y ∈ R

p, the measurement noise is
w ∈ R

s, A ∈ R
n×n, B ∈ R

n×r, C ∈ R
p×n, G ∈ R

n×m,
H ∈ R

q×n, D ∈ R
p×s and γ = (γ1, . . . , γm) : Rq → R

m.

For the class of neural mass models considered, existing
results in the literature for circle criterion observers [1],
[5], [12] resulted in an infeasible linear matrix inequal-
ity (LMI) condition, which does not allow us to guaran-
tee the convergence of the estimation error to the origin.
Hence, we propose a generalised result that leads to fea-
sible LMIs such that the observer can be applied to the
models considered.

We also address two main issues faced in neuroscien-
tific studies. Firstly, the input is not always measurable.
Secondly, the measurements obtained are corrupted by
noise. Hence, we improve the observer design in [2] by
taking into account these two implementation issues.
The resulting design allows observer gain matrices L and
K to be obtained under the circle criterion, while taking
the attenuation of input uncertainty and measurement
noise into account. Our design differs from [12] in that
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we consider input uncertainty and we also introduce a
multiplier M in the LMI, so that the resulting observer
is applicable to the class of neural mass models we con-
sider.

Notation A vector [ aT bT ]T is denoted (a, b), for all

a ∈ R
na , b ∈ R

nb . A block diagonal matrix with square
matrices Ai ∈ R

ni×ni is denoted as diag(A1, . . . , An).
The identity matrix is denoted by I. The symmetric
block component of a symmetric matrix is denoted by
⋆. The vector norm of f at each time t is denoted |f(t)|.
The L2 norm is defined as ‖f(t)‖2 =

(

∫ t

0
|f(s)|2 ds

)
1

2

.

2 A neural mass model

As mentioned in the introduction, our results apply to
a class of neural mass models. Due to space constraints,
we choose to focus on a popular model found in [6]. This
single cortical column model is able to generate realistic
patterns such as alpha rhythms in the electroencephalo-
gram (EEG), which we take as a measurement. It can
be written in the form of (1) with the state vector
x = (x1, . . . , x8). The variables xj , j ∈ {1, 3, 5, 7} are
the mean membrane potentials of the neuronal popula-
tions and xk, k ∈ {2, 4, 6, 8} are their derivatives. The
input u ∈ R is the afferent influence from other popula-
tions and is assumed in [6] to be a uniformly distributed
signal between 120 and 320mV. The output y ∈ R is the
EEG measurement provided to the observer. All values
of the constants in this section are non-negative and
their physiological meaning can be found in [6]. The
model is of the form (1) with:

A = diag(A1, . . . , A4) where Ai =

[

0 1

−k2i −2ki

]

,

k1 = k3 = k4 = a and k2 = b, where a, b > 0,

B = (0, θAa, 0, 0, 0, 0, 0, 0), C = [ 1 0 −1 0 0 0 0 0 ],

D = 1, G =









0 θAaC2 0 0 0 0 0 0

0 0 0 θBbC4 0 0 0 0

0 0 0 0 0 θAaC3 0 θAaC1









T

,

H =









0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

1 0 −1 0 0 0 0 0









, γ = (S, S, S). The sigmoid

function is S(s) = α

1+exp
(

−r(s−V0)
) for all s ∈ R, where

α, r > 0.

3 Problem formulation

In this section, we first state an assumption on system (1)
which is satisfied by the considered neural mass models.
We then set out our main objective. Suppose the non-
linearity γ in (1) is both globally Lipschitz and mono-
tonically increasing as follows:

Assumption 1 For any i ∈ {1, . . . ,m}, there exists
constants 0 ≤ ai ≤ bi < ∞, so that the following holds:

ai ≤ γi(zi)−γi(vi)
zi−vi

≤ bi, ∀vi, zi ∈ R with vi 6= zi.

Assumption 1 is an extension of the slope restriction
condition from [1, Equation (1)] to vector nonlinearity
γ = (γ1, . . . , γm). Constant bi is the Lipschitz constant
of γi. We note that the function γ specified in Section 2
satisfies Assumption 1 with a1 = 0 and b1 = ρ, where
ρ = 1

2αr from the sigmoid function in Section 2.

Note that from Assumption 1, we know that for any i ∈
{1, . . . ,m}, there exists a time-varying gain δi(t) taking
values in the interval [0, bi] (as done in [1, Equation (6)])
so that:

γi(zi)− γi(vi) = δi(t)(zi − vi), ∀vi, zi ∈ R. (2)

We consider the following type of observer [1]:
˙̂x=Ax̂+Gγ

(

Hx̂+K(Cx̂−y)
)

+L(Cx̂−y)+B(u+d), (3)

where x̂ is the state estimate, d ∈ R
r is the input dis-

turbance and K ∈ R
m×p, L ∈ R

n×p are the observer
matrices to be designed.

As done in [1], denoting the observation error as e :=
x̂−x, v := Hx and z := Hx̂+K(Cx̂−y), the observation
error system from (1) and (3) is ė = (A+LC)e−LDw+
Bd+G

(

γ(z)− γ(v)
)

. By (2), we obtain the observation
error system as
ė= (A+ LC)e− LDw +Bd+Gδ(t)η, (4)

where δ(t) = diag(δ1(t), . . . , δm(t)) and η := z − v.

Given the observation error system (4), our task is to
find observer matrices K and L such that a quadratic
Lyapunov function V (e) satisfies the following along the
solutions of (4):

V̇ (e) ≤ −|e|2 + µw|w|2 + µd|d|2. (5)

We can then show that the observation error e satisfies
the following property 1 for all t ≥ 0:

‖e(t)‖2 ≤ c̄|e(0)|+√
µw‖w(t)‖2 +

√
µd‖d(t)‖2, (6)

where scalars c̄, µw, µd > 0. The disturbance gains from
w and d to e are

√
µw and

√
µd respectively.

4 A robust circle criterion observer

In this section, we present the main result of this note.
In Theorem 2, we establish that the observation error
system (4) satisfies property (6) provided that a linear
matrix inequality (LMI) is satisfied.

1 We can obtain (6) from (5) by following the same proce-
dure as in the proof of Theorem 5.2 in [7].
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Theorem 2 Consider system (1) and observer (3). Un-
der Assumption 1, if there exist a real symmetric and
positive definite matrix P , a diagonal and positive def-
inite matrix M = diag(m1, . . . ,mm), and scalar con-
stants µw, µd > 0, such that the following is satisfied:















A(P, PL) B(P,M,KTM) −PLD PB

⋆ E(M) −MKD 0

⋆ ⋆ −µwI 0

⋆ ⋆ ⋆ −µdI















≤ 0, (7)

where A(P, PL) = P (A + LC) + (A + LC)TP + I,
B(P,M,KTM) = PG + (H + KC)TM and E(M) =

−2Mdiag
(

1
b1
, . . . , 1

bm

)

, then the observation error sys-

tem satisfies property (6).

The proof of Theorem 2 is provided in the Appendix.
Theorem 2 shows that if a K and L can be found such
that the LMI (7) is satisfied, then an observer (3) can
be designed for system (1). Note that condition (7) is
considered an LMI in P , PL, MK, M , µw and µd. As
such, (7) can be solved using efficient software tools such
as the LMI Lab in MATLAB.

By considering the system (1) under the ideal condition
where there is no input uncertainty and measurement
error, we obtain the condition stated in Corollary 3 and
obtained in [2, Theorem 2].

Corollary 3 Consider system (1) and observer (3) with
d = 0 and w = 0. The origin of the observation error
system (4) is globally exponentially stable if the following
holds:

[

A(P, PL) B(P,M,KTM)

⋆ E(M)

]

≤ 0, (8)

where A, B and E are defined in Theorem 2.

Current circle criterion results in [1], [5], [12] yield LMIs
that are not feasible for the class of neural models we
consider. Therefore, we adapted [5] to the case where
the nonlinearity γ is globally Lipschitz and also mono-
tonically increasing with inspiration from [1]. This result
is a special case of the system considered in Theorem 2
as stated in Corollary 3 and was reported in [2]. In this
note, we further improve the circle criterion observer ob-
tained in [2] by designing observer matrices K and L
under the circle criterion condition and taking input un-
certainty d from (3) and measurement noise w from (1)
into account. The LMI (7) differs from (13) obtained in
[12] in the sense that we consider input uncertainty at-
tenuation and introduced a multiplierM in components
(1, 2), (2, 2) and (2, 3) of (7). Without introducing the
multiplier M , the results obtained in [12] do not lead to

feasible LMIs. This simple extension allows circle crite-
rion observers to be designed for the neural models we
consider, in addition to taking into account the realistic
issues faced when implementing these observers in the
context of estimation for neuroscientific studies.

The constants µw and µd in (7) may be specified by the
user and should the LMI (7) be found to be solvable, we
then have the estimation error satisfying property (6)
with estimates of the disturbance gains

√
µw and

√
µd.

In some cases, we may wish to minimise these constants
and various methods are available to solve this multi-
objective optimisation problem (see [4]). A simple ap-
proach that we take in the next section is to minimise
the cost Jmax = max{µw, µd} subject to (7).

5 Application to a neural mass model

We introduce input disturbance d ∼ N (0, 0.12) andmea-
surement noise w ∼ N (0, 0.72). The performance of (A)
the circle criterion observer obtained under the condi-
tions of Corollary 3 that does not consider the atten-
uation of input uncertainty and measurement noise is
compared with (B) the robust circle criterion observer
derived in Theorem 2. We solved LMI (8) to obtain ob-
server matricesK, L for observer (A). For observer (B),
we choose to minimise µw and µd using the cost func-
tion Jmax subject to (7) to obtain K and L. The re-
sulting computed disturbance gains are

√
µw = 706 and√

µd = 9.48. In the simulation that follows, we initialise
the model at x(0) = (6, 0.5, 6, 0.5, 6, 0.5, 6, 0.5) and the
observers at x̂(0) = 0. Figure 1 shows that the robust cir-
cle criterion observer obtained in Theorem 2 (Observer
(B)) outperforms the observer obtained in Corollary 3
(Observer (A)) in the presence of input uncertainty and
measurement noise.

6 Conclusion

We have designed a robust circle criterion observer that
attenuates input uncertainty and measurement noise.
The designed observer is then applied to a neural mass
model that describes the generation of alpha rhythms
prevalent in the cerebral cortex [6]. To the best of our
knowledge, no other results in the literature leads to
feasible LMIs.
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A Proof of Theorem 2

Firstly, x(t) exists for all t ≥ 0 by Theorem 3.2 of [7], be-
cause γ is globally Lipschitz and u is a continuous func-
tion that is defined for all t ≥ 0. We now show that the
observation error system satisfies property (6) by taking
the derivative of the Lyapunov function V (e) = eTPe
along the solutions of (4), where χ = (e, δ(t)η, w, d):

V̇ (e) = e
T
(

P (A+ LC) + (A+ LC)TP
)

e+ 2eTPGδ(t)η

−2eTPLDw + 2eTPBd

= χ
T















P (A+ LC) + (A+ LC)TP PG −PLD PB

⋆ 0 0 0

⋆ ⋆ 0 0

⋆ ⋆ ⋆ 0















χ.

Applying (7), we obtain:

V̇ (e)≤ χT















−I −(H +KC)TM 0 0

⋆ −E(M) MKD 0

⋆ ⋆ µwI 0

⋆ ⋆ ⋆ µdI















χ

=−|e|2 − 2eT (H +KC)TMδ(t)η + 2ηT δ(t)MKDw

−ηT δ(t)T E(M)δ(t)η + µw|w|2 + µd|d|2.

Recall that η := z − v = (H + KC)e − KDw, hence
(H +KC)e = η +KDw. Therefore,

V̇ (e)≤−|e|2 − 2(η +KDw)TMδ(t)η + 2ηT δ(t)MKDw

−ηT δ(t)T E(M)δ(t)η + µw|w|2 + µd|d|2.

Noting that δ(t) = diag (δ1(t), . . . , δn(t)) = δ(t)T ,

V̇ (e) + |e|2 − µw|w|2 − µd|d|2

≤ −2ηT
(

Mδ(t)− δ(t)Mdiag

(

1

b1
, . . . ,

1

bm

)

δ(t)

)

η.

We examine Mδ(t)− δ(t)Mdiag
(

1
b1
, . . . , 1

bm

)

δ(t) com-

ponent by component, i.e. δi(t)mi − δi(t)
2mibi

−1 =
δi(t)mi

(

1− δi(t)bi
−1

)

. As δi(t), mi > 0 and by As-

sumption 1, 1 − δi(t)bi
−1 ≥ 0, we obtain δ(t)M −

δ(t)Mdiag
(

1
b1
, . . . , 1

bm

)

δ(t) ≥ 0. Hence, V̇ (e) + |e|2 −
µw|w|2 − µd|d|2 ≤ 0. As explained in Section 3, this
implies that the observation error system satisfies prop-
erties (6) as required. 2
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