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Abstract

One-way Vehicle Sharing Systems (VSS) such as Vélib’ Paris are flourishing. The use-
fulness of VSS for users is highly impacted by the availability of vehicles and parking spots.
Most existing systems are ruled by the requests of users. We study the potential interest
of influencing the users in order to improve the performance of the system. We focus on
optimizing the number of trips taken in the system. We assume that each user is associ-
ated with a pair (O-D) of stations, and only interacts with the system if his O-D trip is
available. We consider leverages that can influence the rate of user requests for each pair
O-D. In order to provide exact formulas and analytical insights, VSS are modeled as closed
queuing networks with infinite buffer capacity and Markovian demands. Transportation
times are assumed to be null, stations have infinite capacities and the demand is stationary
over time. We propose a heuristic based on computing a Maximum Circulation on the
demand graph together with a convex integer program solved optimally by a greedy algo-
rithm. For M stations and N vehicles, the performance ratio of this heuristic is proved to
be exactly N/(N +M − 1). The complexity of computing optimum policies remains open.
Insights on this issue are provided in the appendix. The appendix also contains an example
showing that VSS can have poor performances without regulation.

Keywords: Vehicle Sharing Systems; Closed Queuing Networks; Pricing; Product forms;
Continuous-time Markov decision process; Stochastic optimization; Approximation algo-
rithms.

1 Introduction

1.1 Context

Based on a sample of 22 US studies, Shoup (2005) reports that car drivers looking for a parking
spot contribute to 30% of the city traffic. Moreover cars are used less than 2 hours per day on
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average but still occupy a parking spot the rest of the time! Could we have fewer vehicles and
satisfy the same demand level?

Recently, the interest in Vehicle Sharing Systems (VSS) in cities has increased significantly.
Indeed, urban policies intend to discourage citizens to use their personal car downtown by re-
ducing the number of parking spots, street width, etc. VSS seem to be a promising solution to
reduce jointly traffic and parking congestion, noise, and air pollution (proposing bikes or electric
cars). They offer personal mobility allowing users to pay only for the usage (sharing the cost of
ownership).

We are interested in short-term one-way VSS in which vehicles can be taken and returned at
different places. Associated with classic public transportation systems, short-term one-way VSS
help to solve one of the most difficult public transit network design problems: the last kilometer
issue (DeMaio, 2009). Round-trip VSS, where vehicles have to be returned at the station where
they were taken, cannot address this issue.

The first large-scale short-term one-way VSS was the Bicycle Sharing System (BSS) Vélib’.
It was implemented in Paris in 2007. Today, it has more than 1200 stations and 20 000 bikes
selling around 110 000 trips per day. It has inspired several other cities all around the world:
Now more than 300 cities have such a system, including Montréal, Bejing, Barcelona, Mexico
City, Tel Aviv (DeMaio, 2009).

1.2 One-way Vehicle Sharing Systems: a management issue

One-way systems increase the user freedom at the expense of a higher management complex-
ity. In round trip rental systems, while managing the yield, the only stock that is relevant is the
number of available vehicles. In one-way systems, vehicles are not the only key resource anymore:
parking stations may have limited number of spots and the available parking spots become an
important control leverage.

Since first BSS, problems of bikes and parking spots availability have appeared recursively.
Côme (2012), among others, applies data mining to operational BSS data. He offers insights on
typical usage patterns to understand causes of imbalances in the distribution of bikes. Reasons
are various but we can highlight two important phenomenons: the gravitational effect which
indicates that a station is constantly empty or full (as Montmarte hill in Vélib’), and the tide
phenomenon representing the oscillation of demand intensity during the day (as morning and
evening flows between working and residential areas).

To improve the efficiency of the system, different perspectives are studied in the literature. At
a strategic level, some authors consider the optimal capacity and locations of stations. Shu et al.
(2010) propose a stochastic network flow model to support these decisions. Their model is
used to design a BSS in Singapore based on demand forecast derived from current usage of
the mass transit system. Lin and Yang (2011) consider a similar problem but formulate it as a
deterministic mathematical model.

At a tactical level, other authors investigate the optimal number of vehicles given a set of
stations. George and Xia (2011) study the fleet sizing problem with constant demand and infinite
parking capacities. Fricker and Gast (2012) and Fricker et al. (2012) consider the optimal sizing
of a fleet in “toy” cities, where demand is constant over time and identical for every possible
trip, and all stations have the same capacity K. They show that even with an optimal fleet
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sizing in the most “perfect” city, if there is no operational system management, there is at least
a probability of 2

K+1
that any given station is empty or full.

At an operational level, in order to be able to meet the demand with a reasonable standard
of quality, in most BSS, trucks are used to balance the bikes among the stations. The balancing
problem amounts to scheduling truck routes to visit stations performing pickup and delivery. In
the literature many papers deal already with this problem. A static version of the BSS balancing
problem is analyzed in Raviv et al. (2013) and a dynamic one in Contardo et al. (2012).

1.3 Towards VSS regulated with incentives

A new type of VSS has appeared recently: one-way car VSS with Autolib’ in Paris and
Car2go in more than 15 cities (Vancouver, San Diego, Amsterdam, Ulm. . . ). Due to the size
of cars, operational balancing optimization through relocation with trucks seems inappropriate.
Another way for optimizing the system has to be found.

From an experimental point view, pricing heuristics are studied by Chemla et al. (2013) and
Pfrommer et al. (2013). They appear to perform well in their simulations. However, they do
not provide any analytical/mathematical insight on the potential gain of a pricing optimization.
Fricker and Gast (2012) analyze a heuristic, that can be seen as a dynamic pricing, called “power
of two choices”: When a user arrives at a station to take a vehicle, he gives randomly two possible
destination stations and the system is directing him toward the least loaded one. For their perfect
cities, they show that this policy allows to drastically reduce the probability to be empty or full
for each station from 2

K+1
to 2−

K

2 .
A VSS stochastic pricing model is proposed in Waserhole and Jost (2013) considering time-

dependent demand and station capacities. They study a fluid approximation that provides a
static heuristic policy and an upper bound. The fluid approximation is deterministic; one can
wonder if a stochastic model, even considering less constraints, can have a better performance.

1.4 Contributions and structure of this paper

We investigate stochastic models allowing an analytic formula for the performance evaluation of
the system.

Section 2, we consider VSS in which each user is interested with a specific O-D pair of
stations, but is sensitive to the price of this trip. We discuss how prices can be made implicit
when considering objectives such as the maximization of the expected number of trips sold by
the system.

In Section 3, we consider VSS with stationary O-D demands and infinite station capacities,
as in George and Xia (2011), but we also assume null transportation times. Under these assump-
tions, the VSS can be modeled as a closed queuing network of BCMP type. Its performance can
therefore be computed analytically. We define static and dynamic stochastic pricing problems
on such queuing networks.

In Section 4 we study a static heuristic policy provided by the Maximum Circulation

on the demand graph. When the Maximum Circulation disconnects the city, vehicles have
to be spread among the connected components. The vehicle distribution problem amounts to
maximizing a separable concave function under linear and integrality constraints. It can be
solved optimally by a greedy algorithm. The exact guaranty of performance of our heuristic on
dynamic and static policies is proved to be N

N+M−1
.
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In Appendix A, we discuss the properties of optimal dynamic and static policies. An optimal
dynamic policy can be computed with an action decomposable Markov decision process. An
example shows that VSS can have poor performances without regulation.

2 Protocol, incentives and implicit pricing

A simple protocol We consider a real-time station-to-station protocol as defined in Figure 1.
A user asks for a vehicle at station a (here and now), with destination b. The system offers
a price (or rejects the user = infinite price). The user either pays the price and the vehicle is
transferred from a to b, or leaves the system.

Figure 1: The real-time station-to-station protocol.

Concept of maximum potential demand We assume that for each trip (a, b) and indepen-
dently of the other trips, there is a pool of potential users that may try to take trip (a, b) in the
time horizon of the model. We denote this pool Λa,b, which, in this paper is interpreted as a
Poisson arrival of users with intensity Λa,b per time unit (but other deterministic interpretations
of Λa,b are discussed in (Waserhole et al., 2013b; Waserhole and Jost, 2013)).

Pricing policies and incentives We assume that there exist leverages (incentives) able to
decrease the maximum demand (separately for each trip). A classic incentive is the price to take
a trip; the demand is then a function of the price: basically, the higher the price, the lower the
demand. A pricing/incentive policy is static if the price to take each trip is independent of the
state of the system. A policy is dynamic otherwise.
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Continuous elastic demand In this study we focus on continuous pricing optimization with
the following hypothesis: Let Λa,b be the maximum demand of users who want to take a trip
between stations a and b. There exists a price p(λa,b) to obtain any demand λa,b ∈ [0,Λa,b]. A
price function is schemed Figure 2. Notice that, in this example, the maximum demand Λ is
obtained with a minimum price p(Λ) that is negative. Indeed it is conceivable that the system
chooses to pay users to take certain trips (instead of paying trucks).

0 Price

Demand

λ

Λ

p(λ)p(Λ)

Figure 2: Continuous elastic demand λ ∈ [0,Λ].

Implicit pricing The problem with pricing incentives is that it is hard to know the link
between prices and demand. It can be a complex function, not continuous, with thresholds...
Moreover, setting the proper prices to attain a fixed (optimized) demand requires the skill of
an economist and experimental studies. On the other hand, there exist some objectives such
as maximizing the number of trips sold (transit) or the total travel time that do not need an
explicit price function. The only data necessary for such optimization is the space of the possible
demand, for instance λ ∈ [0,Λ] for continuous elastic demand.

Therefore in this study we focus on the transit optimization and do not consider prices
explicitly. We talk about pricing policies but they can be seen as incentive policies or simply
policies regulating demand.

3 Stochastic framework

3.1 The VSS stochastic evaluation model

Continuous-time Markov chain evaluation framework We model the VSS dynamic by
a stochastic process: the VSS stochastic evaluation model. It measures VSS performances for
a given policy (demand vector). We use this evaluation model to compare the performance of
the proposed pricing policies in term of number of trips sold. We now define formally the VSS
stochastic evaluation model under the real-time station-to-station protocol (defined in Figure 1).
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VSS Stohasti Evaluation Model
• Input:

◦ A number N of vehicles and a set M of stations:

- A set S of states: S =
{(

na : a ∈ M
)

/
∑

a∈M na = N
}

;

- State s = (na : a ∈ M) represents the vehicle distribution in the city space: na

is the number of vehicles in station a ∈ M.

◦ A policy λ:

- λs
a,b is the arrival rate of users to take the trip (a, b) ∈ D = M×M, between state

s = (. . . , na ≥ 1, . . . , nb, . . .) ∈ S and state (. . . , na − 1, . . . , nb + 1, . . .) ∈ S;

- The graph spanned by
{

s ∈ S, (a, b) ∈ D, λs
a,b > 0

}

is supposed to be strongly
connected.

• Output: The expected number of trips sold in the steady state behavior of the continuous-
time Markov chain defined by states S and transition rates λ.

The number of states is exponential in the number of vehicles and stations. For instance, for
a system with N = 150 vehicles and M = 50 stations there are already ≃ 1047 states:

Proposition 1. The number of state of the Markov chain for N vehicles and M stations with
infinite station capacities and null transportation time is equal to

(

N+M−1
N

)

.

Proof. The states of the Markov chain for N vehicles and M stations are in one to one mapping
with non decreasing functions from {1, . . . , N} to {1, . . . ,M} which are in one to one mapping
with strictly increasing functions from {1, . . . , N} to {1, . . . ,M +N − 1}.

Steady-state distribution of the continuous-time Markov chain For any strongly con-
nected dynamic policy, the unique stationary distribution π over the state space S of the
continuous-time Markov chain with transition rate λ satisfies Equations (1) (Puterman, 1994).
Let ea be the unit vector for component a ∈ M: ea = (0, . . . , 0, na = 1, 0, . . . , 0).

∑

s∈S

πs = 1, (1a)

∑

(a,b)∈D
s−ea+eb∈S

πsλ
s
a,b =

∑

(b,a)∈D, s′∈S
s′−eb+ea=s

πs′λ
s′

b,a, ∀s ∈ S, (1b)

πs ≥ 0, ∀s ∈ S. (1c)

Closed queuing network model for static policies The VSS stochastic evaluation model
can be represented as a closed queueing network for static policies. An example with 2 stations
is schemed in Figure 3. This closed queuing network is built as follows.

Since there is a fixed number of vehicles circulating in the network, it is natural to see the
system from a vehicle’s perspective. Each station a ∈ M is represented by a server a with infinite

6



capacity queue. The N vehicles are N jobs waiting in these queues for users to take them. The
service rate λa of server a is equal to the average number of users willing to take a vehicle at
station a: λa =

∑

(a,b)∈D λa,b. A vehicle taken by a user for a trip (a, b) ∈ D is represented by a

job processed by server a with routing probability
λa,b

λa
. When a vehicle (a job) is taken for the

trip (a, b) it is transferred instantaneously in station (buffer) b.

λb,aλa,b

λa,a

λb,b

a b

Figure 3: A closed queuing network model: servers represent users demands.

Analytic evaluation for static policies The stochastic evaluation model for static policies
is the same as the one considered by George and Xia (2011) but with null transportation times.
They provide a compact form to compute the system performance using the BCMP network
theory (Baskett et al., 1975). In Section 4.2, we consider static policies providing demands for
which the performance evaluation is slightly simpler than the formula of George and Xia (2011),
see Lemma 1.

An important concept that we use for a static policy (with demand λ) is the availability Aa of
(a vehicle at) station a ∈ M which is the probability that station a contains at least one vehicle.
Availibilities satisfy steady-state equations:

∑

b∈M

Aaλa,b =
∑

b∈M

Abλb,a, ∀a ∈ M. (2)

Notice that availibilities are not totally determined by (2) because they also depend on the
number of vehicles.

3.2 The VSS stochastic pricing problem

We want to maximize the VSS performance using pricing as leverage. The efficiency of a pricing
policy is measured by the VSS stochastic evaluation model. We call this problem the VSS
stochastic pricing problem.
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VSS Stohasti Continuous Priing Transit Maximization
• Instane:

◦ A number N of vehicles available;

◦ A set M of stations with infinite capacities;

◦ The maximum demand per time unit Λa,b to take every trip (a, b) ∈ D.

• Solution:
[Dynamic Policy] A demand λa,b(s) ∈ [0,Λa,b], to take each trip (a, b) ∈ D function
of the system’s state s ∈ S.

[Static Policy] A tuple (λ, k, ~M, ~N), where:

◦ λa,b ∈ [0,Λa,b] is the demand to take each trip (a, b) ∈ D,

◦ λ defines a set of k strongly connected components ~M = {M1, . . . ,Mk},

◦ ~N = (N1, . . . , Nk) is the vehicle distribution over ~M, (
∑k

i=1Ni = N).

• Measure: The expected number of trips sold of the pricing policy measured by the
stochastic evaluation model.

We restrict the study of dynamic policies to the (dominant) class for which the graph spanned
by
{

(a, b) ∈ D, s ∈ S, λs
a,b > 0

}

has only one strongly connected component. Otherwise, the
stationary distribution on the state graph is not unique: it depends on the initial state of the
system.

Sometimes optimal static policies need more than one strongly connected components on the
station graph. An example is given in Proposition 7 Section A.3. The k strongly connected
components of the static policy graphG(M, λ) divides the city into k independent VSS, sharing a
number N of vehicles. The vehicle distribution has then to be explicitly specified since it impacts
the policy performance. For dynamic policies, the vehicle distribution is explicit (defined by the
system states for single component policies). That is why for ease of notations the stochastic
evaluation model is defined for dynamic policies (any static policy can be represented as a
dynamic one).

Complexity in a stochastic framework The previous formal problem definition enables to
define tractability, polynomiality or simply efficiency for VSS stochastic pricing optimization.
To tackle large scale (real-world) systems, we need solution methods that have computational
time polynomial in N and M . The solutions (pricing policies) produced (output) need also to
be of moderate size. Notice that the state graph (of exponential size) representing all possible
vehicle distributions (system’s states) is not part of the input. The explicit representation of
dynamic policies is hence not tractable.

For static policies, measuring exactly the stochastic evaluation model is polynomial in M
and N : George and Xia (2011) provide a product form formula and algorithms to compute
the stochastic evaluation model for a static pricing policy. However, we are able to prove that
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the decision version of the above static pricing problem is in NP only under further assump-
tions (Waserhole, 2013).

We discuss in Appendix A the problem of characterizing dynamic and static optimal policies.
The complexity is unknown for both classes of policies. The deterministic version of the stochastic
pricing problem is shown NP-hard in Waserhole et al. (2013b). Nevertheless there is no obvious
reduction reduction between these problems.

4 Maximum Cirulation approximation

In this section we study an approximation algorithm based on the Maximum Circulation

problem (Edmonds and Karp, 1972): a network flow problem with flow conservation at all nodes
(no source no sink).

4.1 Maximum Cirulation Upper Bound

A vector λ is called a circulation if it is solution of the following LP.Maximum Cirulation LP

max
∑

(a,b)∈D

λa,b

s.t.
∑

(a,b)∈D

λa,b =
∑

(b,a)∈D

λb,a, ∀a ∈ M,

0 ≤ λa,b ≤ Λa,b, ∀(a, b) ∈ D.

Theorem 1. The objective value of Maximum Circulation on the demand graph is an upper
bound on any dynamic policy for any number of vehicles.

Proof. From any dynamic policy, with transition rate λs
a,b ≤ Λa,b in state s ∈ S for trip (a, b) ∈ D,

we construct a circulation on the demand graph with same value. Under this policy, the stationary
distribution π over the state space S of the continuous-time Markov chain defined by λ satisfies
Equations (1). Let λ′

a,b be the expected transit for any trip (a, b) ∈ D: λ′
a,b =

∑

s∈S πsλ
s
a,b. We

show that λ′ is a circulation. The capacity constraints are satisfied since
∑

s∈S πs = 1 and hence:

λ′
a,b =

∑

s∈S

πsλ
s
a,b ≤

∑

s∈S

πsΛa,b = Λa,b, ∀(a, b) ∈ D.

Flow conservation constraints are satisfied because in the steady state of a dynamic policy, a
station receives as many vehicles as it is sending. Finally, the expected transit of the system is
equal to

∑

(a,b)∈D λ′
a,b which is the value of circulation λ′.
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4.2 Maximum Cirulation static policy

The Maximum Circulation outputs a demand vector λ ≤ Λ. It is natural to try to use
this demand vector as a static policy. However, whenever the Maximum Circulation is not
strongly connected, one has to specify a vehicle distribution ~N over the k strongly connected
component ~M = {M1, . . . ,Mk}. In Proposition 2 we show that this issue may indeed occur.

We call a static policy φ = (λ, k, ~M, ~N) a circulation policy if λ is a circulation.

Proposition 2. The optimal solution(s) of Maximum Circulation might consist of more
than one strongly connected component.

Proof. Consider the demand graph in Figure 4 consisting of Λ = 1 for all drawn arcs (both
dotted and straight). The unique Maximum Circulation sets λ = 1 for straight arcs and 0
elsewhere. Its policy demand graph is not strongly connected.

1

1 1

1 1

1

1

1 1

Λa,f = 1

a

b c d

ef

Figure 4: Maximum Circulation can consist of several strongly connected components.

4.2.1 Evaluation for a given vehicle distribution

Recall that for a static policy φ, the availability Aa(φ) of (a vehicle at) station a ∈ M is
the probability that station a contains at least one vehicle. Moreover, to any static policy
φ = (λ, k, ~M, ~N) is associated a Continuous-Time Markov Chain, CTMC(φ), that is used for
its evaluation.

Lemma 1 explains how to compute the expected transit of a circulation policy. It essentially
says that the availability of a station is N

N+M−1
for a circulation spanning only one strongly

connected component with M stations.

Lemma 1. For any circulation λ and any vehicle distribution ~N , the expected transit T (φ) of

the circulation policy φ = (λ, k, ~M, ~N) is equal to:

T (φ) =

k
∑

i=1

(

Ni

Ni + |Mi| − 1

∑

a,b∈Mi

λa,b

)

.

10



The remaining of Section 4.2.1 is devoted to a proof of Lemma 1. It is done by expressing
relations between transit, availability and the continuous-time Markov chain formulation.

Lemma 2. For a static policy φ with a given vehicle distribution, the stationary distribution π
over the states of the continuous-time Markov chain CMTC(φ) is unique.

Proof. A Markov chain is said to be irreducible if its state space is a single communicating class
(a single strongly connected component); in other words, if it is possible to get to any state
from any state. The continuous-time Markov chain CMTC(φ) defined by a static policy φ is
irreducible, therefore there is a unique stationary distribution (Puterman, 1994).

The availability Aa(π) of station a ∈ M is equal to the sum of the stationary distributions
πs of the states s ∈ S where there is at least one vehicle in station a:

Aa(π) :=
∑

s=(...,na≥1,... )∈S

πs. (3)

Since for any static policy φ, a stationary distribution π can be computed on CTMC(φ), for
convenience we also denote:

Aa(φ) := Aa

(

π(φ)
)

.

The expected transit T (φ) of static policy φ is then:

T (φ) =
∑

a∈M

(

Aa(φ)
∑

b∈M

λa,b

)

.

We now state a couple of lemmas that combined will prove Lemma 1.

Lemma 3. For a static policy φ, CTMC(φ) is the product of k independent CTMC(φi), where
φi = (λ(a,b)∈M2

i
, 1, {Mi}, (Ni)) is a static policy with one single strongly connected component.

The expected transit T (φ) is then decomposed as follows:

T (φ) =
∑

a∈M

(

Aa(φ)
∑

b∈M

λa,b

)

=

k
∑

i=1

∑

a∈Mi

(

Aa(φ
i)
∑

b∈Mi

λa,b

)

.

An invariant measure of a CTMC is a stationary distribution associated with some initial
distribution (over the states of the chain). From Lemma 2, static policies have a unique stationary
distribution. For strongly connected circulation policies there exists only a unique invariant
measure. However, for disconnected circulation policies there exist several invariant measures.

The following lemma will be used both to prove Lemma 1 but also for the purpose of Sec-
tion 4.3.2. We denote by S(N,M) the state set of all distributions of N vehicles among M
stations.

Lemma 4. For any circulation λ, πs = 1
|S(N,M)|

, ∀s ∈ S(N,M), is an invariant measure of

the stationary distribution of the continuous-time Markov chain defined by states S(N,M) and
transition rates λ.
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Proof. Let λ+
a =

∑

b∈M λa,b and λ−
a =

∑

b∈M λb,a. Since λ is a circulation we have λ+
a = λ−

a .
Let δ+(s) (resp. δ−(s)) be the sum of the outgoing (resp. incoming) transition rates on state
s = (na : a ∈ M) ∈ S(N,M), we have:

δ+(s) =
∑

(a,b)∈D
s−ea+eb∈S(N,M)

λs
a,b =

∑

a∈M | na>0

λ+
a ,

and
δ−(s) =

∑

(b,a)∈D, s′∈S(N,M)
s′−eb+ea=s

λs′

b,a =
∑

a∈M | na>0

λ−
a .

Therefore δ+(s) = δ−(s) and hence πs =
1

|S(N,M)|
, ∀s ∈ S(N,M), is solution of the stationary dis-

tribution Equations (1) of the continuous-time Markov chain with states S(N,M) and transition
rates λ:

∑

(a,b)∈D
s−ea+eb∈S(N,M)

πsλ
s
a,b =

∑

(b,a)∈D, s′∈S(N,M)
s′−eb+ea=s

πs′λ
s′

b,a, ∀s ∈ S(N,M),

∑

s∈S(N,M)

πs = 1,

πs ≥ 0, ∀s ∈ S(N,M).

Lemma 5. For the uniform stationary distribution πs =
1

|S(N,M)|
, s ∈ S(N,M), the availability

of any station is equal to N
N+M−1

.

Proof. From Proposition 1, the number of distributions of N vehicles among M stations is equal
to |S(N,M)| =

(

N+M−1
N

)

. For any station a ∈ M, there are |S(N − 1,M)| states with at
least one vehicle available in station a. If each state has the same stationary distribution, πs =

1
|S(N,M)|

, s ∈ S(N,M), computing the availability A(π) of a vehicle at any station (Equation (3))
amounts to computing a ratio between two numbers of states:

A(φ) =
|S(N − 1,M)|

|S(N,M)|
=

(

N+M−2
N−1

)

(

N+M−1
N

) =

(N+M−2)!
(N−1)!(M−1)!

(N+M−1)!
(N)!(M−1)!

=
N

N +M − 1
.

Lemma 6. For a circulation policy φ and for any strongly connected component Mi, the avail-
ability A(φi) of a vehicle at any station a ∈ Mi is equal to:

A(φi) =
Ni

Ni + |Mi| − 1
.

Proof. Combining Lemma 2 and 4, the unique stationary distribution over the states S(Ni,Mi)
of CTMC(φi) for any circulation policy φi = (λ(a,b)∈M2

i
, 1, {Mi}, (Ni)) is πs = 1

|S(Ni,Mi)|
, s ∈

S(Ni,Mi). We can hence apply Lemma 5 to conclude.

Proof of Lemma 1. Combine Lemma 3 and 6.
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4.2.2 Optimality of the greedy distribution of vehicles

Let {M1, . . . ,Mk} be the set of the k strongly connected components of a circulation λ. If we al-
locateNi vehicles to component i, the expected transit of the policy φi = (λ(a,b)∈M2

i
, 1, {Mi}, {Ni})

is:

T (φi) = fi(Ni) =
Ni

Ni +Mi − 1

∑

a,b∈Mi

λa,b. (4)

For a distribution ~N = (N1, . . . , Nk) of the N vehicles, the expected transit of policy φ =

(λ, k, ~M, ~N) is hence:

T (φ) = f( ~N) =

k
∑

i=1

fi(Ni). (5)

The optimal distribution ~N∗ of the N vehicles among the k strongly connected components is
then solution of the following problem:

~N∗ = max f( ~N)

s.t.
k
∑

i=1

Ni = N,

~N ∈ Z
k
+.

Consider the following algorithm for finding a feasible solution to the previous problem:

Algorithm 1 Greedy algorithm for load distribution

1: ~N := (0, . . . , 0)
2: for n = 1 to N do
3: Choose j ∈ argmaxi∈{1,...,k} f( ~N + ei);

4: ~N := ~N + ej;
5: end for
6: return ~N .

In general Algorithm 1 may not provide an optimal solution. A function f( ~N) for which there

exist functions fi such that ∀ ~N, f( ~N) =
∑k

i=1 fi(Ni), is called separable. Moreover if each fi is
concave, f is called concave separable.

Separable concave functions are of interest in mathematical economics, an example is the gain
function (5). It turns out that separable concavity is enough for the greedy algorithm to find
an optimal solution under the constraint

∑k
i=1Ni = N (see Theorem 2). Maximizing separable

concave functions can also be done over more complex feasible spaces, such as polymatroids
(Glebov, 1973; Shenmaier, 2003).

Theorem 2. Let k be a positive integer, {fi}i∈{1,...,k} be concave functions and N ∈ Z+. Also

denote f( ~N) :=
∑

i fi(Ni). Then the solution of the following integer program is attained by

13



greedy Algorithm 1.

max

k
∑

i=1

fi(Ni)

s.t.
k
∑

i=1

Ni = N,

~N ∈ Z
k
+.

Proof. We give a proof by induction on N . The case N = 0 is trivial since ~N = (0, . . . , 0) is
the only feasible solution. Assume case N is correct: the greedy algorithm provides an optimal
solution, say ~N∗ for N . Now, let ~N ′ be an optimal solution for N + 1. Choose j ∈ {1, . . . , k}

such that N ′
j > N∗

j . By induction hypothesis, f( ~N∗) ≥ f( ~N ′ − ej). Also, by concavity of fj and
because N ′

j − 1 ≥ N∗
j , one has:

f( ~N∗ + ej) = f( ~N∗) + fj(N
∗
j + 1)− fj(N

∗
j )

≥ f( ~N∗) + fj(N
′
j)− fj(N

′
j − 1)

≥ f( ~N ′ − ej) + fj(N
′
j)− fj(N

′
j − 1) = f( ~N ′).

A solution found by the greedy algorithm is hence at least as good as f( ~N∗ + ej) which is at

least as good as f( ~N ′).

Corollary 1. For any fixed λ and any N ∈ Z+, a vehicle distribution ~N ∈ Z
k(λ)
+ maximizing the

expected transit under the constraint
∑k

i=1Ni = N can be computed with greedy Algorithm 1.

Proof. Let {M1, . . . ,Mk} be the set of the strongly connected components of the static policy
graph G(M, λ). For any static policy, the expected transit of the system is the sum of the
expected transit of each component, hence the gain function is separable. The concavity of the
gain function in each component can be deduced from (4) for circulation policies, and is proved
in (George and Xia, 2011, Theorem 2) for general static policies.

4.3 Performance evaluation

We study the performance of theMaximum Circulation static policy together with its optimal
vehicle distribution.

4.3.1 An upper bound on the approximation ratio

The expected transit of the Maximum Circulation static policy together with its optimal
vehicle distribution can be arbitrarily close to N

N+M−1
times the value of a static policy:

Proposition 3. For any number M ≥ 2 of stations and any number N of vehicles, the ratio
between the value of Maximum Circulation policy and a static policy can be arbitrary close
to N

N+M−1
.

14



Proof. We consider instances with N vehicles, M ≥ 2 stations M = {1, . . . ,M} and demand
graph consisting of a circuit {1, . . . ,M, 1} with maximum demand Λi,i+1 = k, i ∈ {1, . . . ,M−1}
and ΛM,1 = 1 (all other demands are equal to 0).

The Maximum Circulation policy opens all trips of the circuit to 1. Its value PCirc∗ is
equal to: PCirc∗ =

NM
N+M−1

.
Consider the generous static policy opening all trips to their maximum value: λ = Λ. The

generous static policy demand graph is a circuit, hence the expected transit (Aa × Λa,b) is the
same for all trips (a, b) of the circuit. Availabilities A satisfy Equations (2) hence:

AM × 1 = Ai × k, ∀i ∈ {1, . . . ,M − 1}, so:

∑

a∈M

Aa = AM

(

1 +
M − 1

k

)

.

Since
∑

a∈M Aa = 1 for one vehicle, and ∀a ∈ M, Aa is a non decreasing function of the number
of vehicles (George and Xia, 2011), we have that

∑

a∈M Aa ≥ 1. Hence, limk→∞AM(k) = 1 and
limk→∞Ai(k) = 0, ∀i ∈ {1, . . . ,M − 1}. When k → ∞, the value of the generous static policy
is then limk→∞ PGen(k) = M .

The ratio between the static generous policy and the Maximum Circulation static policy
can then be arbitrary close to:

N

N +M − 1
= lim

k→∞

PGen(k)

PCirc∗(k)
.

4.3.2 A tight guaranty of performance

Actually, the N
N+M−1

upper bound of Proposition 3 is the exact ratio of performance of Maximum

Circulation static policy together with its optimal vehicle distribution:

Theorem 3. Maximum Circulation static policy together with its optimal vehicle distribution
is a tight N

N+M−1
-approximation on both static and dynamic optimal policies.

To the best of our knowledge, it is not easy to prove that Maximum Circulation static
policy together with the optimal deterministic vehicle distribution is a N

N+M−1
-approximation.

Therefore we use a probabilistic proof (Lemma 8) that essentially says that the expected avail-
ability of a circulation policy with a specific random vehicle distribution is at least N

N+M−1
, which

means that a circulation policy with its optimal vehicle distribution has at least this performance.
Still, before proving this results, we need to state another lemma on random vehicle distribution
policies.

For a random distribution of vehicles ~NR, and a static policy λ with k strongly connected
components ~M , let φR = (λ, k, ~M, ~NR) be the associated random vehicle distribution static
policy and let πR(φR) be the stationary distribution over the states of CMTC(φR).

Lemma 7. The stationary distribution πR(φR) over the CMTC(φR) defined by a static policy

φR with random vehicle distribution ~NR is unique.
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Proof. Recall that π(φ) is the stationary distribution over the states of the CMTC(φ) associated
to static policy φ with deterministic vehicle distribution. We have:

πR
s (φ

R) :=
∑

(N1,...,Nk) /
∑k

j=1
Nj=N

P

(

~N = (N1, . . . , Nk)
)

× πs

(

λ, k, ~M, (N1, . . . , Nk)
)

.

From Lemma 2, for any deterministic vehicle distribution static policy φ, π(φ) is unique. There-
fore the stationary distribution is also unique for any random vehicle distribution static pol-
icy.

Consider the random distribution ~NU of vehicles to components induced by the uniform dis-
tribution on S(N,M) of vehicles among stations: For any vehicle distribution ~N = (N1, . . . , Nk),

the probability that ~NU allocates (N1, . . . , Nk) equals:

P

(

~NU = (N1, . . . , Nk)
)

:=

∣

∣

∣

{

(na : a ∈ M) ∈ S(N,M) / ∀i ∈ {1, . . . , k},
∑

a∈Mi
na = Ni

}
∣

∣

∣

|S(N,M)|
.

Let φU be the random static circulation policy defined by the random uniform distribution
~NU over S(N,M).

Lemma 8. Let N,M > 0 and λ be a circulation with k strongly connected components (
∑k

i=1 |Mi| =

M). For any random uniform vehicle distribution circulation policy φU = (λ, k, ~M, ~NU), the
availability Aa(φ

U) of a vehicle at any station a ∈ M is N
N+M−1

. In other words, ∀i ∈ {1, . . . , k}, ∀a ∈
Mi:

Aa(φ
U) :=

∑

(N1,...,Nk) /
∑k

j=1
Nj=N

P

(

~NU = (N1, . . . , Nk)
)

×
Ni

Ni +Mi − 1
=

N

N +M − 1
.

Proof. From Lemma 4, for any random uniform vehicle distribution circulation policy φU , πs(φ
U) =

1
S
, ∀s ∈ S(N,M), is an invariant measure of CMTC(φU ).
Moreover from Lemma 7, for any random vehicle distribution circulation policy, there exits

a unique stationary distribution over the states of the CMTC(φU ). Therefore for any random
uniform vehicle distribution policy, the stationary distribution is πs(φ

U) = 1
S
, ∀s ∈ S(N,M).

Finally we can apply Lemma 5 to conclude that Aa(φ
U) = N

N+M−1
.

Remark 1. The previous proof is somewhat magical: It avoids computing the average over all
vehicle distributions of the availability that does not seem to collapse to closed form formula.

We can now prove the approximation ratio of Maximum Circulation static policy together
with its optimal vehicle distribution.

proof of Theorem 3. Let Circ∗ be the optimal value of Maximum Circulation with k strongly
connected components {M1, . . . ,Mk}. Component Mi is composed with Mi stations and con-
tributes to a value C∗

i in the optimal Maximum Circulation:
∑k

i=1C
∗
i = Circ∗.

Let P
~N
Circ be the value of the circulation policy with vehicle distribution ~N . Let ~N∗ be

the optimal vehicle distribution for the Maximum Circulation static policy. Let ~NU be the
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random uniform vehicle distribution, defined by assigning each of the N vehicles independently
to a strongly connected component, with probability Mi

M
for component i ∈ {1, . . . , k}.

From Lemma 8, for random uniform vehicle distribution ~NU , the expected uniform station-
ary distribution E[A( ~NU ,Mi)] of a vehicle at any station belonging to component i satisfies:

E[A( ~NU ,Mi)] ≥
N

N+M−1
. Therefore:

P
~N∗

Circ∗ ≥ E

[

P
~NU

Circ∗

]

= E

[

k
∑

i=1

A( ~NU ,Mi)C
∗
i

]

=
k
∑

i=1

E

[

A( ~NU ,Mi)
]

C∗
i ≥

N

N +M − 1
Circ∗.

Let Pdyn∗ be the value of an optimum dynamic policy. We have finally:

N

N +M − 1
PDyn∗ ≤

N

N +M − 1
Circ∗ ≤ P

~N∗

Circ∗.

Remark 2. On can deduce from Theorem 3 that: 1) For single strongly component circula-
tion policies, the performance ratio of Maximum Circulation is exactly N

N+M−1
. 2) For

disconnected circulation policies, the performance ratio of the Maximum Circulation policy
is strictly greater than N

N+M−1
together with its optimal vehicle distribution and is strictly lower

than N
N+M−1

for the worst deterministic vehicle distribution.

5 Conclusion

We investigated an optimization/control problem of queuing networks, and used it to model
regulation through pricing of vehicle sharing systems. Micro-economical and non-linearity issues
related to the elasticity of demand can be avoided for some objectives, including the maximization
of the number of trips sold. We proposed a heuristic combining Maximum Circulation and
a greedy algorithm and studied its performance ratio for the transit maximization. We proved
that the provided static policy is a tight N

N+M−1
-approximation on dynamic and static policies.

Several extensions are natural for this work. We believe that adding transportation times
has a minor impact on our results. Moreover, since circulation policies spread vehicles very well
among the stations, adding capacities to the stations may still allow these policies to be efficient.

On the other hand, demands that are not stationary over time (such has house-work commute)
usually do not benefit from naive steady-state goals: stations in residential areas are better off
being full in mornings and empty after work. However, Maximum Circulation heuristics
can be generalized to optimize over non-stationary demands, as discussed in Waserhole and Jost
(2013), although no guaranty of performance is provided.

Nevertheless, in dense networks of stations such as Vélib’s Paris, some users have flexibilities
in their origin and destination stations. The classical (BCMP) queuing network results fall apart
under such generalization. Different theoretical tools might be required. Numerical analysis
through simulations requires data on the demand. However, the demand is hard to estimate
since available data only relate the trips sold and not unsatisfied users.
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A Toward computing optimal policies

In this appendix, we discuss structures of optimal policies in order to develop tractable stochastic
models to optimize a VSS through pricing. We discuss in Section A.2 the problem of charac-
terizing dynamic optimal policies and in Section A.3 the problem of characterizing static ones.
Simple classes of policies, easier to optimize, are shown suboptimal.

A.1 Markov Decision Process – The curse of dimensionality

Computing optimal dynamic policies The continuous-time Markov chain formulation of
the VSS stochastic evaluation model leads directly to a Markov Decision Process (MDP), named
the VSS MDP model. This model considers, in each state s ∈ S, a set Q of discrete prices for
each possible trip. Solving the VSS MDP model computes the optimal dynamic discrete pricing
policy.

MDPs are known to be polynomially solvable in the number of states |S| and actions |A|
available in each state. To solve an MDP, efficient solution methods exist such as value iteration,
policy iteration algorithm or linear programming; see Puterman (1994) textbook. In each state
s ∈ S, the VSS MDP model’s action space A(s) is the Cartesian product of the available prices
for each trip, i.e. A(s) = Q|M|2. The action space size is then exponential in the number of
stations. However, to avoid suffering from this explosion, we can model this problem as an action
decomposable Markov decision process; see (Waserhole et al., 2013a). Thanks to this general
framework, based on the event-based dynamic programming (Koole, 1998), the complexity of
solving the VSS MDP model becomes polynomial in |S| and |Q||M|2 (that is far less than
|Q||M|2). Nevertheless, the VSS MDP model has another problem: the explosion of its state
space S with the number of vehicles and stations. This phenomenon is known as the curse of
dimensionality (Bellman, 1953).

A.2 Structures of optimal dynamic policies

Recall that Dynamic policies have prices to take a trip that depend on the state of the system,
i.e. the vehicle distribution. Unfortunately, even with homogeneous demand (Λa,b = Λ) optimal
dynamic policies seem hard to describe.

Since the number of states is exponential, we would like to restrict to dynamic policies allowing
a compact description. Capacity policies amount to specifying a virtual station capacity K, and
to accept a trip from station a to station b if only if the number of vehicles in b is not exceeding
Kb.

We show in the next proposition that capacity policies are suboptimal among dynamic policies
for the VSS stochastic pricing optimization problem.
Proposition 4. Capacities policies are suboptimal among dynamic policies, even in homogeneous
cities.

Proof. Figure 5 compares the induced Markov chain (state graph) of three policies in an homo-
geneous city (Λ = 1) with 3 stations and 8 vehicles. An edge represents that the trip is open to
its maximum in both directions, an arc indicates that it is open only in one way. Figure 5a repre-
sents the generous policy opening all trips and expects to sells 4.8 trips per time unit. Figure 5b
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(a) Policy opening all trips, value
4.8.

(b) Optimal dynamic capacity
policy, value ≈ 4.857.

(c) Optimal dynamic policy, value
≈ 4.865.

Figure 5: Induced Markov chain of 3 policies evaluated in an homogeneous city with 8 vehicles
and 3 stations. Legend: (◦) reachable state; (•) unreachable state; (−) trip between two states
open in both directions; (→) trip open in only one direction.

Figure 6: “Spikes” of optimal dynamic policies’ state graph for an homogeneous city with 3
stations and N=8, 14 or 30 vehicles.

represents the optimal dynamic capacity policy and increases the gain to ≈ 4.857. Finally, the
optimal dynamic policy is represented in Figure 5c, and increases the number of trips sold to
≈ 4.865.

Figure 5 shows that using dynamic pricing policies can increase the number of trips sold by
the system even in homogeneous cities (perfectly balanced). Figure 6 represents the optimal
dynamic policies in an homogeneous cities with 3 stations when the number of vehicles increases:
from 8 vehicles (as in Figure 5b), to 14 and 30 vehicles. Only the “spikes” of the dynamic
policies’ induced Markov chain are represented since, the solution is invariant under the group
S3 of permutation of the stations. These solutions are the unique optimum. The optimal
dynamic policy is solved with the VSS (decomposed) MDP model. This model is of exponential
size in N and |M| but still solvable for the size of these 3 instances. The solution uniqueness
has been checked greedily solving several decomposed MDPs. It seems hard to find a compact
description of optimal solutions in general.
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A.3 Suboptimal classes of static policies

A.3.1 Generous policies / No regulation

When investigating (pricing) policies, the most important practical issue is the trade-off between
the simplicity (and in particular, the readability for users) and the performance. The first
practical question might always be whether “unoptimized” policies perform well.

The (static) generous policy sets all demands to their maximum value (λ = Λ). To the best
of our understanding, the generous policy is the most natural and relevant to compare with in
theoretical studies, as long as the objective function is in terms of service quality and not in
terms of monetary gain.

In Proposition 5, provides an example in which the number of trips sold by the generous policy
can be arbitrarily far from an optimal static policy. It contains a “gravitational” phenomenon,
which occurs in particular for bike sharing systems in non-flat cities.

Proposition 5. The ratio between the number of trips sold by the (static) generous policy (λ = Λ)
and the static optimal policy is unbounded.

Proof. Consider a complete demand graph where all trip maximum demands are equal to 1
except the trips from a special station z ∈ M to any other station that are worth L−1: Λa,b =
1, Λz,a = 1, ∀a ∈ M, ∀b ∈ M \ {z}.

For any number of vehicle, when L → ∞ the expected number of trips sold T (G) for the
generous policy G tends to 0: The stationary distribution for one vehicle is πa = 1

L+M−1
, ∀a ∈

M\ {z} and πz =
L

L+M−1
, hence limL→∞ πa = 0, ∀a ∈ M\ {z} and πz = 1. Since for all N , the

availability vector A satisfies A = αNπ for some scalar αN , we have:

∀N ≥ 1, lim
L→∞

Aa = 0, ∀a ∈ M \ {z} and lim
L→∞

Az = 1,

hence
∀N ≥ 1, T (G) =

∑

a∈M

Aa(M − 1) + AzL
−1(M − 1) ⇒ lim

L→∞
T (G) = 0.

On the other hand, the static circulation policy C closing only trips to and from station a
has a expected number of trips sold T (C) > 1 that is independent of L:

∀L > 0, ∀N ≥ 1, Ab =
N

N +M − 2
, ∀b ∈ M \ {a} and Aa = 0,

hence independently of L, and for all N ≥ 1 and M ≥ 3

T (C) =
∑

a∈M\{z}

Aa(M − 2) =
N(M − 1)(M − 2)

N +M − 2
≥ 1.

A.3.2 Bang bang policies

Static policies directly have a compact representation: only one price per trip needs to be set,
independently of the system’s state.
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However, a compact formulation does not directly lead to a polynomial optimization. When
considering only two possible prices per trip, a brute force solution method still needs 2|M|2 calls
to the stochastic evaluation model. We need to exhibit structures to design efficient algorithms.

With the continuous demand assumption, static policies optimization amounts to setting the
user arrival rates λ with 0 ≤ λa,b ≤ Λa,b, ∀(a, b) ∈ D. We investigate bang-bang policies (all
or nothing) that set each trip (a, b) ∈ D to be either open (λa,b = Λa,b), or closed (λa,b = 0).
One can wonder if bang-bang policies are dominant for the transit maximization. It is true for
dynamic policies: bang-bang dynamic policies optimization can be reduced to a discrete price
dynamic policies optimization in which deterministic policies are dominant(classic MDP results
(Puterman, 1994)). Nevertheless, we show that bang-bang policies are not dominant among
static policies even (which is more surprising) when the number of vehicles tends to infinity.

Proposition 6. Bang-bang policies are suboptimal among static policies even when the number
of vehicles tends to infinity.

Proof. Figure 7 exhibits a counter example with 4 stations (a, b, c, d) and maximum trip demands
Λa,b = Λb,c = 3, Λc,d = Λd,a = Λc,a = 2, all others are equal to 0. There are only 2 bang-bang
static policies λ defining a strongly connected demand graph: λi,j = Λi,j, (i, j) 6= (c, a) and either
λc,a = 0 or λc,a = 2. When the number of vehicles tends to infinity, the availability of a vehicle at
station a equals πa

maxb∈M πb
, where π is the stationary distribution for one vehicle (George and Xia,

2011). For the λc,a = 0 policy, we have πa = πb =
2
10

and πc = πd = 3
10

= πmax, so the expected
transit when N → ∞ is worth πa

πmax
(3 + 3) + πc

πmax
(2 + 2) = 8. For the λc,a = 2, policy we have

πa = πb =
4
14

and πc = πd =
3
14
, so the expected transit when N → ∞ is worth 10.5 which is thus

the optimal bang-bang static policy. Yet, for the non bang-bang policy with λc,a = 1 and still
λi,j = Λi,j, (i, j) 6= (c, a), we have πa = πb = πc = πd =

1
4
, so the expected transit when N → ∞

is worth 11 > 10.5. Hence, bang-bang policies are suboptimal even when the number of vehicles
tends to infinity.
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Figure 7: Bang-bang policies are suboptimal even when the number of vehicles tends to infinity.

A.3.3 Single component policies

One may wonder whether it is useful to have a policy dividing the city. Notice that when
considering static pricing policies with more than one strongly connected component, one should
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explicitly consider the vehicle distribution among these components. In fact, dividing the city
sometimes lead to better performances: It is a leverage to prevent the system from being in
unprofitable (unbalanced) states.

Proposition 7. Static policies with one single strongly connected component are suboptimal
among static policies.

Proof. An example is schemed Figure 8 with 4 stations and a symmetric demand matrix. For
two vehicles, the optimal static policies in this case is to close the trips (b, c) and (c, b) and open
all other trips to their maximum value, i.e. λ = Λ except λb,c = λc,b = 0. The demand graph of
this policy has two strongly connected components. The optimal vehicle distribution is to put
one vehicle on each of them. With such distribution it expects to sell 200 trips per time unit.
The optimal static policy with a single strongly connected component opens all trips to their
maximum value, λ = Λ. It expects to sell 160.8 trips per time unit.

Λb,c = Λc,b = 1

100 100

a

b c

d

Figure 8: Static policies with a single strongly connected component are suboptimal.
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