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QML ESTIMATION OF THE CONTINUOUSLY INVERTIBLE EGARCH(1,1)

MODEL

OLIVIER WINTENBERGER

Abstract. We introduce the notion of continuous invertibility on a compact set for volatility
models driven by a Stochastic Recurrence Equation (SRE) introduced by Straumann in [30].

We prove the strong consistency of the Quasi Maximum Likelihood Estimator (QMLE) for such

continuously invertible models. This approach gives for the first time the strong consistency of
the QMLE used by Nelson in [27] for the EGARCH(1,1) model. We also give sufficient conditions

for the asymptotic normality of the QMLE for this model. We propose a new estimator IQMLE

with the same asymptotic properties than QMLE but for which the volatility forecasting is stable.

AMS 2000 subject classifications: Primary 62F12; Secondary 60H25, 62F10, 62M20, 62M10,
91B84.

Keywords and phrases: Invertibility, volatility models, parametric estimation, strong consistency,
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1. Introduction

Since the seminal papers [14, 7], the General Autoregressive Conditional Heteroskedasticity
(GARCH) type models have been successfully applied to financial time series modeling. One of
the stylized facts observed on the data is the asymmetry with respect to (wrt) shocks [11]: a nega-
tive past observation impacts the present volatility more importantly than a positive one. Nelson is
the first to introduce in [27] a model that reproduce this asymmetry with the Exponential-GARCH
(EGARCH) model. Not surprisingly, theoretical investigations of EGARCH has attracted lot of
attention since then, see for example [20, 25]. However, the properties of the Quasi Maximum
Likelihood Estimator (QMLE) used empirically in [27] was not proved except in some degenerate
case, see [31]. We give in this paper some sufficient conditions for the strong consistency and the
asymptotic normality of the QMLE in the EGARCH(1,1) model. We give sufficient conditions for
the estimator to be strongly consistent and asymptotically normal. Our approach is based on the
natural notion of continuous invertibility that we introduce in the general setting of volatility model
solutions of a Stochastic Recurrent Equation (SRE) as studied in [30, 31].

Consider a real valued volatility model of the form Xt = σtZt where σt is the volatility and
where the innovations Zt are normalized, centered independent identical distributed (iid) random
vectors. It is assumed that a transformation of the volatility satisfies some parametric SRE (also
called Iterated Random Function), i.e. there exist a function h and some ψt measurable wrt Zt such
that the following relations

(1) h(σ2
t+1) = ψt(h(σ2

t ), θ0), ∀t ∈ Z
1
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hold. Classical examples are the GARCH(1,1) and EGARCH(1,1) models:

GARCH(1,1): σ2
t+1 = α0 + β0σ

2
t + γ0X

2
t ,(2)

EGARCH(1,1): log(σ2
t+1) = α0 + β0 log(σ2

t ) + (γ0Zt + δ0|Zt|).(3)

To assert the existence of a stationary solution of both models, we rewrite (2) as an SRE in term
of the innovations: σ2

t+1 = α0 + (β0 + γ0Z
2
t )σ2

t , i.e. ψt(x, θ) = α + (β + γZ2
t )x. This SRE yields

the Lyapunov condition E[log(β0 +γ0Z
2
0 )] < 0, necessary and sufficient for the stationarity, see [26].

Such a SRE is said to be convergent when its solution is unique, non anticipative (i.e. the function
of the innovations h(σ2

t ) are function of the past innovations Zt−1, Zt−2, Zt−3, . . . at any time t) and
its law is the asymptotic law of the solution of the SRE

(4) ht+1 = ψt(ht, θ0) ∀t ≥ 0

for any initial value h0. This last property is also called the stability of the SRE and is related with
the ergodicity for Markov chains. Sufficient conditions for the existence of a stationary solution is
the negativity of the top Lyapunov coefficient [13]. If so, the SRE is stable [8]. If the innovations
were observed, the stability of the SRE ensures that the volatility can be efficiently forecast by using
recursively the relation (4) from an arbitrary initial value h0.

In practice, the innovations Zt are not observed. Writing Zt = Xt/σt in the expression of ψt wrt
Zt, we invert the model, i.e we consider a new SRE driven by a function φt of the observation Xt,

(5) h(σ2
t+1) = φt(h(σ2

t ), θ0).

For instance, we obtain from (2) that φt(x, θ) = α+ βx+ γX2
t for the GARCH(1,1) model. For the

EGARCH(1,1) model, we obtain from (3) that

(6) φt(x, θ) = α+ βx+ (γXt + δ|Xt|) exp(−x/2).

In accordance with the notions of invertibility given previously in [18, 33, 30, 31], we will say that
the model is invertible if the SRE (5) is stable. Then, as the functions φt are observed, the volatility
is efficiently forecast by using recursively the relation

(7) ht+1 = φt(ht, θ0)

from an arbitrary initial value h0. As previously, sufficient conditions for the convergence of this SRE
are the negativity of a Lyapunov coefficient and the existence of logarithmic moments, see [8]. So
the GARCH(1,1) model is invertible as soon as 0 ≤ β0 < 1. The invertibility of the EGARCH(1,1)
model is more complicated to assert due to the exponential function in (6). The recursive relation
on ht+1 can explode to −∞ for small negative values of ht and negative values of γ0Xt + δ0|Xt|.
However, assuming that δ0 ≥ |γ0|, the relation γ0Xt + δ0|Xt| > 0 holds and conditions for invert-
ibility of the EGARCH(1,1), denoted hereafter INV(θ0), are obtained in [30]. On the contrary, note
that Sorokin introduces sufficient conditions of non-invertibility for the EGARCH(1,1) model in
[29]. Then the SRE (6) is completely chaotic for any possible choice of the initial value h0 and the
volatility forecasting procedure based on the model (5) is not reliable.

If financial datas are observed, the parameter θ0 = (α0, β0, γ0, δ0) of the EGARCH(1,1) model is
unknown. Nelson proposed in [27] to estimate θ0 with the Quasi Maximum Likelihood Estimator
(QMLE). Let us recall the definition of this classical estimator that estimates efficiently many
GARCH models, see [5] for the GARCH case and [17] for the ARMA-GARCH case. To construct
the QMLE one approximates the volatility using the observed SRE (7) at any θ. Assume that the



QML ESTIMATION OF THE EGARCH(1,1) MODEL 3

SREs driven by φt(·, θ) are stable for any θ. Let us consider the functions ĝt(θ) defined for any θ as
the recursive solutions of the SRE

(8) ĝt+1(θ) = φt(ĝt(θ), θ)

for some arbitrary initial value ĝ0(θ). Assume that h is a bijective function of inverse ` > 0. Then
`(ĝt(θ0)) has a limiting law that coincides with the one of σ2

t . The Quasi Likelihood (QL) criteria
is defined as

2nL̂n(θ) =

n∑
t=1

l̂t(θ) =

n∑
t=1

X2
t /`(ĝt(θ))

2 + log(`(ĝt(θ)).

The correspondinf M -estimator is the QMLE θ̂n defined as

θ̂n = argminθ∈ΘL̂n(θ)

for some compact set Θ. This estimator has been used since the seminal paper of Nelson [27] for
estimating the EGARCH model, see [10]. However, the consistency and the asymptotic normality
are not proved except in the degenerate case β0 = 0 in [30]. On the contrary with other GARCH
models, the QML estimation procedure is not always reliable for the EGARCH model, see the dis-
cussion in [19]. Thus, other estimation procedure has been investigated such as the bayesian, bias
correction and the Whittle procedure in [35, 12, 36] respectively. Another approach is to introduce
models that behave as the EGARCH model but in which the QMLE could be more reliable, see
[19, 32].

We prove the strong consistency of the QMLE for the general model (1). We give sufficient
conditions called the continuous invertibility of the model such that the QMLE is strongly consis-
tent. More precisely we assume that the SRE (8) produces continuous functions ĝt of θ on Θ. The
continuous invertibility holds when the limiting law of ĝt corresponds to the law of some continu-
ous function gt on Θ that does not depend on the initial function ĝ0. The continuous invertibility
ensures the stability of the estimation procedure regardless the initial function ĝ0 chosen arbitrarily
in practice. Under few other assumptions, we prove that the QMLE is strongly consistent for con-
tinuously invertible models on the compact set Θ. The continuous invertiblity should be checked
systematically on models before using QMLE. One example of such continuously invertible models
with properties similar than the EGARCH model is the Log-GARCH model studied in [15].

Our approach differs from the one of [30] by new sufficient conditions for continuous invertibility.
These conditions are collected in assumption (CI) defined below. These conditions ensure the in-
vertibility of the model at any point θ of the compact set Θ and some regularity of the model with
respect to the parameter θ. As the EGARCH(1,1) model is regular with respect to θ, it satisfies
(CI) on any Θ such that the invertibility condition INV(θ) is satisfied for any θ ∈ Θ. Thus we
prove the strong consistency of the QMLE for the invertible EGARCH(1,1) model when θ0 ∈ Θ in
cases where β0 6= 0. It is a serious advantage of the sufficient condition (CI) compared with the
one of [30] that is more restrictive when applied to the EGARCH(1,1) model. Moreover, we prove

the strong consistency of the volatility forecasting σ̂2
n = `(ĝn(θ̂n)) of σ2

n+1 under (CI). Continuous
invertibility seems to be well suited to assert volatility forecasting because σ̂2

n expresses as functions

ĝn evaluated at points θ̂n 6= θ0. To infer the EGARCH(1,1) model, we propose to constrain the
QMLE on some compact set satisfying the empirical counterpart of the condition INV(θ0). This

new estimator θ̂cn called Invertible QMLE (IQMLE) produces only reliable volatility forecasting, i.e.
such as σ̂2

n does not depend asymptotically on the arbitrary choice of the initial value σ̂2
0 = `(ĝ0).
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The asymptotic normality of the QMLE in the EGARCH(1,1) model is proved under the addi-
tional assumption (MM). The moment conditions in (MM) are sufficient for the existence of the
asymptotic covariance matrix. No uniform moment condition on the score vector is assumed. The
proof is based on functional SREs as (12) and their perturbations. As for the strong consistency, we
need to refine arguments from [31]. As we do not apply any uniform Strong Law of Large Number, we

develop in the proof new arguments based on SREs satisfied by differences such as |L̂n(θ̂n)−L̂n(θ0)|.
We consider conditions of moments (MM) only at the point θ0 where the expression of the score vec-
tor simplifies. In the EGARCH(1,1) model, the conditions (MM) take the simple form E[Z4

0 ] <∞
and E[(β0− 2−1(γ0Z0 + δ0 |Z0|)2] < 1 and can be checked in practice by estimating the innovations.
We believe that this new approach gives sharp conditions for asymptotic normality for other models.

The paper is organized as follows. In Section 2, we discuss the standard notions of invertibility
and introduce the continuous invertibility and its sufficient condition (CI). We prove the strong
consistency of the QMLE for general continuously invertible models in Section 3. The consistency
of the volatility forecasting is also proved under the sufficient condition (CI). We apply this results in
the EGARCH(1,1) model in Section 4. For this model, we propose a new method called IQMLE that

produces only reliable volatility forecasting. The asymptotic normality of θ̂n in the EGARCH(1,1)
model is given in Section 5. The proofs of the Technical Lemmas are collected in Section 6.

2. Preliminaries

2.1. The general volatility model. In this paper, the innovations Zt ∈ R are iid random variables
(r.v.) such that Zt is centered and normalized such as E[Z2

0 ] = 1. Consider the general volatility
model Xt = σtZt satisfying h(σ2

t+1) = ψt(h(σ2
t ), θ0) for all t ∈ Z. The function h is a bijection from

some subset R+ to some subset of R of inverse ` called the link function.

A first question regarding such general SRE is the existence of the model, i.e. wether or not
a stationary solution exists. The classical stability assumption is mainly the negativity of the top
Lyapunov exponent, see [9, 8]. Hereafter, we work under the general assumption

(ST): The SRE (1) admits a unique stationary solution denoted (σ2
t ) that is non anticipative,

i.e. σ2
t is independent of (Zt, Zt+1, Zt+2, . . .) for all t ∈ Z, and has finite log-moments:

E log+ σ2
0 <∞.

The GARCH(1,1) model (2) satisfies the condition (ST) if and only if (iff) E[log(β0 +γ0Z
2
0 )] < 0,

see [26] for the existence of the stationary solution and [5] for the existence of log moments. The
EGARCH(1,1) model (3) satisfies the condition (ST) iff |β0| < 1, see [27]. In this case, the model
has nice ergodic properties: any process recursively defined by the SRE from an arbitrary initial
value approximates exponentially fast a.s. the original process (σ2

t ). In the sequel, we say that

the sequence of non negative r.v. (Wt) converges exponentially almost surely to 0, Wt
e.a.s.−−−→ 0 as

t→∞, if Wt = o(e−Ct) a.s. for some r.v. C > 0. We will also use the notation x+ for the positive
part of x, i.e. x+ = x ∨ 0 for any x ∈ R.

2.2. Invertible models. Under (ST) the process (Xt) is stationary, non anticipative and thus
ergodic as a Bernoulli shift of an ergodic sequence (Zt), see [23]. Let us now investigate the question
of invertibility of the general model (1). The classical notions of invertibility are related with
convergences of SRE and thus are implied by Lyapunov conditions of Theorem 3.1 in [8]. Following
[33], we say that a volatility model is invertible if the volatility can be expressed as a function of
the past observed values:

Definition 1. Under (ST), the model is invertible if the sequence of the volatilities (σ2
t ) is adapted

to the filtration generated by (Xt−1, Xt−2, · · · ).
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Using the relation Zt = Xt/`(h(σt)) in the expression of ψt yields the new SRE (5): h(σ2
t+1) =

φt(h(σ2
t ), θ0). Now the random functions φt(·, θ0) depends only on Xt. As (Xt) is an ergodic

and stationary process, it is also the case of the sequence of parametrized maps (φt(·, θ0)). Using
Theorem 3.1 in [8], the invertibility of the model follows if the φt(·, θ0) are Lipschitz maps such that
it exists r > 0 satisfying
(9)

E[log+ |φ0(x, θ0)|] <∞ for some x ∈ E, E[log+ Λ(φ0(·, θ0))] <∞ and E[log Λ(φ0(·, θ0)(r))] < 0.

Here Λ(f) denotes the Lipschitz coefficient of any function f defined by the relation (in the case
where f is real valued)

Λ(f) = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

The conditions (9) are called the conditions of invertibility in [31] and is proved there that

Proposition 1. Under (ST) and (9), the general model (5) is invertible.

The GARCH(1,1) model (2) is invertible as soon as 0 ≤ β0 < 1.

The invertibility of the EGARCH(1,1) model is more difficult to assert due to the exponantial
function in the SRE (6). Let us describe the sufficient condition of invertibility of the EGARCH(1,1)
given in [30, 31]. It expresses as a constraint on the coefficients θ0 = (α0, β0, γ0, δ0):

INV(θ0): δ0 ≥ |γ0| and

(10) E[log(max{β0, 2
−1(γ0X0 + δ0|X0|) exp(−2−1α0/(1− β0))− β0})] < 0.

This invertible region does not depend on α0 when the process (Xt) is itself the stationary solution
of the EGARCH(1,1) model for θ0. Indeed, (log σ2

t ) admits a MA(∞) representation

log σ2
t = α0(1− β0)−1 +

∞∑
k=1

βk−1
0 (γ0Zt−k + δ0|Zt−k|).

Plugging in this MA(∞) representation into (10), we obtain the equivalent sufficient condition

(11) E
[

log
(

max
{
β0, 2

−1 exp
(

2−1
∞∑
k=0

βk0 (γ0Z−k−1 + δ0 |Z−k−1|)
)

(γ0Z0 + δ0 |Z0|)− β0

})]
< 0.

Using the Monte Carlo algorithm and assuming that Z0 is N (0, 1)-distributed, we report in Figure
1 the largest values of β0 that satisfies the condition (10) on a grid of values of γ0 and δ0.

3. Strong consistency of the QMLE for continuously invertible models

3.1. Continuously invertible models. Assume that the observations follow the model (5) for an

unknown value θ0. Consider the inference of the QMLE θ̂n defined as θ̂n = argminθ∈ΘL̂n(θ) for

some compact set Θ and where L̂n is the QL criteria

2nL̂n(θ) =

n∑
t=1

l̂t(θ) =

n∑
t=1

log(`(ĝt(θ)) +X2
t /`(ĝt(θ)).

is based on the functional (observable) SRE of the form

ĝt+1(θ) = φt(ĝt(θ), θ), ∀t ≥ 1,∀θ ∈ Θ
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Figure 1. Perspective and contour plots of the domain for invertibility.

starting at an arbitrary initial value ĝ0(θ), for any θ ∈ Θ. If the conditions of invertibility (9) are
satisfied for (φt(·, θ)) for any θ ∈ Θ then the unique stationary solution (gt) exists and is defined by
the relation

(12) gt+1(θ) = φt(gt(θ), θ), ∀t ∈ Z, ∀θ ∈ Θ.

Assume from now that the random functions (x, θ)→ φt(x, θ) restricted on K×Θ take values in K
where K is some subset of R. Consider that the initial values ĝ0(θ) is a continuous function on Θ that
takes its values in K. Denote ‖ ·‖Θ the uniform norm and CΘ the space of continuous functions from
Θ to K. By a recursive argument, it is obvious that the random functions ĝt belong to CΘ for all t ≥ 0.

We are now ready to define the notion of continuous invertibility:

Definition 2. The model is continuously invertible on Θ iff ‖ĝt(θ)−gt(θ)‖Θ → 0 a.s. when t→∞.

This continuous invertibility notion is crucial for the strong consistency of the QMLE.

3.2. Strong consistency of the QMLE. Let us do another assumption of regularity and bound-
edness from below on the link function `:

(LB): The maps x→ 1/`(x) and log(`(x)) are Lipschitz functions on K and there exists m > 0
such that `(x) ≥ m for all x ∈ K.

Classically, we also assume the identifiability of the model

(ID): `(g0(θ)) = σ2
0 a.s. for some θ ∈ Θ iff θ = θ0.

The consistency of the QMLE follows from the continuous invertibility notion:

Theorem 1. Assume that (ST), (LB) and (ID) for a volatility model that is continuously invertible

on the compact set Θ. Then the QMLE is strongly consistent, θ̂n → θ0 a.s., when θ0 ∈ Θ.

Proof. First, note that from the continuous invertibility of the model the SRE (12) admits a sta-
tionary solution in E = CΘ that is a separable complete metric space equipped with the metric
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d(x, y) = ‖x− y‖Θ. Let us denote Φt the mapping acting on CΘ and satisfying

gt+1 = Φt(gt) iff gt+1(θ) = φt(gt(θ), θ), ∀θ ∈ Θ.

We will apply the principle of Letac [24] extended to the stationary sequences as in [31]: the existence
of a unique stationary solution which is non anticipative is ensured by the convergence a.s. of the
backward equation for any initial value g ∈ CΘ:

Zt(g) := Φ0 oΦ−1o · · · oΦ−t(g)→t→∞ Z

where Z does not depend on g. By stationarity, Zt(g) is distributed as ĝt when ĝ0 = g. Thus, we
have

P( lim
t→∞

‖Zt(g)− g0‖Θ = 0) = P( lim
t→∞

‖ĝt − gt‖Θ = 0)

where g0(θ) is well defined for each θ ∈ Θ as the solution of the SRE (12). Thus under continuous
invertibility, an application of Letac’s principle leads to the existence of a unique stationary solution
distributed denoted also (gt) that coincides with gt(θ) at any point θ ∈ Θ. In particular, g0 belongs
to CΘ thus is a continuous function on Θ.

Let us turn to the proof of the strong consistency based on standard arguments, see for example
the book of Francq and Zaköıan [16]. As the model satisfies the identifiability condition (ID), the
strong consistency follows the intermediate results

(a) limn→∞ supθ∈Θ |Ln(θ)− L̂n(θ)| = 0 a.s.
(b) E|`0(θ0)| <∞ and if θ 6= θ0 then E[`0(θ)] > E[`0(θ0)].
(c) Any θ 6= θ0 has a neighborhood V (θ) such that

lim inf
n→∞

inf
θ∗∈V (θ)

L̂n(θ∗) > E`t(θ0) a.s.

Let us prove that (a) is satisfied when the model is continuously invertible and (LB) condition
holds. As 1/` and log(`) are Lipschitz continuous functions there exists some constant C > 0 such
that

(13) |Ln(θ)− L̂n(θ)| ≤ C 1

n

n∑
t=1

|ĝt(θ)− gt(θ)|.

The desired convergence to 0 of the upper bound that is a Cesaro mean follows from the definition
of the continuous invertibility.

The first assertion of (b) follows from the identity

`0(θ0) = log(σ2
0) + Z2

0 .

Thus, as σ0 = `(g0(θ0)) ≥ m from (LB) and E log+ σ2
0 <∞ under (ST), we have that log(σ2

0) is in-
tegrable. Moreover, by assumption EZ2

0 = 1 and the assertion E|`0(θ0)| <∞ is proved. To prove the
second assertion, note that θ → E[`0(θ)] has a unique minimum iff E[σ2

0/`(g0(θ))− log(σ2
0/`(g0(θ))]

has a unique minimum. Under the identifiability condition, as x − log(x) ≥ 1 for all x > 0 with
equality iff x = 1, we deduce that for any θ 6= θ0 we have E[`0(θ)] > E[`0(θ0)].

Finally, let us prove (c) under continuous invertibility, (LB) and (ID). First, under continuous
invertibility, we have

lim inf
θ∗→θ

L̂n(θ∗) = lim inf
n→∞

inf
θ∗∈V (θ)

Ln(θ∗) + lim inf
n→∞

inf
θ∗∈V (θ)

L̂n(θ∗)− Ln(θ∗)

= lim inf
n→∞

inf
θ∗∈V (θ)

Ln(θ∗)
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by using the convergence to 0 of the Cesaro mean (13). Second, by ergodicity of the stationary
solution (gt) we have the ergodicity of the sequence (infθ∗∈V (θ) `t(θ

∗)). Moreover, under condition
(LB), we have that infθ∗∈V (θ) `t(θ

∗) ≥ log(m) > −∞ a.s. Then, for any K < 0, the sequence
infθ∗∈V (θ) `t(θ

∗) ∨K is integrable. We use the classical SLLN and obtain

lim
n→∞

inf
θ∗∈V (θ)

Ln(θ∗) ∨K = E
[

inf
θ∗∈V (θ)

`0(θ∗) ∨K
]

a.s.

Letting K → −∞ we obtain that

lim
n→∞

inf
θ∗∈V (θ)

Ln(θ∗) = E
[

inf
θ∗∈V (θ)

`0(θ∗)
]
∈ R ∪ {+∞}.

Finally, remark that by continuity of θ → gt(θ) the functions Ln are continuous. Thus, for any
ε > 0 we can find a neighborhood V (θ) such that

E
[

inf
θ∗∈V (θ)

`0(θ∗)
]
≥ E[`0(θ)] + ε.

From the second assertion of (b) ε > 0 can be chosen such that E[`0(θ)] + ε > E[`0(θ0)] and (c) is
proved. The end of the proof of the strong consistency is based on a classical compact argument
and thus is omitted. �

3.3. Sufficient conditions for continuous invertibility. The definition of continuous invertibil-
ity does not give any explicit condition. In order to apply Theorem 3.1 in [8], one classically assume
some uniform Lipschitz conditions on the SRE (12).

Consider some generic function f : K ×Θ 7→ K. Assume that there exists a continuous function
Λf on Θ such that for each x, y ∈ E we have

|f(x, θ)− f(y, θ)| ≤ Λf (θ)|x− y|.

The approach followed by Straumann and Mikosch in [31] is to consider the SRE (8) in the complete
metric space of continuous functions CΘ on Θ with values in K equipped with d(x, y) = ‖x − y‖Θ.
Sufficient conditions are the following ones

(14) E log+(‖φ0(y, ·)‖Θ) < ∞ for some y ∈ K, E log+(‖Λφ0
‖Θ) < ∞ and E log

(∥∥Λ
φ
(r)
0

∥∥
Θ

)
< 0.

The EGARCH(1,1) model satisfy this condition under restrictive assumptions on Θ, for example
when β0 = 0 see [30].

We introduce sufficient conditions for continuous invertibility collected in the assumption (CI)

(CI): E log+(‖φ0(y, ·)‖Θ) <∞ for some y ∈ K, E log+(‖Λφ0
‖Θ) <∞ and E log

(
Λ
φ
(r)
0

(θ)
)
< 0

for any θ ∈ Θ.

The difference with the conditions (14) is that the condition on the top Lyapunov exponent holds
now for any θ ∈ Θ. Of course it is implied by the uniform Lyapunov condition (14). When applied
to models such as EGARCH(1,1), this new sufficient condition of continuous invertibility (CI) is
satisfied as soon as the model is invertible on Θ.

Theorem 2. If (ST) and (CI) hold then the model is continuously invertible.

Proof. For any ρ > 0, let us write Λ
(r)
∗ (θ, ρ) = sup{Λ(r)

φ0
(θ∗), θ∗ ∈ B(θ, ρ)∩Θ}, where B(θ, ρ) stands

for the closed ball centered at θ with radius ρ. Note that for any K > 0 we have E[supΘ | log Λ
(r)
φ0

(θ)∨
K|] < ∞ because E[supΘ log+ Λ

(r)
φ0

(θ)] < ∞ under (CI). Applying the dominated convergence
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theorem we obtain limρ→0 E[log Λ
(r)
∗ (θ, ρ) ∨ K] = E[limρ→0 log Λ

(r)
∗ (θ, ρ) ∨ K]. By continuity we

have limρ→0 log Λ
(r)
∗ (θ, ρ) = log Λ

(r)
φ0

(θ) and for sufficiently small K < 0

lim
ρ→0

E[log Λ
(r)
∗ (θ, ρ) ∨K] = E[log Λ

(r)
φ0

(θ) ∨K] < 0.

Thus, there exists an ε > 0 such that

E[log Λ
(r)
∗ (θ, ε)] ≤ E[log Λ

(r)
∗ (θ, ε) ∨K] < 0.

Denote V(θ) the compact neighborhood B(θ, ε)∩Θ of θ. Let us now work on CV(θ), the complete
metric space of continuous functions from V(θ) to K equipped with the supremum norm ‖ · ‖V(θ).
In this setting (ĝt) satisfy a functional SRE ĝt+1 = Φ(ĝt) with Lipschitz coefficients satisfying

Λ(Φ
(r)
t ) ≤ sup

s1,s2∈C(V(θ))

‖Φ(r)
t (s1)− Φ

(r)
t (s2)‖V(θ)

‖s1 − s2‖V(θ)

≤ sup
s1,s2∈C(V(θ))

supθ∗∈V(θ) ‖φ
(r)
t (s1(θ∗), θ∗)− φ(r)

t (s2(θ∗), θ∗)‖
‖s1 − s2‖V(θ)

≤ sup
s1,s2∈C(V(θ))

supθ∗∈V(θ) Λ(φ
(r)
t (·, θ∗))‖s1(θ∗)− s2(θ∗)‖
‖s1 − s2‖V(θ)

≤ sup
s1,s2∈C(V(θ))

supθ∗∈V(θ) Λ(φ
(r)
t (·, θ∗))‖s1 − s2‖V(θ)

‖s1 − s2‖V(θ)
≤ Λ

(r)
∗ (θ, ε).

As E[log+(‖Φ0(y)‖V(θ))] ≤ E[log+(‖φ0(y, θ)‖Θ)] < ∞, E[log+(Λ(Φ0))] ≤ E[log+(‖Λφ0
(θ)‖Θ)] < ∞

under (CI) and E(log Λ(Φ
(r)
0 )) < 0 we can apply Theorem 3.1 of [8]. The unique stationary solution

(gt) exists and satisfies

(15) ‖ĝt − gt‖V(θ)
e.a.s.−−−→ 0.

Now, let us remark that Θ = ∪θ∈ΘV(θ). As Θ is a compact set, there exists a finite number N such
that Θ = ∪Nk=1V(θk) and we obtain

‖ĝt − gt‖V(θk)
e.a.s.−−−→ 0 ∀1 ≤ k ≤ N.

The desired result follows as ‖ · ‖Θ = ∨Nk=1‖ · ‖V(θk). �

3.4. Volatility forecasting. Based on the QMLE θ̂n we deduce a natural forecasting σ̂2
n = `(ĝt(θ̂n))

of the volatility θ̂n. It is strongly consistent:

Theorem 3. Assume that (ST), (LB), (ID) and (CI) hold for θ0 ∈ Θ. Then |σ̂2
n − σ2

n|
a.s.−−→ 0 as

n→∞.

Proof. Theorems 1 and 2 assert the strong consistency of θ̂n under the assumption of Theorem 3.

By continuity of ` and by uniform integrability, |`(ĝt(θ̂n)) − `(gt(θ̂n))| a.s.−−→ 0. Thus, by a similar

continuity argument on `, the result is proved if |gt(θ̂n) − gt(θ0)| a.s.−−→ 0. Keeping the notation

used in the proofs of Theorems 1 and 2, we have θ̂n ∈ V(θ0) for n sufficiently large. The Lyapunov

condition E[log Λ(Φ
(r)
0 )] < 0 is satisfied for the functional SRE (Φt) restricted on V(θ0). For any

θ ∈ V(θ0), t ∈ Z we have

|g(t+1)r(θ)− g(t+1)r(θ0)| ≤ Λ(Φ
(r)
t )|gt(θ)− gt(θ0)|+ wt(θ)



10 O. WINTENBERGER

where wt(θ) = |φt(gt(θ0), θ)− φt(gt(θ0), θ0)|. Thus |gt(θ)− gt(θ0)| is bounded by a linear SRE. An
application of the Borel-Cantelli Lemma as in [5, 31], the convergence of the series

‖gtr − gtr(θ0)‖V(θ0) ≤
∞∑
i=0

Λ(Φ
(r)
tr ) · · ·Λ(Φ

(r)
(t−i+1)r)‖w(t−i)r‖V(θ0) <∞

follows from the fact that Λ(Φ
(r)
tr ) · · ·Λ(Φ

(r)
(t−i+1)r)

e.a.s.−−−→ 0 when i→∞ and E log+ ‖wt−i‖V(θ0) <∞
Thus the difference |gtr(θ)− gtr(θ0)| is bounding by an a.s. normally convergent function on CV(θ0)

that we denote a(θ). Moreover, as limθ→θ0 wt(θ) = 0 for any t ∈ Z a.s., we also have limθ→θ0 at(θ) =

0 a.s. from the normal convergence. Finally, using the strong consistency of θ̂n, we obtain that

(16) |gt(θ̂n)− gt(θ0)| ≤ a(θ̂n)
a.s.−−→ 0 ∀n ≥ t when t→∞.

�

4. Strong consistency and IQMLE for the EGARCH(1, 1) model

4.1. Strong consistency of the QMLE. Recall that (Zt) be an iid sequence of r.v. such that
E(Z0) = 0 and E(Z2

0 ) = 1. The EGARCH(1, 1) model introduced by [27] is an AR(1) model for
log σ2

t ,
Xt = σtZt with log σ2

t = α0 + β0 log σ2
t−1 + γ0Zt + δ0|Zt|.

The volatilities process (σ2
t ) exists, is stationary and ergodic as soon as |β0| < 1 with no other

constraint on the coefficients. and (ST) holds. However, it does not necessarily have finite moment
of any order. The model is identifiable as soon as the distribution of Z0 is not concentrated on two
points, see [31]. Let us assume in the rest of the paper these classical conditions satisfied such that
(ST), (LB) and (ID) automatically hold.

The invertibility of the stationary solution of the EGARCH(1, 1) model does not hold in general.
Let us recall how the sufficient condition for invertibility is found in [30], see also [31]. Invertign the
model, we obtain the SRE

φt(x, θ) = α+ βx+ (γXt + δ|Xt|) exp(−x/2).

Under the constraint δ ≥ |γ| it is clear that γXt + δ|Xt| ≥ 0. By a straightforward monotonicity
argument, we can consider the restriction of the SRE on the set K × Θ where K = [α/(1 − β),∞)
and δ ≥ |γ| for any θ ∈ Θ. By regularity of φt, the Lipschitz coefficients are computed using the
first derivatives:

Λ(φt(·, θ)) ≤ max{β, 2−1(γXt + δ|Xt|) exp(−2−1α/(1− β))− β}.
This Lipschitz coefficient is continuous in θ and thus coincides with Λφt(θ). The assumption (CI)
is satisfied if INV(θ) is satisfied for any θ ∈ Θ as the condition of log moments are automatically
satisfied by continuity and because E[log+X0] <∞.

Remark that the domain of invertibility represented in Figure 1 does not coincide with the domain
of continuous invertibility, i.e. the set of θ ∈ R4 satisfying INV(θ) when (Xt) is the stationary
solution of the EGARCH(1,1) model for a fixed θ0 ∈ R4. This situation is more complicated to
represent as the domain INV(θ) depends on the fixed value θ0 and on the parameter α when θ 6= θ0.
However, for any θ0 in the invertibility domain represented in Figure 1 there exists some compact
neighborhood Θ of continuous invertibility. For the QMLE computed on such compact set Θ, an
application of Theorems 1, 2 and 3 gives directly

Theorem 4. If INV(θ) is satisfied for any θ ∈ Θ and θ0 ∈ Θ then θ̂n → θ0 and σ̂2
n − σ2

n → 0 a.s.

as n→∞ with σ̂2
n = exp(ĝn(θ̂n)) for any initial value σ̂2

0.
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Remark we extend the result of [30, 31] under the sufficient condition (14) that expresses in the
EGARCH(1,1) model as

E[sup
Θ

log(max{β, 2−1(γXt−1 + δ|Xt−1|) exp(−2−1α/(1− β))− β})] < 0.

This more restrictive condition is less explicit because of the supremum and thus difficult to check
when β 6= 0.

4.2. The Invertible QMLE (IQMLE). Notice that the procedure is valid only if the invertibil-
ity condition INV(θ) is satisfies for any θ ∈ Θ. We propose to optimize the QL criteria under the
empirical constraint

̂INV(θ): δ ≥ |γ| and
∑n
t=1 log(β, 2−1(γXt + δ|Xt|) exp(−2−1α/(1− β))− β) < 0.

Definition 3. The IQMLE is the M -estimator

θ̂cn = argminθ∈Θc

n∑
t=1

2−1
(
X2
t exp(−ĝt(θ)/2) + ĝt(θ)

)
where Θc = {θ ∈ Θ satisfying ̂INV(θ)} for any compact set Θ.

The following theorem gives the strong consistency of the IQMLE for the EGARCH(1,1) model
under continuous invertibility on Θ and θ0 ∈ Θ. It also shows that the volatility forecasting using
the IQMLE does not depend on the arbitrary choice of the initial value even when INV(θ0) is not
satisfied. Thus the IQMLE is more reliable than the QMLE for which chaotic behavior of the
volatility forecasting described in [29] can occur if INV(θ0) is not satisfied.

Theorem 5. If INV(θ) is satisfied for any θ ∈ Θ then θ̂cn
a.s.−−→ θ0. If INV(θ0) is not satisfied, the

asymptotic law of σ̂2
t = exp(ĝt(θ̂

c
n)) still does not depend on the initial value σ̂2

0.

Proof. Denote Λn(θ) = max{β, 2−1(γXn + δ|Xn|) exp(−2−1α/(1 − β)) − β}. We will prove that

‖n−1 log Λn(θ) − E log Λ0(θ)‖Θ
a.s.−−→ 0 as n → ∞. Then, if INV(θ) is satisfied for any θ ∈ Θ, Θc

coincides a.s. with Θ asymptotically. An application of Theorem 4 yields the strong consistency

of the IQMLE. The second assertion follows from the fact that asymptotically INV(θ̂cn) is satisfied
even if θ0 /∈ Θc.

Let us prove that ‖n−1 log Λn(θ)− E log Λ0(θ)‖Θ
a.s.−−→ 0 when β 6= 0 only. Notice that log Λn(θ)

is a random element in the Banach space C(Θ). The desired result is a consequence of the ergodic
theorem if E‖ log Λ0‖Θ <∞. Since

‖ log Λ0‖Θ ≤ max{‖ log |β|‖Θ, ‖ log |2−1(γX0 + δ|X0|) exp(−2−1α/(1− β))− β|‖Θ}
and Θ is a compact set, the desired result follows by continuity and the dominated convergence
theorem as E log |X0| = E log σ0 + E log |Z0| <∞. �

The advantage of the IQMLE θ̂cn is that the corresponding volatility forecasting is stable with
respect to the choice of the initial value, and that it is strongly consistent when the QMLE is strongly
consistent.

5. The asymptotic normality of the (I)QMLE in the EGARCH(1,1) model

In this section we extend the result of Theorem 5.7.9 of [30] to non-degenerate cases when β0 6= 0.
We obtain the asymptotic normality of the QMLE and IQMLE without assuming uniform moment
on the compact set Θ for the likelihood and its derivatives. However, we assume additionally that
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(MX): (σ2
t ) is geometrically ergodic.

It is the case if Z0 is nonsingular w.r.t. the Lebesgue measure on R, see [1]. Let us assume the finite
moments assumption

(MM): E[Z4
0 ] <∞ and E[(β0 − 2−1(γ0Z0 + δ0 |Z0|))2] < 1.

Theorem 6. Assume that assumptions of Theorem 4 are satisfied, that θ0 ∈
◦
Θ and that (MX) and

(MM) hold. Then
√
n(θ̂n − θ0)

d−→ N (0,Σ) and
√
n(θ̂cn − θ0)

d−→ N (0,Σ) where Σ is an invertible
matrix.

Proof. As the IQMLE is asymptotically equivalent to the QMLE under the assumptions of Theorem
4 we will prove the result only for this last estimator. We first prove that Assumption (MM) yields
the existence of the asymptotic variance

Σ = J−1IJ−1

with J = E[H`0(θ0)] and I = E[∇`0(θ0)∇`0(θ0)T ], where H`0(θ0) and ∇`0(θ0) are the Hessian

matrix and the gradient vector of `0 at the point θ0 ∈
◦
Θ.

Lemma 1. Under condition (MM) the moments Σ exist and form an invertible matrix.

The proof of this lemma is given in Section 6. Then we prove that the functions ĝt and gt are
two times continuously differentiable refining the arguments developed in [31]

Lemma 2. Under the assumptions of Theorem 4 the functions ĝt and gt are two times contin-

uously differentiable on a compact neighborhood V(θ0) of θ0 ∈
◦
Θ and ‖∇ĝt − ∇gt‖V(θ0) + ‖Hĝt −

Hgt‖V(θ0)
e.a.s.−−−→ 0.

The proof of this lemma is given in Section 6. The asymptotic normality follows from the Taylor
development used in Section 5 of Bardet and Wintenberger [2] on the partial derivatives ∇i of the
real valued function Ln:

∇iLn(θ̂n)−∇iLn(θ0) = HLn(θ̃n,i)(θ̂n − θ0) for all 1 ≤ i ≤ d.

Then the asymptotic normality follows from the following sufficient conditions:

(a) n−1/2∇Ln(θ0)→ N (0, I),

(b) ‖n−1HLn(θ̃n)− J‖ P−→ 0 for any sequence (θ̃n) converging a.s. to θ0 and J is invertible,

(c) n−1/2‖∇L̂n(θ̂n)−∇Ln(θ̂n)‖ converges a.s. to 0.

Note that

∇Ln(θ0) =

n∑
i=t

4−1∇gt(θ0)(1− Z2
t )

is a martingale as ∇gt(θ0) is independent of Zt for all t ≥ 1 and E[1 − Z2
t )] = 0 by assumption.

Under (MM), this martingale has finite moments of order 2 due to Lemma 1. An application of
the CLT for differences of martingales of [6] yields (a).

The following Lemma is used to prove (b) without uniform moment assumption on the compact
set Θ for the likelihood and its derivatives

Lemma 3. Under the assumptions of Theorem 6 we have ‖HLn(θ̃n) − HLn(θ0)‖ a.s.−−→ 0 for any

sequence (θ̃n) converging a.s. to θ0 when n→∞.
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The proof of this lemma is given in Section 6. To prove that ‖n−1HLn(θ̃n) − J‖ a.s.−−→ 0, us-

ing hte result of Lemma 3 it is sufficient to prove that ‖n−1HLn(θ0) − J‖ a.s.−−→ 0. An appli-
cation of the ergodic Theorem on the process (Hlt(θ0)) that is integrable under (MM) yields

‖n−1HLn(θ̃n)− J‖ a.s.−−→ 0. Thus the first assertion of (b) is proved. The fact that J is an invertible
matrix is already known, see Lemma 1.

Finally (c) is obtained by using the exponential decrease of the approximation given in (15) and
(??) uniformly on some compact neighborhood V of θ0 and the identity

∇Ln =

n∑
i=t

4−1∇gt(1−X2
t exp(−gt)).

Note that we use again the fact that exp(−x) is a Lipschitz function on [c,∞). �

6. Proofs of the technical lemmas

6.1. Proof of Lemma 1. Let us denote Ut = (1, log σ2
t , Zt, |Zt|) and Vt = β0− 2−1(γ0Zt + δ0 |Zt|).

Then (∇gt(θ0)) is the solution of the linear SRE

∇gt+1(θ0) = Ut + Vt∇gt(θ0), ∀t ∈ Z.
Let us consider the process Yt = (∇gt(θ0), log(σ2

t ))′ ∈ R5. It satisfies the relation

Yt+1 =


Vt 0 0 0 0
0 Vt 0 0 1
0 0 Vt 0 0
0 0 0 Vt 0
0 0 0 0 β0

Yt +


1
0
Zt
|Zt|

α0 + γ0Zt + δ0|Zt|

 =: ΓtYt +Rt, ∀t ∈ Z.

Thus (Yt) is a random coefficients autoregressive model satisfying the assumptions of Theorem 4 (a)
of [34] iff EV 2

t < 1. By a direct application of the Theorem 4 (a) of [34] we obtain that the process
(Yt) is second order stationary and thus the existence of the matrix B = E[∇gt(θ0)(∇gt(θ0))T ].

Let us prove that B is invertible. By classical arguments, it is sufficient to prove that the com-
ponents of the vector ∇g0(θ0) are linearly independent. It is the case in the AGARCH(1,1) model
as soon as the density of Z0 is not concentrated on two points, se Lemma 8.2 of [31]. Thus B is an
invertible matrix.

Finally, we have the identity I = 2−1B as

I = 2−1E
[
(∇gt(θ0)(∇gt(θ0))TZ2

0 + Hgt(θ0)(1− Z2
0 )
]

= 2−1E[∇gt(θ0)(∇gt(θ0))T ] = 2−1B.

We also have the identity J = 4−1(EZ4
0 − 1)B because

J = E
[
4−1E

[
∇gt(θ0)(∇gt(θ0))T (1− Z2

t )
2
]
|Ft−1

]
= 4−1E[(1− Z2

0)2]E[∇gt(θ0)(∇gt(θ0))T ] = 4−1(EZ4
0 − 1)B.

Thus by definition Σ = (EZ4
0 − 1)B−1 exists and is an invertible matrix. The lemma is proved.

6.2. Proof of Lemma 2. The proof of the existence of the derivatives of the process (gt) requires
a refinement of Theorem 3.1 of [8]. We give this new result in full generality when the SRE is on a
Polish space (E, d). A map f : E → E is a Lipschitz map if Λ(f) = sup(x,y)∈E2 d(f(x), f(y))/d(x, y)

is finite. Note that the proof of the existence of the stationary solution is due to Elton [13]. That
the approximation scheme is e.a.s. convergent is due to Bougerol [8]. Both results hold under the
assumption that the Lipschitz coefficients have a finite log-moment of order 1. Here we assume
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additionally a finite log-moment of order p > 2 and a strongly mixing condition with geometric
rate to assert some regularity on the solution of the SRE. The regularity property we study is the
following one: let (Yt)t≥0 be a sequence of non negative r.v.

(EAS): For any non negative sequence Wt
e.a.s.−−−→ 0 the series (WtYt) converges a.s.

Remark that (EAS) is implied for stationary sequences by a condition of log-moment of order 1
as in [8] by an application of the Borel Cantelli Lemma as in [5, 31]. More generally, the same
reasoning yields that (EAS) is satisfied for any sequence (Yt) such as the series (P(Yt ≥ ρt)) =
(P (log+ Yt ≥ tε)) is convergent for any 0 < ρ < 1 and ε > 0. It is also satisfied for any solution of
a convergent SRE:

Theorem 7. Let (Ψt) be a stationary ergodic sequence of Lipschitz maps from E to E that is also
strongly mixing with geometric rate. Assume that (d(Ψt(x), x)) satisfies (EAS) for some x ∈ E,
E[(log+ Λ(Ψ0))p] <∞ for some p > 2 and

(17) E[log Λ(Ψ
(r)
0 )] = E[log Λ(Ψ0 ◦ · · · ◦Ψ−r+1)] < 0 for some r ≥ 1.

Then the SRE Yt+1 = Ψt(Yt) for all t ∈ Z is convergent: it admits a unique stationary solution
(Yt)t∈Z which is ergodic and for any y ∈ E

Yt = lim
m→∞

Ψt ◦ · · · ◦Ψt−m(y), t ∈ Z.

The Yt are measurable with respect to the σ(Ψt−k, k ≥ 0) and

d(Ŷt, Yt)
e.a.s.−−−→ 0, t→∞

for (Ỹt) satisfying Ỹt+1 = Ψt(Ŷt) for all t > 0 and Ŷ0 = y for any y ∈ E. Moreover d(Yt, y) satisfies
(EAS) for any y ∈ E.

Proof. A careful look at the proof of Theorem 3.1 of [8] shows that the condition E[log+ d(Ψ0(x), x)] <
∞ is only used to assert (EAS) on (d(Ψt(x), x)). Thus we only prove the last assertion as the other
ones follows from the proof of Theorem 3.1 of [8].

First notice that (d(Ŷt, Yt)) satisfies (EAS) because d(Ŷt, Yt)
e.a.s.−−−→ 0. Let us show that d(Ŷt, y)

satisfies (EAS) when Ŷ0 = y. Fix K < 0 such that E[log Λ(Ψ
(r)
0 ) ∨K] ≤ log a for some 0 < a < 1.

Then

d(Ŷt, y) ≤
t∑

j=1

d(Ŷj , Ŷj−1) ≤
t∑

j=1

Λ(Ψ
(j−1)
j )d(Ψ1(y), y) ≤

sup1≤j≤t Λ(Ψ
(j−1)
j )a−j/r

1− a1/r
d(Ψ1(y), y).

Let us prove that sup1≤j≤t Λ(Ψ
(j−1)
j )a−j/r satisfies (EAS). It is implied by the Borel-Cantelli

Lemma from the convergence of the series(
P
(

sup
1≤j≤t

log Λ(Ψ
(j−1)
j )− j log(a1/r) ≥ tε

))
.

By subadditivity, assuming that t/r ∈ N for convenience, we have

P( sup
1≤j≤t

log Λ(Ψ
(j−1)
j )− j log(a1/r) ≥ tε) ≤ P

(
sup

1≤j≤t/r

t/r∑
j=1

log Λ(Ψ
(r)
jr )− t

r
log(a) ≥ tε

)
.

This series is convergent by an application of Theorem 1 in [28] as log(Λ(Ψt)) has a finite moment
of order p > 2 and is strongly mixing with geometric rate. Finally, for any non negative sequence

Wt
e.a.s.−−−→ 0 we have that the series (Wt sup1≤j≤t Λ(Ψ

(j−1)
j )a−j/r) is convergent and the desired

result follows. �
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We are now ready to state the following refinement of the theorem 2.10 of [31] used to prove that
the functions ĝt and gt are two times continuously differentiable in a neighborhood of θ0:

Theorem 8. Let B be a separable Banach space and (Ψt) be a stationary ergodic sequence of
Lipschitz maps from B into B that is strongly mixing with geometric rate. Assume that

S: (‖Ψt(0)‖) satisfies (EAS), E[(log+ Λ(Ψ0))p] < ∞ for some p > 2 and E[log Λ(Ψ
(r)
0 )] < 0

for some r ≥ 1.

Let (Ψ̂t)t∈N be a sequence of Lipschitz maps such that

S’: ‖Ψ̂t(0)−Ψt(0)‖ e.a.s.−−−→ 0 and Λ(Ψ̂t −Ψt)
e.a.s.−−−→ 0 as t→∞.

Then the unique stationary solution Yt of the SRE Yt+1 = Ψt(Yt) for all t ∈ Z exists, (‖Yt‖) satisfies

(EAS) and for every solution (Ŷt)t∈N of the perturbed SRE Ŷt+1 = Ψ̂t(Ŷt) for all t ≥ 1, one has

that ‖Ŷt − Yt‖
e.a.s.−−−→ 0.

Proof of Theorem 8. We assume the same conditions than in the theorem 2.10 of [31] except
that the conditions E[log+ ‖Ψ0(0)‖] < ∞ and E[log+ ‖Y0‖] < ∞ do not hold. A careful look at
the proof of Theorem 2.10 in [31] shows that these conditions are assumed such that the series
(Wt‖Ψt(0)‖) and (Wt‖Yt‖) are convergent. The first series is convergent by assumption, the second
one is convergent as (‖Yt‖) satisfies (EAS) from the last assertion of Theorem 7. �

Let us come back to the proof of Lemma 2. First note that as (σ2
t ) is strongly mixing with

geometric rate it is also the case of the process

(φt(x, θ)) = (α+ βx+ (γXt + δ|Xt|) exp(−x/2)).

Deriving the SRE (3), we obtain new linear SREs satisfied by the first derivates of ĝt:

(18) ∇ĝt+1(θ) = φ′t(ĝt(θ), θ)∇ĝt(θ) +∇θφt(ĝt(θ), θ) ∀t ≥ 0

where

φ′t(x, θ) = β − 2−1(γXt + δ|Xt|) exp(−x/2),

∇θφt(x, θ) = (1, x,Xt exp(−x/2), |Xt| exp(−x/2))′.

Note that both functions φ′t(x, θ) and ∇θφt(x, θ) are continuous in (x, θ). Under (CI), we assert

from an application of Theorem 2 that there exists a compact neighborhood V(θ0) ⊂
◦
Θ of θ0 such

that E[log ‖Λ(φ
(r)
0 )‖V(θ0)] < 0 for some r ≥ 1. The SRE (18) can be written as a linear perturbed

SRE ∇ĝt+1 = Φ̂′t(∇ĝt) on the Banach space of continuous functions on V(θ0). The sequence (Φ̂′t) is
not stationary but it is well approximated by the stationary sequences (Φ′t) defined as, for all t ≥ 0:

Φ′t(h) := φ′t(gt, ·)h+∇θφt(gt, ·).

We will apply Theorem 8 on the SREs driven by (Φ̂′t) and (Φ′t) to assert the existence of
the firs derivatives (∇gt). Let us first check the conditions S of Theorem 8 on Φ′t. The series
(‖Φ′t(0)‖V(θ0)) = (‖∇θφt(gt, ·)‖V(θ0)) satisfies (EAS) from E log+ |Xt| <∞ and because (‖ĝt‖V(θ0))
satisfies (EAS) by an application of Theorem 7 on (gt). By definition of V(θ0), as φ′t(x, θ) ≤ Λ(φ0, θ),
the last two conditions of S are implied by the continuous invertibility of the model and by the fact
that E(log+X0)p <∞ for p = 8 as EZ4

0 <∞.

Let us check Assumption S’ of the theorem 8 on Φ̂′t − Φ′t. As φt is two times continuously
differentiable, we have

‖Φ′t(0)− Φ̂′t(0)‖ = ‖∇θφt(gt, ·)−∇θφt(ĝt, ·)‖V(θ0) ≤
∥∥∥ sup
x≥c
∇θφ′t

∥∥∥
V(θ0)

‖gt − ĝt‖V(θ0)
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where ∇θφ′t(x, θ) = (0, 1, Xt/2 exp(−x/2), |Xt|/2 exp(−x/2))′ and c := minV(θ0) α/(1− β). Remark

that E[log+ ‖ supx≥c∇θφ′t‖V(θ0)] <∞ because E[log+ |Xt|] <∞. Thus

∞∑
t=0

P
(∥∥∥ sup

x≥c
∇θφt

∥∥∥
V(θ0)

≥ ρ−t
)
<∞

for any ρ > 1 and then ‖Φ′t(0) − Φ̂′t(0)‖ e.a.s.−−−→ 0 by an application of the Borel-Cantelli Lemma

because ‖gt − ĝt‖V(θ0)
e.a.s.−−−→ 0.

To check the second condition of S’, we remark that as φt is two times continuously differentiable,
we also have

Λ(Φ′t − Φ̂′t) ≤ ‖φ′t(ĝt, ·)− φ′t(gt, ·)‖V(θ0) ≤ ‖ sup
x≥c

φ′′t ‖V(θ0)‖gt − ĝt‖V(θ0)

where φ′′t (x, θ) = 4−1(γXt + δ|Xt|) exp(−x/2). That ‖Φ′t(0) − Φ̂′t(0)‖ e.a.s.−−−→ 0 follows again by an

application of the Borel-Cantelli Lemma as ‖gt − ĝt‖V(θ0)
e.a.s.−−−→ 0 and

∑∞
t=0 P(‖ supx≥c φ

′′
t ‖V(θ0) ≥

ρ−t) <∞ because E[log+ ‖ supx≥c φ
′′
t ‖V(θ0)] <∞ due to E[log+ |Xt|] <∞. An application of The-

orem 8 yields to the existence of the stationary solution (∇gt) of the SRE driven by (Φ′t) such that
(‖∇gt‖V(θ0)) satisfies (EAS).

Deriving a second time and keeping the same notation than above we obtain another linear SRE
satisfied by (Hĝt+1(θ)) for any 1 ≤ i, j ≤ d

(19) Hĝt+1(θ) = φ′t(ĝt(θ), θ)Hĝt(θ) + φ′′t (ĝt(θ), θ)∇ĝt(θ)∇ĝt(θ)T

+∇θφ′t(ĝt(θ), θ)∇ĝt(θ)T +∇ĝt(θ)∇θφ′t(ĝt(θ), θ)T + Hθφt(ĝt(θ), θ).

For the EGARCH(1,1) model Hθφt(x, θ) is identically null. Thus we consider the perturbed SRE

Φ̂′′t (h) := φ′′t (ĝt, ·)h+ φ′′t (ĝt, ·)∇ĝt∇gTt +∇θφ′t(ĝt, ·)∇gTt +∇ĝt∇θφ′t(ĝt, ·)T .

We can apply Theorem 8 on this perturbed SRE and the corresponding stationary SRE

Φ′′t (h) := φ′′t (gt, ·)h+ φ′′t (gt, ·)∇gt∇gTt +∇θφ′t(gt, ·)∇gTt +∇gt∇θφ′t(gt, ·)T .

The details of the proof are omitted as they are similar than those use above for the first derivative.
Note that (‖∇gt‖V(θ0)) satisfies (EAS) is required to apply Theorems 7 and 8 in order that the first
condition in S is satisfied for Φ′′t (0) as it is a function of ∇gt for any t ≥ 1.

6.3. Proof of Lemma 3. Let us fix V(θ0) as in the proof of Lemma 2 such that gt is two times
continuously invertible on V(θ0) and such that the uniform log moments on the derivatives exist.

Because ‖θ̃t − θ0‖
a.s.−−→ 0 there exists some random integer M ≥ 1 such that θ̃t ∈ V(θ0) for any

t ≥M . Consider the SRE

∇gt+1(θ) = φ′t(gt(θ), θ)∇gt(θ) +∇θφt(gt(θ), θ) ∀t ∈ Z

where

φ′t(x, θ) = β − 2−1(γZt + δ|Zt|) exp(−(x− gt(θ0))/2),

∇θφt(x, θ) = (1, x, Zt exp(−(x− gt(θ0))/2), |Zt| exp(−(x− gt(θ0))/2))′.

As x → exp(−x/2) is a Lipschitz continuous function for x ≥ c, as V(θ0) is a compact set there
exists some C > 0 such that for all x ∈ K, all θ ∈ V(θ0) we have

|φ′t(x, θ)− φ′t(gt(θ0), θ0)|+ ‖∇θφt(x, θ)−∇θφt(gt(θ0), θ0)‖ ≤ C|Zt|(‖θ − θ0‖+ |x− gt(θ0)|).
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Thus, for any n ≥ t ≥M , denoting vt(θ̃n) = ‖∇gt+1(θ̂n)−∇gt+1(θ0)‖ we obtain

vt+1(θ̃n) ≤|φ′t(gt(θ0), θ0)|vt(θ̃n)|+ ‖∇gt(θ̂n)‖|φ′t(gt(θ0), θ0)− φ′t(ĝt(θ̂n), θ̂n)|

+ ‖∇θφt(ĝt(θ̂n), θ̂n)−∇θφt(gt(θ0), θ0)‖

≤|φ′t(gt(θ0), θ0)|vt(θ̃n) + (‖∇gt‖V(θ0) + 1)C|Zt|(‖θ̃n − θ0‖+ |gt(θ̃n)− gt(θ0)|).
By a recursive argument, we obtain for all n ≥ t ≥M

vt(θ̃n) ≤
t−1∑
j=M

t−1∏
i=j+1

|φ′i(gi(θ0), θ0)|(‖∇gt‖V(θ0) + 1)C|Zt|(‖θ̃n − θ0‖+ |gt(θ̃n)− gt(θ0)|)

+

t−1∏
i=M

|φ′i(gi(θ0), θ0)|vM .

That
∏t−1
i=j+1 |φ′i(gi(θ0), θ0)| e.a.s.−−−→ 0 follows from the assumption (MM) Eφ′i(gi(θ0), θ0)2 < 1 and

by using the subadditive ergodic theorem of [22] on the logarithms. Thus the last term of the sum

converges e.a.s to 0 and the corresponding Cesaro mean cn = n−1
∑n
t=M

∏t−1
i=M |φ′i(gi(θ0), θ0)|vM

also converges e.a.s. to 0.

Let us treat the term
t−1∑
j=M

t−1∏
i=j+1

|φ′i(gi(θ0), θ0)|(‖∇gt‖V(θ0) + 1)C|Zt|‖θ̃n − θ0‖.

It is a.s. smaller than

‖θ̃n − θ0‖
∞∑
j=M

t−1∏
i=j+1

|φ′i(gi(θ0), θ0)|(‖∇gt‖V(θ0) + 1)C|Zt|.

Indeed, this series is a.s. convergent because (‖∇gt‖V(θ0)) satisfies (EAS) from Theorem 8. Thus
we obtain that there exist some random variable a > 0 such that

n−1
n∑

t=M

t−1∑
j=M

t−1∏
i=j+1

|φ′i(gi(θ0), θ0)|(‖∇gt‖V(θ0) + 1)C|Zt|‖θ̃n − θ0‖ ≤ a‖θ̃n − θ0‖.

Finally, the reminding term of the upper bound is

t−1∑
j=M

t−1∏
i=j+1

|φ′i(gi(θ0), θ0)|(‖∇gt‖V(θ0) + 1)C|Zt||gt(θ̃n)− gt(θ0)|.

We treat it as in the proof of Theorem 3. Indeed, its uniform norm converges a.s. by an application
of similar arguments than above. Thus there exists a random continuous function b satisfying
b(θ0) = 0 and

n−1
n∑

t=M

t−1∑
j=M

t−1∏
i=j+1

|φ′i(gi(θ0), θ0)|(‖∇gt‖V(θ0) + 1)C|Zt||gt(θ̃n)− gt(θ0)|

≤
∞∑
j=M

t−1∏
i=j+1

|φ′i(gi(θ0), θ0)|(‖∇gt‖V(θ0) + 1)C|Zt||gt(θ̃n)− gt(θ0)|

≤ b(θ̃n).
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Finally we obtain that n−1
∑n
t=M vt(θ̃n) ≤ a‖θ̃n − θ0‖ + b(θ̃n) + cn. Using this bound and the

SRE satisfied by the differences Hgt(θ̃n)−Hgt(θ0) we obtain following similar reasoning that

1

n

n∑
t=M

‖Hgt(θ̃n)−Hgt(θ0)‖ ≤ a′‖θ̃n − θ0‖+ b′(θ̃n) + c′n,

where a′ is a positive r.v., b′ is a random continuous function satisfying b′(θ0) = 0 and c′n
e.a.s.−−−→ 0.

We then conclude that for any possible value of M we have that

(20) n−1
n∑

t=M

‖Hgt(θ̃n)−Hgt(θ0)‖ a.s.−−→ 0.

Let us fix δ > 0. It remains to estimate

P
(

lim
n→∞

1

n

M∑
t=1

‖Hgt(θ̃n)−Hgt(θ0)‖ = 0
)

=
∞∑
k=1

P
(

lim
n→∞

1

n

k∑
t=1

‖Hgt(θ̃n)−Hgt(θ0)‖ = 0
)
P(M = k).

By continuity of the second derivative Hgt we have that Hgt(θ̃n) → Hgt(θ0) a.s. We deduce that
for any k ≥ 1 we have

P
(

lim
n→∞

1

n

k∑
t=1

‖Hgt(θ̃n)−Hgt(θ0)‖ = 0
)

= 1.

The desired result follows easily.
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