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Abstract

This paper presents polynomially solvable stochastic models to tackle the Vehicle Shar-
ing System (VSS) pricing problem. We focus on optimizing the average number of trips
sold with static demands, infinite station capacities and null transportation times. The
stochastic VSS pricing problem is modeled as a closed queuing network with infinite buffers
and continuous controls on transition rates for the pricing. This model is intractable for an
explicit dynamic pricing optimization through the Markovian decision process framework.
We study how to optimize on sub-classes of static policies, named symmetric and conserva-
tive, that have a special property: the uniform stationary distribution. For the symmetric
policy optimization, we give a linear programming formulation with a size polynomial in the
number of stations. We extend this formulation to provide a relaxation to the conservative
policies optimization giving extremely often the optimum solution. Finally, an approxi-
mation as a simple Maximum Circulation problem is given and shown asymptotically
optimal when the number of vehicles available tends to infinity.

1 Introduction

1.1 Context

Shoup (2005) reports that, based on a sample of 22 US studies, car drivers looking for a parking
spot contribute to 30% of the city traffic. Moreover cars are used less than 2 hours per day on
average but still occupy a parking spot the rest of the time! Could we have less vehicles and
satisfy the same demand level?

Recently, the interest in Vehicle Sharing Systems (VSS) in cities has increased significantly.
Indeed, urban policies intend to discourage citizens to use their personal car downtown by re-
ducing the number of parking spots, street width, etc. VSS seem to be a promising solution to
reduce jointly traffic and parking congestion, noise, and air pollution (proposing bikes or electric
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cars). They offer personal mobility allowing users to pay only for the usage (sharing the cost of
ownership ).

We are interested in short-term one-way VSS where vehicles can be taken and returned at
different places (paying by the minute). Associated with classic public transportation systems,
short-term one-way VSS help to solve one of the most difficult public transit network design
problem: the last kilometer issue (DeMaio, 2009). Round-trip VSS, where vehicles have to be
returned at the station where they were taken, cannot address this important issue.

The first large-scale short-term one-way VSS was the bicycle VSS Vélib’ (2007). It was
implemented in Paris in 2007 and now has more than 1200 stations and 20 000 bikes selling
around 110 000 trips per day. It has inspired several other cities all around the world; Now
more than 300 cities have such a system, including Montréal, Bejing, Barcelona, Mexico City,
Tel Aviv (DeMaio, 2009).

1.2 One-way Vehicle Sharing Systems: a management issue

One way systems increase the user freedom at the expense of a higher management complexity. In
round trip rental systems, while managing the yield, the only stock that is relevant is the number
of available vehicles. In one-way systems, vehicles are not the only key resource anymore: parking
stations may have limited number of spots and the available parking spots become an important
control leverage.

Since first bicycle VSS, problems of bikes and parking spots availability have appeared very
often. Reasons are various but we can highlight two important phenomenons: the gravitational
effect which indicates that a station is constantly empty or full (as Montmarte hill in Vélib’
(2007)), and the tide phenomenon representing the oscillation of demand intensity along the day
(as morning and evening flows between working and residential areas).

To improve the efficiency of the system, in the literature, different perspectives are studied. At
a strategic level, some authors consider the optimal capacity and locations of stations. Shu et al.
(2010) propose a stochastic network flow model to support these decisions. They use their model
to design a bicycle VSS in Singapore based on demand forecast derived from current usage of
the mass transit system. Lin and Ta-Hui (2011) consider a similar problem but formulate it as
a deterministic mathematical model.

At a tactical level, other authors investigate the optimal number of vehicles given a set of
stations. George and Xia (2011) study the fleet sizing problem with constant demand and no
parking capacity. Fricker and Gast (2012), Fricker et al. (2012) consider the optimal sizing of a
fleet in “toy” cities, where demand is constant over time and identical for every possible trip, and
all stations have the same capacity K. They show that even with an optimal fleet sizing in the
most “perfect” city, if there is no operational system management, there is at least a probability
of 2

K+1
that any given station is empty or full.

At an operational level, in order to be able to meet the demand with a reasonable standard
of quality, in most bicycle VSS, trucks are used to balance the bikes among the stations. The
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objective is to minimize the number of users who cannot be served, i.e., the number of users
who try to take a bike from an empty station or to return it to a full station. The problem is
to schedule truck routes to visit stations performing pickup and delivery. In the literature many
papers deal already with this problem. A static version of the bicycle VSS balancing problem is
treated in Chemla et al. (2012) and a dynamic one in Contardo et al. (2012).

1.3 A study on leverage for self regulated VSS

A new type of VSS has appeared lately: one-way Car VSS with Autolib’ (2011) in Paris and
Car2go (2008) in more than 10 cities (Vancouver, San Diego, Lyon, Ulm...). Due to the size
of cars, operational balancing optimization through relocation with trucks seems inappropriate.
Another way for optimizing the system has to be found.

This study is part of a work investigating different optimization leverage for self regulation
in VSS. Using operation research we want to estimate the potential impact of:

• Optimizing the system design (station capacity, fleet size);

• Using pricing techniques to influence user choices in order to drive the system towards its
most efficient dynamic;

• Establishing new protocols, for instance with parking spot reservations and/or users spatial
and temporal flexibility.

1.4 Assumption and goals of this study

A VSS pricing model is proposed in Waserhole and Jost (2012) using Markov Decision Pro-
cesses (MDP). The problem with this model is that the number of states of the MDP grows
exponentially with the size of the instance: number of vehicles and stations. They give a fluid
approximation that computes static policies. This fluid model is polynomially solvable and gives
descent results in a reasonable time. However, it is based on a deterministic approximation and
the experimental results are pretty far from the upper bound. That’s why in this paper, we
want to consider a stochastic model but still polynomial in the size of the instance. To be able
to obtain results we restrain this study to a simple model, as in George and Xia (2011), with
a constant demand and infinite station capacities, but also with null transportation times. We
optimize the average number of trips sold by the system (average throughput). Prices are the
leverage, with an elastic surjective demand on price. In fact, we assume a maximum possible
demand Λ and a price to obtain any demand λ ∈ [0, Λ]. Finally, to build a stochastic model poly-
nomially solvable we only tackle two policy subclasses, the symmetric and conservative policies
defined in the following. We also study an asymptotic approximation based on the Maximum

Circulation.
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2 Framework

In this section, we define formally the framework we use to model a Stochastic VSS.

2.1 Restriction to a simple protocol

In a real context, a user wants to use a vehicle to take a trip between an original (GPS) location
a, and a final one b, during a specified time frame. On a station based VSS, he tries to find the
closest station to location a with a vehicle to take and the closest station to location b with a
parking spot to retrieve it. All along this process user’s decision relies on several correlated inputs
such as: trip total price, walking distance, public transportation competition, time frame...

A time elastic GPS to GPS demand forecast, correlated to a user’s decision protocol ruling his
behaviour to take a trip between two specific stations at a specific time, seams closer to reality
but introduces of course a big complexity (use of utility function for instance). This is why in
this study, to stay simple and be able to develop a compact model we are going to consider a
station to station demand forecast, with moreover instantaneous transportation time and infinite
station capacity. Finally, it amounts to consider a demand for the following simplified protocol:

1. A user asks for a vehicle at station a (here and now), with destination b;

2. The system offers a price (or rejects the user = infinite price);

3. The user accepts the price, pay and the vehicle is transferred, or leaves the system.

2.2 A Vehicle Sharing System Stochastic Model

2.2.1 Markovian framework

In a city, there is a fleet of N vehicles along a set M (|M| =M) of stations with infinite capacity.
There is an elastic demand between each station D = M × M. This demand is constant and
follows a Poisson distribution of parameter λa,b(pa,b) to go from station a ∈ M to station b ∈ M
and is function of the proposed price pa,b.

2.2.2 Closed queuing network model

For a given demand λa,b for every trip (a, b) ∈ D (i.e. for a fixed price pa,b), we model this
stochastic VSS by a closed queuing Network see figure 1.

Each demand (a, b) ∈ D is represented by a server (a− b) which has a time dependent service
rate equals to the average number of clients willing to take a trip from station a to station b:
λa,b. Demands with same station of origin a ((a, b) ∈ D, ∀b ∈ M) are sharing the same infinite
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buffer a. When a vehicle (a job) is picked up to take the trip (a, b) (is processed by server (a, b))
it is transferred directly in station (buffer) b.

λb,a

λa,bλa,a

λb,b

a b

Figure 1: A closed queuing network model with servers for demands and transportation times.

2.2.3 Continuous-time Markov chain formulation

If a price pa,b is set for all trips (a, b) ∈ D we can model the closed queuing network by a
continuous-time Markov chain on set of states S:

S =

{

(

na : a ∈ M
)

/
∑

a∈M

na = N

}

.

A state s = (na : a ∈ M) represents the vehicles distribution in the city space, na is
the number of vehicles in station a ∈ M. There is a transition rate λa,b(pa,b) between state
(. . . , na, . . . , nb, . . .) and state (. . . , na − 1, . . . , nb + 1, . . .).

We can note that there is an exponential number of states. For instance for a small system
with N = 150 vehicles and M = 50 stations there are

(

N+M−1
N

)

≃ 1047 states!

2.3 Model optimization

2.3.1 Stochastic VSS pricing problem

In the previous section we model a VSS system by a closed queuing network that can be described
explicitly through a continuous-time Markov chain. Using this model we want to maximize the
VSS average revenue. We use for leverage the possibility to change the price to take a trip which
will, assuming an elastic demand, influence the demand for such trip. We call this problem the
stochastic VSS pricing problem. It amounts to setting a price to take every trip in order to
maximize the gain of the VSS Markovian model.

Prices can be discrete, i.e. selected in a set of possibilities, or continuous i.e. chosen in a
range. Pricing policies can be dynamic, i.e. dependent on system’s state (vehicles distribution),
or static i.e. independent on system’s state, set in advance and only function of the trip.
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2.3.2 Markov Decision Process curse of dimensionality

From the continuous-time Markov chain given in the previous section, we can use the well known
Markov Decision Process (MDP) framework to formulate a VSS MDP model. There is a set Q
of possible discrete prices for each trip at each time step. A trip (a, b) ∈ D at price pqa,b, q ∈ Q
has a demand (transition rate) λa,b(p

q
a,b) = λqa,b.

Solving this MDP computes the best dynamic system state dependent discrete pricing policy,
i.e. the price for a trip depends of the current state of the system (vehicles distribution). MDPs
are known to be polynomially solvable in the number of states |S| and the number of actions |A|
available in each state. There exists efficient solutions methods such as value iteration, policy
iteration algorithm or linear programming, we refer to Puterman (1994) textbook.

The VSS MDP model is a pricing problem where the action space A(s) in each state s ∈ S
is the Cartesian product of the available prices for each trip, i.e. A(s) = QM . However, to avoid
suffering from this exponential explosion, we can model this problem as an Action Decomposable
Markov Decision Process (Waserhole et al., 2012b). It is a general method based on the event-
based dynamic programming (Koole, 1998) to reduce the complexity of the action space to
A(s) = Q×M .

However, there is another problem with the VSS MDP model, the explosion of the state
space with the number of vehicles and stations. This phenomenon is known as the curse of
dimensionality. We have then to look at approximations or simplifications to produce solutions
in a reasonable time.

2.3.3 State of the art on this model

In the VSS literature, only simple forms of this closed queuing network model with the relation-
ship to the underlying continuous-time Markov chain have been studied. George and Xia (2011)
consider a VSS with only one time step, one price and infinite station capacities. Under these as-
sumptions, they establish a compact form to compute the system performance using the BCMP
network theory (Baskett et al., 1975). They solve an optimal fleet sizing problem considering a
cost to maintain a vehicle and a gain to rent it.

Fricker and Gast (2012) consider simple cities that they call homogeneous. These cites have
a unique fixed station capacity (Ka = K), a constant (one time step) arrival rate and uniform
routing matrix (λta,b = λ

M
) and a unique travel time (µta,b

−1
= µ−1). With a mean field ap-

proximation, they obtain some asymptotic results when the number of stations tends to infinity
(M → ∞): if there is no operational regulation system, the optimal sizing is to have a fleet
of K

2
+ λ

µ
vehicles per station which corresponds in filling half of the stations plus the average

number of vehicles in transit (λ
µ
). Moreover, they show that even with an optimal fleet sizing,

each station has still a probability 1
K+1

to be empty or full which is pretty bad since this cities
are perfectly balanced. In another paper, Fricker et al. (2012) extend to inhomogeneous cities
modeled by clusters some analytical results and verify experimentally some others.
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For homogeneous cities, Fricker and Gast (2012) also study a heuristic using incentives called
“the power of two choices” that can be seen as a dynamic pricing. When a user arrives at a
station to take a vehicle, he gives randomly two possible destination stations and the system is
directing him to the least loaded one. They show that this policy allows to drastically reduce
the probability to be empty or full for each station to 2−

K
2 .

Waserhole and Jost (2012) propose a stochastic VSS pricing model considering station ca-
pacity and time dependent demand. They give a fluid approximation, a deterministic solution
technique, that has for best advantage to be able to deal with the tide phenomenon and to
provide an upper bound on optimization gap. Through some experimentation, they show that
the fluid solution gives interesting results but nevertheless has a simulation value pretty far from
an upper bound. They raise the question if weather or not this was due do the deterministic
relaxation or to the poor upper bound their algorithm is giving. This is where this work stands,
it intends to give a tractable stochastic solution techniques for the VSS pricing problem.

3 VSS stochastic optimization

We develop now tractable stochastic models to optimize a VSS through pricing. We want to
find compact forms to evaluate the system performance. In George and Xia (2011) they derive
analytic results to compute the average throughput of the system for fixed prices in order to
compute the best fleet sizing. However, to consider prices as controls the same approach doesn’t
seem to be working.

For general classes of pricing policies optimizing the average throughput seems rather hard,
we can note that the deterministic version of the pricing problem is even shown NP-hard in
Waserhole et al. (2012a). Nevertheless, if we restrain our study to special types of policy (sym-
metric and conservative) we can use a special property of the induced Markov chain (the uniform
distribution over all states) to obtain a compact formulation for the average throughput of the
system usable for a polynomial price optimization.

3.1 On optimizing the system

We want to compute a policy maximizing the average throughput of a system for large scale
(real) systems. Thus, we look at polynomial optimization and hence policies allowing compact
formulations. Dynamic policies can have prices to take a trip that depend of the state of the
system, the vehicles distribution. However, in our model the number of states is exponential,
therefore to be able to formulate dynamic policies in a tractable way we would need to have a
compact formulation using threshold for instance. This problem is not present for static policies
where only one price per trip need to be set independently of the system’s state. With our
assumption it amounts in setting customer arrival rates λ with λa,b ≤ Λa,b, ∀(a, b) ∈ D.

To simplify even more, we investigate also pure policies that only set for each trip (a, b) ∈ D
if it is either open (λa,b = Λa,b), or close (λa,b = 0).
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One can wonder if pure policies are not dominant when maximizing the average throughput.
What is shown in the following is that it is true for dynamic policies (see lemma 1) but false for
dynamic policies even (which is more surprising) when the number of vehicles tends to infinity
(see lemma 2)

Lemma 1 Pure policies are dominant among dynamic policies maximizing the average flow
(number of trips sold).

Proof: On a state graph, the following LP gives the best static policies with continuous actions,
i.e. the best price to take each trip in each state of the system.

Let Ds be the set of trips available in state s ∈ S, the LP computing the dynamic policy
maximizing the throughput can be written as:

max
∑

s∈S

∑

(a,b)∈Ds

πsa,b Λa,b

s.t.
∑

(a,b)∈Ds

πsa,b Λa,b =
∑

t∈S, (b,a)∈Dt : t+(b,a)=s

πtb,a Λb,a, ∀s ∈ S,

πsa,b ≤ πs, ∀s ∈ S, ∀(a, b) ∈ Ds,
∑

s∈S

πs = 1,

πsa,b ≥ 0, ∀s ∈ S, ∀(a, b) ∈ Ds,

πs ≥ 0, ∀s ∈ S.

We can prove that this LP has for vertexes pure policies by simply counting the number of
variables and independent constraints. Indeed, the transition rate in state s ∈ S for a demand

(a, b) ∈ Ds equal to λ
s
a,b =

πs
a,b

πs
Λa,b and optimal solutions have either πsa,b = 0 or πsa,b = πs. �

Lemma 2 Pure policies are sub optimal among static policies even when the number of vehicles
tends to infinity.

Proof: Let consider 4 stations (a, b, c, d) with maximum transition rates Λa,b = Λb,c = 3,
Λc,d = Λd,a = Λc,a = 2 and all others equals to 0. Figure 2 represents such demands. There are
only 2 possible pure static policies λ defining a connexe demand graph: λi,j = Λi,j, (i, j) 6= (c, a)
and λc,a = 0 or 2.

Look now at the availability of a trip when the number of vehicles tends to infinity. With the
formula given by George and Xia (2011) the availability of a vehicle a station a equals πa

maxb∈M πb
,

where π is the stationary distribution for one vehicle.

For a λc,a = 0 policy, we have πa = πb = 2
10

and πc = πd = 3
10

= πmax, so the average
throughput when N → ∞ equals πa

πmax
(3 + 3) + πc

πmax
(2 + 2) = 8. And for λc,a = 2 policy we have
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πa = πb =
4
14

and πc = πd = 3
14
, so the average throughput when N → ∞ equals 10.5 which is

thus the best pure static policy.

Yet, for a mixed policy (not pure) with λc,a = 1 and λi,j = Λi,j, (i, j) 6= (c, a) we have
πa = πb = πc = πd =

1
4
, so the average throughput when N → ∞ equals 11 > 10.5. This shows

that pure policies are suboptimal even when the number of vehicles tends to infinity. �

Figure 2: JW paradox: Pure policies are sub optimal even when the number of vehicles tends to
infinity.

Lemma 3 Pure policies are sub optimal among static policies when considering systems with
more than 2 vehicles.

3.2 Static symmetric policies optimization

We are now going to consider a simple and intuitive class of policy that we call symmetric and
that consists in setting the prices in order to have as much demands to take a trip from station
a to station b as in the opposite direction.

Definition 1 (Symmetric policies) A policy is said symmetric if it sets a same demand to
take a trip and its opposite, i.e. ∀(a, b) ∈ D, λa,b = λb,a.

In this section, we assume symmetry in the data Λa,b = Λb,a, ∀(a, b) ∈ D, possibly using
truncation as a preprocessing.

Definition 2 (USD policies) A policy is said USD if it has a Uniform Stationary Distribution
(USD) over the (reachable) states of the induced Markov chain.

In the following we investigate symmetric policies because they are USD (see Lemma 4).
Using this property we can compute the vehicle availability at a station and hence the average
throughput by simply counting the number of reachable states of the system. For infinite station
capacities the number of states can be computed analytically and leads a compact and simple
formulation for the vehicle availability (see Lemma 5).

Lemma 4 Symmetric policies are USD.
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Proof: Consider the continuous-time Markov chain formulation for N vehicles andM stations,
with system states S and transition rates A. Without loss of generality we are not considering
unreachable states. The stationary distribution π over the state S of the system is solution of
the following equations:

∑

i∈S

πi = 1,

∑

(i,j)∈A

πi λi,j =
∑

(j,i)∈A

πj λj,i, ∀i ∈ S.

Since for symmetric policies we have ∀(a, b) ∈ D, λa,b = λb,a, then
∑

(i,j)∈A λi,j =
∑

(j,i)∈A λj,i, ∀i ∈

S and the uniform stationary distribution πi =
1
|S|
, ∀i ∈ S is trivially solution of this system.

Moreover, it is the only one since the rank of the linear system is |S| which is the number of
variables. �

Lemma 5 For M stations with infinite station capacity, N vehicles and an USD policy, the
availability A of a vehicle at a station equals:

A =
N

N − 1 +M
.

Proof: For M stations with infinite station capacity and N vehicles there is a exactly NM
N =

(

N+M−1
N

)

system states. Therefore, for an USD policy, the availability A of a vehicle at a station
equals:

A =
NM
N−1

NM
N

= 1−
NM−1
N

NM
N

=
N

N − 1 +M
.

�

We are now interested in optimizing symmetric static policies. We can see that pure poli-
cies are dominant over static policies (see lemma 6), which is giving a compact combinatorial
formulation for the symmetric static policies optimization. However, even if this formulation is
compact, it is not straightforwardly giving a polynomial algorithm to solve it. This is one of the
contributions of this paper to prove that this problem is polynomial by giving a LP formulation
(see Theorem 1).

Lemma 6 Pure policies are dominant among static symmetric policies maximizing the through-
put.

Proof: If we had an optimal static symmetry with two open stations a and b, and a demand rate
λb,a = λa,b < Λa,b. Adjusting the demand rate to its maximum value λb,a = λa,b = Λa,b preserves
the symmetric property, so the stationary distribution that is still uniform (see lemma 4). This
modification strictly increases the overall throughput and it finally would means that this solution
is not optimal. �
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Corollary 1 Station opening policies are dominant over pure static symmetric policies. Hence,
looking for the best static symmetric policy amounts to looking for a sub-graph induced by a set
of open stations.Stati symmetri poliies optimization

• Input: For N vehicles, a set M ofM stations and a maximum demand Λa,b for every pair
of stations (a, b) ∈ D;

• Output: A demand λa,b for every pair of stations (a, b) ∈ D, such that λa,b = λb,a and
0 ≤ λa,b ≤ Λa,b;

• Objetive: Maximize the average number of trips sold;

• Combinatorial formulation: From Corollary 1, Lemma 4 and 5 we have:

max
T⊆M

∑

a,b∈T

Λa,b
N

N + |T | − 1
.

Theorem 1 (LP for symmetric policies optimization) The following LP gives the optimal
static symmetric policy for a system with a set M of stations, N vehicles and a demand Du of
undirected trips.

max 2
∑

(a,b)∈Du

Aa,b Λa,b

s.t. Aa,b ≤ Aa, ∀(a, b) ∈ Du,

Aa,b ≤ Ab, ∀(a, b) ∈ Du,

(N − 1)Amax +
∑

a∈S

Aa = N,

Aa ≤ Amax, ∀a ∈ M,

Aa,b ≥ 0, ∀(a, b) ∈ Du,

Aa ≥ 0, ∀a ∈ M,

Amax ≥ 0.

Its variables can be interpreted as follows: Aa is the availability of a vehicle at station a. Amax is
the maximum availability of all station. Aa,b is the availability of trip (a, b) that set its demand

rate λa,b =
Aa,b

Aa
Λa,b.

Proof: Let Uk be the USD for k open stations: Uk = N
N−1+k

. We prove that the vertices

of this LP are USD policies or USD solutions: ∃T ⊆ M such that ∀a ∈ T, Aa = U |T | and
∀a ∈ M \ T, Aa = 0. We show that a non USD optimal solution worth the same value as a
linear combination of USD solutions.

Consider a non USD optimal solution S∗ with p different values for variables Aa, ∀a ∈ M.
Without loss of generality, in the following, we only consider the set T ⊆ M of reachable stations,
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i.e. that have an associated variableAa > 0. Let {ψ1, . . . , ψp} be the ordered set of the Aa values,
i.e. ψi < ψj if i < j. Let Mi be the set of stations a with an associated availability Aa equals
to ψi and let M+

i be the set of stations with an associated availability greater or equals to ψi,
i.e. M+

i =
⋃p

j=iMi.

For any given objective, if a solution is optimal, its variables Aa totally determine its the
cost because there is only one possible value for variable Amax and one unique optimal value for
variables Aa,b present in the objective. Therefore, to ensure that two optimal solutions worth the
same value, we only need to check that their variables Aa are equal.

We now construct a linear combination of p USD solutions, {S1, . . . , Sp} with associated
vector variables Ai and coefficient αi, i ∈ {1, . . . , p}, such that it builds a solution equal to the
variables A∗ of the non USD optimal solution S∗, i.e.

∑p

i=1 αi A
i = A∗. USD solution Si is

composed with stations set M+
i and has a uniform distribution among this stations equal to

U |M+

i |, i.e. Aia = U |M+

i | if a ∈ M+
i and Aia = 0 if a ∈ T \M+

i . Its linear combination coefficient
is αi =

ψi−ψi−1

U
|M+

i
|
with ψ0 = 0. We can verify that

p
∑

i=1

αi =
1

N

(

p−1
∑

i=1

ψi(|M
+
i | − |M+

i+1|) + (N − 1 + |M+
p |)ψp

)

=
1

N

(

p
∑

i=1

ψi |Mi|+ (N − 1)ψp

)

=
1

N

(

∑

a∈M

A∗
a + (N − 1)Amax ∗

)

= 1.

Moreover, for each station a ∈ T there exists j such that A∗
a = ψj and

∑p

i=1 αi A
i
a =

∑j

i=1 αi A
i
a =

∑j
i=1

ψi−ψi−1

U
|M+

i
|
U |M+

i | = ψj . We have then
∑p

i=1 αi A
i = A∗ and since variables Aa determine the

cost of a solution we have a linear combination of USD solutions forming a solution with same
value as the non USD optimal solution S∗: val(

∑p

i=1 αi S
i) = val(S∗). Non USD solutions are

hence not vertices of the polygon. �

Remark 1 Notice that for N = 1 the symmetric policies optimization amounts to solving the
densest weighted subgraph problem. Our LP generalized the one given by Charikar (2000) that
he proves optimal through another type of proof, by the absurd.

3.3 Static conservative policies optimization

In the previous section, we introduce the symmetric policies that have the useful advantage to be
USD. However, this class of policies seems very restrictive and maybe the USD property can be
found in a wider class. This is the case of the conservative policies that are also USD (Lemma 7)
and in fact containing the symmetric policies.
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Definition 3 (Conservative policies) A policy is said conservative if it sets in each station
a same amount of demand to take a vehicle as to drop one, i.e. ∀a ∈ M,

∑

(a,b)∈D λa,b =
∑

(b,a)∈D λb,a.

Lemma 7 A static policy is conservative if and only if it is USD.

Proof: Consider the Continuous-Time Markov Chain formulation forN vehicle andM stations,
with system states S and transition rates A. Without loss of generality we are not considering
unreachable states. The USD distribution π over the state S of the system is solution of the
following equations:

∑

i∈S

πi = 1,

∑

(i,j)∈A

πi λi,j =
∑

(j,i)∈A

πj λj,i, ∀i ∈ S.

On the one hand, conservative policies have
∑

b∈M λa,b =
∑

b∈M λb,a, ∀a ∈ M, therefore
∑

(i,j)∈A λi,j =
∑

(j,i)∈A λj,i and πi =
1
|S|
, ∀i ∈ S is trivially solution of this system. It is the only one possible

since the rank of the linear system is |S| which is the number of variables.

On the other hand, a USD policy have πi =
1
|S|
, ∀i ∈ S and static USD policies should then

satisfy:

∑

(i,j)∈A

λi,j =
∑

(j,i)∈A

λj,i, ∀i ∈ S,

λi,j = λa,b, ∀(a, b) ∈ D → (i, j) ∈ A.

∑

b∈M λa,b =
∑

b∈M λb,a, ∀a ∈ M is trivially the only solution of this system. �

Corollary 2 A dynamic policy is conservative if and only if it is USD.

Lemma 5 is also applicable for conservative policy optimization since they are USD. We have
hence a compact combinatorial formulation for the the conservative policies optimization. The
complexity of this new problem remains unsolved. However, the approach we used for symmetric
policies can be extended to give a LP relaxation for conservative policy optimization (Theorem 2)
that seams to provide solutions often optimal (Remark 2).Stati onservative poliies optimization

• Input: For N vehicle, a set M of M stations and a maximum demand Λa,b for every pair
of stations (a, b) ∈ D;

• Output: A demand λa,b for every pair of stations (a, b) ∈ D, such that ∀a ∈ M, ‘
∑

(a,b)∈D λa,b =
∑

(b,a)∈D λb,a with 0 ≤ λa,b ≤ Λa,b;

• Objetive: Maximize the average number of trips sold;

13



• Combinatorial formulation: From Lemma 7 and 5 we have:

max
F⊆D

∑

(a,b)∈F

λa,b
N

N − 1 + |M(F )|

s.t.
∑

(a,b)∈F

λa,b =
∑

(b,a)∈F

λb,a, ∀a ∈ M(F ),

0 ≤ λa,b ≤ Λa,b, ∀(a, b) ∈ F,

With M(F ) = {a ∈ M : (a, b) ∈ F || (b, a) ∈ F}.

Theorem 2 (LP for a conservative policies optimization relaxation) The following LP (2)
is a relaxation of the static conservative policies optimization for a system with a set M of sta-
tions N vehicles and a demand D of directed trips.

max
∑

a,b∈M

Aa,bΛa,b (2a)

s.t. Aa,b ≤ Aa Λa,b, ∀(a, b) ∈ D, (2b)

Aa,b ≤ Ab Λa,b, ∀(a, b) ∈ D, (2c)
∑

(a,b)∈D

Aa,bΛa,b =
∑

(b,a)∈D

Aa,bΛb,a, ∀a ∈ M, (2d)

Aa ≤ Amax, ∀a ∈ M, (2e)

(N − 1)Amax +
∑

a∈M

Aa = N, (2f)

Aa,b ≥ 0, ∀(a, b) ∈ D, (2g)

Aa ≥ 0, ∀a ∈ M, (2h)

Amax ≥ 0. (2i)

Its variables can be interpreted as follows: Aa is the availability of a vehicle at station a. Amax is
the maximum availability of all station. Aa,b is the availability of trip (a, b) that set its demand

rate λa,b =
Aa,b

Aa
Λa,b.

Proof: Conservative policies are trivially solution of LP (2). �

Corollary 3 1) LP (2) optimal solution value is an upper bound on conservative policies opti-
mization.
2) If LP (2) gives a conservative policy, it is the optimal conservative policy.

Remark 2 Although LP (2) does not solve the conservative policies optimization, in practice, it
is a good approximation that provides extremely often the best conservative policies as the system
grows.
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The smallest example we found where LP (2) does not produce the best conservative policies
has 3 stations, 2 vehicles and a demand graph defining a cycle 1 − 2 − 2, i.e. with for non-null
demand rates Λa,b = 1, Λb,c = Λc,a = 2.

On 10 000 random instances with integer demand rates λ drawn uniformly in [0, 10] for each
trip, Table 1 gives the percentage of time LP (2) did not provide an (optimal) USD policy.

(m,n) (3,2) (3,6) (3,10) (4,10) (5,20) (20,100)
LP (2) not optimal USD 3.40% 1.51% 1.01% 0.43% 0.06% 0,00%

Table 1: LP (2) relaxation provides extremly often the best conservative policies as the system
grows.

4 Maximum circulation approximation

In the previous section we figured out new LP formulations, computing explicitly the USD over
the system’s states in function of the number of vehicles and the number of open stations.
However, looking at the conservative policies optimization, we see that if we want to open all
stations it amounts to solving a Maximum Circulation problem (Edmonds and Karp, 1972):
generalization of network flow problems with flow conservation at all nodes (no source no sink).Maximum Cirulation LP

max
∑

(a,b)∈D

λa,b

s.t.
∑

(a,b)∈D

λa,b =
∑

(b,a)∈D

λb,a, ∀a ∈ M,

0 ≤ λa,b ≤ Λa,b, ∀(a, b) ∈ D.

4.1 An asymptotic approximation for infinite number of vehicles

In the following, we show that Maximum Circulation gives the best dynamic policy when the
number of vehicles tends to infinity. In Lemma 8 we first prove that Maximum Circulation

gives the best static policies when N → ∞. Then, in Theorem 3, we prove that static policies
are themselves dominant over dynamic policies.

Lemma 8 The Maximum Circulation policy is asymptotically optimal among static policies
when the number of vehicles tends to infinity.
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Proof: Let π be the stationary distribution vector for N = 1 vehicle and M stations without
transportation time. Let πmax = maxa∈M πa, from Theorem 1 in George and Xia (2011), we have
that the availability Aa of a vehicle at a station a ∈ M when the number N of vehicles tends to
infinity equals:

lim
N→∞

(A(N)) =
πa
πmax

.

Note that George and Xia (2011) states this theorem with π being the stationary distribution
for N = 1 vehicle and M stations with transportation time. However, for one vehicle the ratio
πa
πb
, ∀a, b ∈ M is independent from the transportation times. Therefore we can restrain to the

computation of π without transportation times. We have hence that the best static policy is
solution of the following program:

max
∑

(a,b)∈D

πa
πmax

λa,b

s.t.
∑

(a,b)∈D

λa,bπa =
∑

(b,a)∈D

λb,aπb, ∀a ∈ M,

0 ≤ λa,b ≤ Λa,b, ∀(a, b) ∈ D,
∑

a∈M

πa = 1,

πmax = max
a∈M

πa.

With a variable substitution λa,b =
πmax

πa
λ′a,b, we obtain:

max
∑

(a,b)∈D

λ′a,b (3a)

s.t.
∑

(a,b)∈D

λ′a,b =
∑

(b,a)∈D

λ′b,a, ∀a ∈ M, (3b)

0 ≤ λ′a,b ≤ Λa,b
πa
πmax

, ∀(a, b) ∈ D, (3c)

∑

a∈M

πa = 1, (3d)

πmax = max
a∈M

πa. (3e)

Note that πa
πmax

≤ 1, ∀a ∈ M. So taking πa = 1
|M|

, ∀a ∈ M implies πa
πmax

= 1 which does not

reduce the solution space of constraints (3c) and satisfies moreover constraint (3d). Finally, it
means that the previous program is equivalent to solve Maximum Circulation with λ′ = λ.
�

Theorem 3 Maximum Circulation gives the best dynamic policy when the number of vehicles
tends to infinity.
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Proof: We first prove that Maximum Circulation optimal solution gives an upper bound
on dynamic policies for any number of vehicles. To do so, we show that we can construct from
any dynamic policies a Maximum Circulation solution with same value.

Consider a dynamic pricing policies with transition rate λsa,b ≤ Λa,b in state s ∈ S (state
dependent) for trip (a, b) ∈ D. Under this policy, the system is stationary and ergodic under
very general conditions. Therefore, we can look at its stationary distribution π on its state space
S that satisfies the following equations:

∑

(a,b)∈D

πsλ
s
a,b =

∑

(b,a)∈D

πs−{(b,a)}λ
s
b,a, ∀s ∈ S,

∑

s∈S

πs = 1.

Let λ′a,b be the average throughput for a trip (a, b) ∈ D:

λ′a,b =
∑

s∈S

πsλ
s
a,b ≤ Λa,b, ∀(a, b) ∈ D.

The average throughput of the system equal to
∑

(a,b)∈D λ
′
a,b. λ

′ satisfies the flow conservation
constraints and the capacity constraints of Maximum Circulation:

∑

(a,b)∈D

λ′a,b =
∑

(b,a)∈D

λ′b,a, ∀a ∈ M,

0 ≤ λ′a,b ≤ Λa,b, ∀(a, b) ∈ D.

Flow conservation constraints are respected because otherwise it would mean that in the dy-
namic policy’s steady state, a station would receive more vehicles that it is sending which is
absurd. The capacity constraints are also respected since

∑

s∈S πs = 1. Therefore, λ′a,b is so-
lution of Maximum Circulation with the same objective value. It proves that Maximum

Circulation optimal solution is an upper bound on any dynamic policies.

From Lemma 8, we know that Maximum Circulation is asymptotically giving the best
static policy when the number of vehicles tends to infinity. Therefore, when N → ∞, static
policies are asymptotically dominant over dynamic policies and Maximum Circulation solves
the optimal dynamic policy. �

Remark 3 Maximum Circulation approximation works also when considering transportation
times. Indeed, when the number of vehicle tends to infinity, transportation times have no impact
on optimal solution (proof given in Lemma 8).
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4.2 An approximation algorithm for finite number of vehicles

Theorem 4 The static conservative policy provided by Maximum Circulation is a N+M−1
N

-
approximation on static policies.

Proof: Let Circ∗ be the value of Maximum Circulation and ConsCirc be the value of
the static conservative policy provided by Maximum Circulation. Simply applying the USD
property we have that ConsCirc = N

N+M−1
Circ∗. As shown in Theorem 3, Circ∗ is an upper

bound on the optimal static policies of gain Stat∗. Therefore, Stat∗ ≤ Circ∗ and

N

N +M − 1
Stat∗ ≤

N

N +M − 1
Circ∗ = ConsCirc.

�

Corollary 4 For M stations and N vehicles, the optimal conservative static policy is a tight
N+M−1

N
-approximation on the optimal static policies.

Proof: From Theorem 4, Maximum Circulation static policy (of value ConsCirc) is a
N+M−1

N
-approximation on static policies. The best conservative policy of value Cons∗ ≥ ConsCirc

is therefore also a N+M−1
N

-approximation on static policies.

To prove that this approximation is tight, we consider an instance with N vehicles, M
stations and a demand graph induced by a circuit with M vertices and maximum demand
Λ = (1, k, . . . , k). Let a be the station with the 1 outgoing maximum demand with rate 1. The
best conservative policy opens all possible trips with λ = 1. Because it is USD we can easily
compute its value: Cons∗ = NM

N+M−1
. The best static policy opens all trips to their maximum:

λ = Λ. The availability Aa of station a is Aa = O( k
M+k−1

) and limk→∞Aa = 1. The availability

of station b 6= a is Ab = O( 1
M+k−1

) and limk→∞Ab = 0. When k → ∞, the value of the best
static policy is hence Stat∗ = M , and the ratio between the optimal conservative static policy
and the optimal static policy is:

Cons∗

Stat∗
=

N

N +M − 1
.

�

Note that Corollary 4 implies thatMaximum Circulation policy is a tight N+M−1
N

-approximation
on static policies.
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Vélib’. http://www.velib.paris.fr, 2007.

A. Waserhole and V. Jost. Vehicle sharing system pricing regulation: A fluid approximation.
2012. URL http://hal.archives-ouvertes.fr/hal-00727041.

19

http://hal.archives-ouvertes.fr/hal-00727041


A. Waserhole, V. Jost, and N. Brauner. Vehicle sharing system optimization: Scenario-based
approach. 2012a. URL http://hal.archives-ouvertes.fr/hal-00727040.

A. Waserhole, V. Jost, and J. P. Gayon. Action decomposable MDP, a lin-
ear programming formulation for queuing network problems. 2012b. URL
http://hal.archives-ouvertes.fr/hal-00727039.

20

http://hal.archives-ouvertes.fr/hal-00727040
http://hal.archives-ouvertes.fr/hal-00727039

	Introduction
	Context
	One-way Vehicle Sharing Systems: a management issue
	A study on leverage for self regulated VSS 
	Assumption and goals of this study

	Framework
	Restriction to a simple protocol
	A Vehicle Sharing System Stochastic Model
	Markovian framework
	Closed queuing network model
	Continuous-time Markov chain formulation

	Model optimization
	Stochastic VSS pricing problem
	Markov Decision Process curse of dimensionality
	State of the art on this model


	VSS stochastic optimization
	On optimizing the system
	Static symmetric policies optimization
	Static conservative policies optimization

	Maximum circulation approximation
	An asymptotic approximation for infinite number of vehicles
	An approximation algorithm for finite number of vehicles


