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Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypical trait

Introduction

Setting of the problem

In this paper we are interested in propagation phenomena for nonlocal reaction-diffusion equations of the form ∂ t n(t, x, y)-∆ x,y n(t, x, y) = r(y -Bx • e) -R k(y -Bx • e, y ′ -Bx • e)n(t, x, y ′ ) dy ′ n(t, x, y), [START_REF] Alfaro | Rapid travelling waves in the nonlocal Fisher equation connect two unstable states[END_REF] where (x, y) ∈ R d × R, e ∈ S d-1 , B ≥ 0, r : R → R and k : R 2 → R + .

Such equations have appeared in some population dynamic models, see [START_REF] Peck | Explaining the geographic distributions of sexual and asexual populations[END_REF], [START_REF] Prevost | Applications of partial differential equations and their numerical simulations of population dynamics[END_REF], [START_REF] Polechová | Speciation through competition: a critical review[END_REF], [START_REF] Mirrahimi | Population structured by a space variable and a phenotypical trait[END_REF]. In this context, n(t, x, y) denotes a density of population structured by a spatial variable x ∈ R d and by a phenotypical trait y ∈ R. The population is then submitted to four essential processes: spatial dispersion, mutations, growth and competition. The spatial dispersion and the mutations are modelled by diffusion operators. The growth rate of the population at a location x and trait y is given -for all times t-by r(y -Bx • e), where r is typically negative outside a bounded interval. This corresponds to a population living in an environmental cline: to survive at the location x, an individual must have a trait close to y = Bx • e. Therefore, to be able to invade the environment, the population needs to evolve. Finally, we consider a logistic regulation of the population density that is local in the spatial variable and nonlocal in the trait. In other words, we consider that there exists an intra-specific competition (for e.g. food) at each location, which may depend on the traits of the competitors. For a rigorous derivation of this model from individual based models, we refer to [START_REF] Champagnat | Invasion and adaptive evolution for individual-based spatially structured populations[END_REF]. In Section 2, we will discuss in more details the biological aspects of our work.

The existence of global solutions for the Cauchy problem and of non trivial steady states for (1) have been investigated respectively in [START_REF] Prevost | Applications of partial differential equations and their numerical simulations of population dynamics[END_REF] and [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF]. Also, numerical simulations (see e.g. [START_REF] Peck | Explaining the geographic distributions of sexual and asexual populations[END_REF], [START_REF] Prevost | Applications of partial differential equations and their numerical simulations of population dynamics[END_REF], [START_REF] Polechová | Speciation through competition: a critical review[END_REF]) show that the population can either go extinct, or propagate while adapting to local environments.

The aim of this work is to analyze this propagation phenomena through the study of travelling front solutions. The travelling front solutions are particular solution of [START_REF] Alfaro | Rapid travelling waves in the nonlocal Fisher equation connect two unstable states[END_REF] describing the transition at a constant speed c from one stationary solution to another one. Such solutions have proved in numerous situations their utility in describing the dynamics of a population modelled by a reaction diffusion equation. In the case of the classical Fisher-KPP equation

∂ t n -∆n = (1 -n) n, (2) 
we refer among others to [START_REF] Fisher | The wave of advance of advantageous genes[END_REF], [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], [3] [43]: there exists planar fronts φ(x.e -ct) connecting 0 to 1, for all speed c ≥ c * = √ 2. Moreover, the minimal speed of the front c * corresponds to the so called spreading speed of propagation. Travelling front solutions in heterogeneous versions of [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF] with periodicity in space, in time, or more general media are studied in [START_REF] Berestycki | Travelling fronts in cylinders[END_REF], [START_REF] Hudson | Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media[END_REF], [START_REF] Xin | Front propagation in heterogeneous media[END_REF], [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF], [START_REF] Berestycki | Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts[END_REF], [START_REF] Nadin | Traveling fronts in space-time periodic media[END_REF], [START_REF] Nolen | Traveling waves in a one-dimensional heterogeneous medium[END_REF]. Nonlocal versions of [START_REF] Arnold | Existence of nontrivial steady states for populations structured with respect to space and a continuous trait[END_REF] where the Laplace operator is replaced by a nonlocal operator are studied in [START_REF] Coville | On a non-local reaction diffusion equation arising in population dynamics[END_REF], [START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and KPP nonlinearity[END_REF], [START_REF] Shen | Traveling wave solutions of spatially periodic nonlocal monostable equations[END_REF]. For very general reaction diffusion equations, we refer to [START_REF] Berestycki | Generalized transition waves and their properties[END_REF] for a definition of generalized transition waves and their properties.

It is worth noticing that when the competition term is replaced by a local (in x and y) density regulation, equation [START_REF] Alfaro | Rapid travelling waves in the nonlocal Fisher equation connect two unstable states[END_REF] becomes the following heterogeneous reaction diffusion equation ∂ t n(t, x, y) -∆ x,y n(t, x, y) = (r(y -Bx • e) -h(y -Bx • e)n(t, x, y)) n(t, x, y),

which was recently investigated by Berestycki and Chapuisat [START_REF] Berestycki | Traveling fronts guided by the environment for reactiondiffusion equations[END_REF]: they prove the existence of a critical speed c * , for which there exists a travelling front of (3) for any speed c ≥ c * . As far as nonlocal equations of the form (1) are concerned, far less seems to be known in the literature. The travelling wave analysis has been done either using a formal Hamilton-Jacobi approach [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF] for a model close to [START_REF] Alfaro | Rapid travelling waves in the nonlocal Fisher equation connect two unstable states[END_REF], or for a population structured by one variable only, that is n = n(t, x), submitted to a nonlocal competition [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF]. To our knowledge, there is no result on the existence of travelling waves for (1) and related models.

Assumptions and main results

As suggested by the numerical simulations mentioned above, we expect that during an invasion, the population adapts locally to the environmental gradient. To observe travelling waves of (1), we therefore perform the change of variable

ñ(t, x, z) = n(t, x, z + Bx • e). (4) 
Then ( 1) is recast as

∂ t ñ(t, x, z) -Ẽ(ñ)(t, x, z) = r(z) - R k(z, z ′ )ñ(t, x, z ′ ) dz ′ ñ(t, x, z), (5) 
where

Ẽ(ñ) := ∆ x ñ+ B 2 + 1 ñzz -2B∂ z (∇ x ñ•e).
Since (1) is invariant under any rotation in R d , without loss of generality we can assume that e = e 1 so that

Ẽ(ñ) = ∆ x ñ+ B 2 + 1 ñzz -2B∂ x1z ñ.
This operator is elliptic, since the associated matrix has only positive eigenvalues. Looking after travelling wave solutions, we search a speed c and a profile u(x, z) such that ñ(t, x, z) := u(x • e 1 -ct, z) = u(x 1 -ct, z) solves [START_REF] Berestycki | Traveling fronts guided by the environment for reactiondiffusion equations[END_REF]. For convenience, we drop the numerical subscript and write x instead of x 1 . Hence, we are looking after (c, u(x, z)) such that

-E(u)(x, z) -cu x (x, z) = r(z) - R k(z, z ′ )u(x, z ′ ) dz ′ u(x, z) in R 2 , (6) 
where

E(u) := u xx + (B 2 + 1)u zz -2Bu xz .
Throughout the paper, we make the following assumption.

Assumption 1.1 (Structure of r and k) Function r is in the Hölder space C 0,θ loc (R) for some 0 < θ < 1, and there is δ > 0 such that

∀z ∈ R, r(z) ≤ 1 δ -δz 2 . ( 7 
)
Function k is in the Hölder space C 0,θ loc (R 2 ) and there are k -> 0, k + > 0 such that

∀(z, z ′ ) ∈ R 2 , k -≤ k(z, z ′ ) ≤ k + .
Let us next introduce a principal eigenvalue problem that is necessary to enunciate our main result. For more details on principal eigenvalue problems in general domains we refer to [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF], [START_REF] Berestycki | On the principal eigenvalue of elliptic operators in R N and applications[END_REF] and the references therein.

Definition 1.2 (Principal eigenvalue problem) We denote by λ 0 ∞ , Γ 0 ∞ ∈ R × C ∞ (R) the solution of the principal eigenvalue problem -B 2 + 1 ∆ z Γ 0 ∞ (z) -r(z)Γ 0 ∞ (z) = λ 0 ∞ Γ 0 ∞ (z) for all z ∈ R Γ 0 ∞ (z) > 0 for all z ∈ R, Γ 0 ∞ (0) = 1. (8) 
Observe that in the case where

r(z) = 1 -Az 2 , A > 0, we have λ 0 ∞ = A (B 2 + 1) -1 and Γ 0 ∞ (z) = exp - A B 2 +1 z 2 2 is a Gaussian profile.
We first state that as soon as λ 0 ∞ > 0, extinction of the population occurs.

Proposition 1.3 (Extinction) Assume λ 0 ∞ > 0.
For any initial population n 0 such that

n 0 (x, y) Γ 0 ∞ (y -Bx) L ∞ (R 2 )
< ∞, the solution of (1) with initial condition n 0 goes extinct exponentially fast as t → ∞:

n(t, x, y) Γ 0 ∞ (y -Bx) L ∞ (R 2 ) = O(e -λ 0 ∞ t ).
Next, we state our main result: as soon as λ 0 ∞ < 0, invasion waves exist. Precisely, the following holds.

Theorem 1.4 (Travelling waves) Assume λ 0 ∞ < 0 and define

c * := 2 -λ 0 ∞ B 2 + 1 . ( 9 
)
Then the following holds.

(i) For all c ≥ c * , there exists a positive u ∈ C 2 (R 2 ) solution of

-E(u)(x, z) -cu x (x, z) = r(z) - R k(z, z ′ )u(x, z ′ ) dz ′ u(x, z) in R 2 , ( 10 
)
with ν1 {(x,z)∈(-∞,0]×[-ν,ν]} ≤ u(x, z) ≤ Ce -Kz 2 , (11) 
for some ν > 0, C > 0, K > 0, and

u(x, •) ∞ → x→+∞ 0, R u(x, z) dz → x→+∞ 0. (12) 
Additionally, when c > c * , there exists µ < 0 such that

u(x, z) ≤ e µ √ B 2 +1 x+ B √ B 2 +1 z Γ 0 ∞ (z). (13) 
(ii) When 0 ≤ c < c * , there is no positive solution of (10) such that lim inf x→+∞ u(x, 0) = 0 and u(x, z) ≤ ψ(z) for some ψ ∈ L 1 (R).

Comments

On the extinction case. The proof of Proposition 1.3 is elementary and we now give the proof.

The result is a consequence of the parabolic comparison principle satisfied by the local equation

∂ t φ(t, x, y) -∆ x,y φ(t, x, y) = r(y -Bx.e)φ(t, x, y). (14) 
Indeed, one can check that M e -λ 0 ∞ t Γ 0 ∞ (y -Bx.e) and n(t, x, y) are respectively a super-and a sub-solution of ( 14) with ordered initial data (for M large enough).

On the construction of waves. Let us first comment on a major difficulty in the construction of travelling fronts. When the competition term is replaced by a local (in x and y) density regulation, many techniques based on the comparison principle -such as some monotone iterative schemes or the sliding method [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF]-can be used to get a priori bounds, existence and monotonicity properties of the solution. Since integro-differential equations with a nonlocal competition term do not satisfy the comparison principle, it is unlikely that such techniques apply here.

It turns out that the considered problem here has some similarities with the case of a population structured by a spatial variable only, that is n = n(t, x), submitted to a nonlocal competition as studied in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF] (see also [START_REF] Alfaro | Rapid travelling waves in the nonlocal Fisher equation connect two unstable states[END_REF]). In this work, the construction of a travelling front is based on a sequence of approximating problems on intervals (-a n , a n ), with a n → ∞. Due to the lack of comparison principle for the approximated problem, the construction of a solution is based on a topological degree argument, a method introduced initially in [START_REF] Berestycki | Traveling wave solutions to combustion models and their singular limits[END_REF].

To construct our fronts, we adopt a similar strategy and consider a sequence of problems in growing boxes (-a n , a n ) × (-b n , b n ), with a normalization at the origin. In order to make this strategy possible, a key point is to establish a priori estimates, independent on the size of the boxes, on the profile u, the speed c and, in particular, the tails of u when z is large. Due to the nature of the considered kernels here, an uniform estimate on u is obtained using a local pointwise L p estimate, whereas the uniform control on c is obtained by showing that our problem does not have a solution if the speed c is too large or if c = 0. Notice that the latter analysis may also be used to simplify the proof in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF].

Let us highlight that, in contrast with [START_REF] Berestycki | Traveling wave solutions to combustion models and their singular limits[END_REF] and [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF], it is far from obvious that the constructed travelling fronts are monotone w.r.t. x for x > 0 large enough. Therefore, we shall need an extra work to catch the behavior (12) as x → +∞.

Notice also that the comprehension of the behavior of the wave as x → -∞ is quite involved. In the related case of the nonlocal Fisher-KPP equation, the positive steady state u ≡ 1 may present, for some kernels, a Turing instability (see e.g. [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF], [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF], [START_REF] Alfaro | Rapid travelling waves in the nonlocal Fisher equation connect two unstable states[END_REF]). Such a situation may also occur in our context.

Let us also mention that, although we construct fronts without relying on any monotonic properties of the profiles, it is suspected, as in the case of the nonlocal Fisher-KPP equation [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF], that there exist monotone and non monotone travelling fronts. The understanding of such issues is quite challenging.

Organization of the paper. In Section 2 we briefly describe the biological context of (1) and give an interpretation of our results. Then, we prove Theorem 1.4 in Sections 3-5. In Section 3, we start by deriving some a priori bounds and then, using a Leray-Schauder topological degree argument, we construct a solution in a bounded box. In Section 4, we let the box tend to R 2 and obtain a wave, which turns out to be the one with minimal speed c = c * . We also show the non existence of waves with speed 0 ≤ c < c * . Lastly, we construct faster waves c > c * in Section 5.

Biological interpretation of the results

In this section we briefly precise the biological context of (1).

In the present paper, we are interested in biological invasions involving darwinian evolution. Species invading new territories often face environmental gradients of e.g. temperature, luminosity, antibiotic chemicals. Experimentally, it is well documented that invasive species then evolve during their range expansion [START_REF] Etterson | Parallel patterns of clinal variation in Solidago altissima in its native range in central U.S.A. and its invasive range in Japan[END_REF], [START_REF] Keller | History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection[END_REF], to adapt to local conditions. To understand the speed, or even the success of an invasion, one should thus consider the dispersion, birth and death processes, but should also take into account evolution [START_REF] Griffith | Is evolution necessary for range expansion? Manipulating reproductive timing of a weedy annual transplanted beyond its range[END_REF], [START_REF] Keymer | Bacterial metapopulations in nanofabricated landscapes[END_REF], [START_REF] Hermsen | On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient[END_REF]. Those questions become especially important in the context of the global warming [START_REF] Davis | Evolutionary responses to changing climate[END_REF], [START_REF] Duputié | How do genetic correlations affect species range shifts in a changing environment ?[END_REF]: the favorable environmental conditions of many species move towards the north, implying important changes in species' range. It is also of great importance for the evolution of resistance of bacteria to antibiotics [START_REF] Hermsen | On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient[END_REF].

More generally, many evolutionary biology questions involve spatially structured populations, while most existing models either neglect the spacial structure of the population, or largely simplify it. New theoretical tools are then needed, and structured population models are natural candidates: they enable the modelling of all the biological phenomena mentioned above, and numerical simulations show that they are able to reproduce interesting features. Analyzing this type of model is however challenging, even in a homogeneous setting, see e.g. [START_REF] Jabin | On selection dynamics for competitive interactions[END_REF], [START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF]. This work, as well as the results of [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF] are first steps in the mathematical understanding of the dynamics of those models.

The main application of our result concerns asexual populations living in an environmental cline. The simplest model then writes

∂ t n(t, x, y) - σ 2 x 2 ∆ x n(t, x, y) - σ 2 m 2 ∆ y n(t, x, y) = r max - 1 2V s (y -bx) 2 - 1 K R n(t, x, y ′ ) dy ′ n(t, x, y),
where σ x , σ m describe respectively the diffusion rate and the mutation rate of the population, 1 2Vs is the strength of the selection, b is the steepness of the environment cline, and K the carrying capacity of the environment. After the rescaling n(t, x, y) = ñ(r max t,

√ 2rmax σx x, √ 2rmax 
σm y), we see that ñ solves (1) with

r(y) = 1 -Ay 2 , A = σ 2 m 4r 2 max V s , B = σ x σ m b, k ≡ 1 Kr max .
The population then gets extinct if

A B 2 + 1 > 1, while if A B 2 + 1 < 1, invasion fronts exist,
with a minimal propagation speed (in the original variables)

√ 2r max σ x   1 - σ m 2r max √ V s b σ x σ m 2 + 1   1/2 b σ x σ m 2 + 1 -1/2 .
Remark 2.1 There exists thus only two dynamics: either the population gets extinct, or it succeeds to invade the whole territory. The situation of asexual populations is then very different from the case of sexual populations (see [START_REF] Kirkpatrick | Evolution of a species' range[END_REF], [START_REF] Mirrahimi | Population structured by a space variable and a phenotypical trait[END_REF]), where populations surviving with a limited range only are possible. Notice also that during invasions, the dispersion of individuals can evolve (see e.g. [START_REF] Phillips | Invasion and the evolution of speed in toads[END_REF]). Our result does not apply to this problem, and we refer to [START_REF] Benichou | Front acceleration by dynamic selection in Fisher population waves[END_REF], [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF] for such a situation.

3 The problem in a bounded box

On some principal eigenvalue problems

We first introduce some principal eigenvalue problems, whose eigenfunctions will serve as boundary conditions when stating the travelling wave problem in a bounded box.

For ν ∈ [0, δ), where δ > 0 is as in Assumption 1.1, we denote by (λ ν ∞ , Γ ν ∞ ) the solution of the principal eigenvalue problem

-B 2 + 1 ∆ z Γ ν ∞ (z) -r(z) + νz 2 Γ ν ∞ (z) = λ ν ∞ Γ ν ∞ (z) for all z ∈ R Γ ν ∞ (z) > 0 for all z ∈ R, Γ ν ∞ (0) = 1. (15) 
Notice that this definition is coherent with [START_REF] Berestycki | Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts[END_REF], and for any ν

∈ [0, δ), we have λ ν ∞ ≤ λ 0 ∞ < 0. Also, for ν ∈ [0, δ) and b > 0, we define (λ ν b , Γ ν b )
as the solution of the principal eigenvalue problem

     -B 2 + 1 ∆ z Γ ν b (z) -r(z) + νz 2 Γ ν b (z) = λ ν b Γ ν b (z) for all z ∈ (-b, b) Γ ν b (±b) = 0 Γ ν b (z) > 0 for all z ∈ (-b, b), Γ ν b (0) = 1. ( 16 
) Let us observe that b < b ′ implies λ ν ∞ < λ ν b ′ < λ ν b , and that λ ν b → λ ν ∞ as b → ∞.
To construct the travelling waves, we will use the eigenfunctions Γ δ/3 b , for b > 0 as a boundary value. To bound from above those functions independently of b > 0, we will also use the functions

Γ 2δ/3 ∞ . Notice that -max z∈R r(z) ≤ λ 2δ/3 ∞ < λ δ/3 ∞ < 0. To show that Γ 2δ/3 ∞ is integrable, we define C := max [-z,z] Γ 2δ/3 ∞ , where z := √ 6
δ , and ψ(z

) := Cexp - δ B 2 +1 z 2 -z 2 2 √ 6
, so that ψ(±z) = C and

-B 2 + 1 ∆ z ψ(z) -r(z) + 2δ 3 z 2 ψ(z) ≥ δ 6 z 2 - 1 δ ψ(z) ≥ 0, for all z ∈ (-∞, -z) ∪ (z, ∞). Since in (-∞, -z) ∪ (z, ∞) we have r(z) + 2δ 3 z 2 ≤ 1 δ -δ 3 z 2 ≤ 0, the comparison principle then applies to (15) on (-∞, -z) ∪ (z, ∞), and yields Γ 2δ/3 ∞ (z) ≤ ψ(z) for all z ∈ (-∞, -z) ∪ (z, ∞).
As a result, for some constant which we denote again by C, we have

Γ 2δ/3 ∞ (z) ≤ Cexp - δ B 2 + 1 z 2 2 √ 6 for all z ∈ R, (17) 
which implies in turn that

Γ 2δ/3 ∞ ∈ L 1 (R).
For a given b 0 > 0, we now use a similar argument to control the functions

Γ δ/3 b (z) uniformly w.r.t. b ∈ [b 0 , ∞]. When z lies in [-z, z], where z := max 3 λ δ/3 b 0 -λ 2δ/3 ∞ δ , 3 2δ λ δ/3 b0 + 1 δ
, the coefficients of the equations in ( 15) and ( 16) are uniformly bounded w.r.

t. b ∈ [b 0 , ∞]. Therefore the Harnack inequality implies that there is C > 0 such that Γ δ/3 b (z) ≤ C, for all z ∈ [-z, z], all b ∈ [b 0 , ∞].
By the definition of z we see that, on the one hand, Γ 2δ/3 ∞ is a super-solution for [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF] and ( 16) -with ν = δ 3 -on (-∞, -z) ∪ (z, ∞) and that, on the other hand, the comparison principle applies. Therefore, there exists C > 0 such that

Γ δ/3 b (z) ≤ CΓ 2δ/3 ∞ (z) ≤ C Γ 2δ/3 ∞ ∞ for all z ∈ R, b ∈ [b 0 , ∞]. (18) 
In particular, we have

R Γ δ/3 b (z) dz ≤ m Γ := C R Γ 2δ/3 ∞ (z) dz < ∞ for all b ∈ [b 0 , ∞]. (19) 

The problem in a box

For a > 0, b > 0 and ε ∈ (0, 1), we consider the problem of finding a speed c ∈ R and a real function u(x, z), defined for

(x, z) ∈ [-a, a] × [-b, b], such that P (a, b, ε)                      -E(u)(x, z) -cu x (x, z) = 1 {u(x,z)≥0} r(z) - b -b k(z, z ′ )u(x, z ′ ) dz ′ u(x, z) in Q u(x, z) = 1 {x=-a} (x)Γ δ/3 b (z) on ∂Q u(0, 0) = ε,
where

Q := (-a, a) × (-b, b).
The elliptic operator is given by

-E(u) = -u xx -B 2 + 1 u zz + 2Bu xz . (20) 
If (c, u) is a solution achieving a negative minimum at (x m , z m ) then, from the boundary conditions we deduce that (x m , z m ) lies in the interior of the rectangle, and that -E(u) -cu x = 0 on a neighborhood of (x m , z m ). The maximum principle thus implies u ≡ u(x m , z m ), which cannot be. Therefore any solution of P (a, b, ε) satisfies u ≥ 0 and, by the strong maximum principle,

u > 0 and -E(u)(x, z) -cu x (x, z) = r(z) - b -b k(z, z ′ )u(x, z ′ ) dz ′ u(x, z) in Q . ( 21 
)
In the following of the section, we shall construct a solution to P (a, b, ε) via a Leray-Schauder topological degree argument. To make this possible, we consider a family of problems as follows. For a > 0, b > 0 and τ ∈ [0, 1], we consider the problem of finding a speed c ∈ R and a nonnegative real function u(x, z) such that

P τ (a, b)              -E(u)(x, z) -cu x (x, z) = r(z) -τ b -b k(z, z ′ )u(x, z ′ ) dz ′ -γ(1 -τ )u(x, z) u(x, z) in Q u(x, z) = 1 {x=-a} (x)Γ δ/3 b (z) on ∂Q,
where γ > 0 will be specified later (see Lemma 3.7). Note that P 0 (a, b) reduces to a local problem, and that solving P (a, b, ε) is equivalent to solving P 1 (a, b) with the additional normalization condition u(0, 0) = ε.

Remark 3.1 A first natural idea to define a family of problems would be to consider

-E(u)-cu x = τ r(z) - b -b k(z, z ′ )u(x, z ′ ) dz ′ u.
But then we cannot get a uniform w.r.t. 0 ≤ τ ≤ 1 control of the tails of u (see Lemma 3.4), which is crucial to derive e.g. a lower bound on the standing waves (see Lemma 3.6). This is the reason why we consider the family P τ (a, b) as above. Therefore, the topological degree argument (see subsection 3.6) is rather involved and requires to analyze a whole family of local problems (see Lemma 3.8).

A priori estimates for u

We provide a priori bounds for the profile u of solutions to P τ (a, b). When 0 ≤ τ ≤ 1/2, the local part of the equation shall be enough to derive Lemma 3.3. On the other hand, when 1/2 ≤ τ ≤ 1, the nonlocal part is quite relevant and we first need to control the vertical mass of u, namely [START_REF] Coville | On a non-local reaction diffusion equation arising in population dynamics[END_REF]) and m(a) = 0, the maximum principle concludes the proof of the lemma.

m(x) := b -b u(x, z) dz. Lemma 3.2 (A priori bound for the mass) For all a > 0, b ≥ b 0 > 0, 1/2 ≤ τ ≤ 1, any solution (c, u) of P τ (a, b) satisfies 0 ≤ b -b u(x, z) dz ≤ max 2 max R r k -, m Γ , ∀x ∈ [-a, a]. Proof. Integrating w.r.t. z the inequality -u xx -cu x ≤ max R r -1 2 k -m(x) u + B 2 + 1 u zz - 2Bu xz , we get -m ′′ (x) -cm ′ (x) ≤ max R r - 1 2 k -m(x) m(x) + B 2 + 1 (u z (x, b) -u z (x, -b)) -2B (u x (x, b) -u x (x, -b)) . Since u z (x, b) ≤ 0, u z (x, -b) ≥ 0 and u x (x, b) = u x (x, -b) = 0, the mass satisfies the Fisher-KPP inequality -m ′′ -cm ′ ≤ max R r -1 2 k -m m. Since m(-a) ≤ m Γ (see
The above nonlocal control now provides the following a priori bound for u.

Lemma 3.3 (A priori bound for u)

There exists M > 0 such that, for all a > 0, b ≥ b 0 > 0, 0 ≤ τ ≤ 1, any solution (c, u) of P τ (a, b) with 0 ≤ c ≤ c * + 1 satisfies 0 ≤ u(x, z) ≤ M, ∀(x, z) ∈ [-a, a] × [-b, b].
Proof. For 0 ≤ τ ≤ 1/2, one keeps the local part and writes -E(u) -cu x ≤ max R r -γ 2 u u; recalling [START_REF] Coville | Pulsating fronts for nonlocal dispersion and KPP nonlinearity[END_REF], the maximum principle then gives a control of u by max

2 max r γ , C Γ 2δ/3 ∞ ∞ .
Next, for 1/2 ≤ τ ≤ 1, let us denote by (x M , z M ) a point where u achieves its maximum M , and by B r the ball centered at

(x M , z M ) with radius r > 0. Note that 0 ≤ u ≤ C Γ 2δ/3 ∞ ∞ on ∂Q. The function w := u -C Γ 2δ/3 ∞ ∞ therefore satisfies    -E(w) -cw x -(max R r)w ≤ C 0 := (max R r) C Γ 2δ/3 ∞ ∞ in Q w ≤ 0 on ∂Q.
From the local maximum principle [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 9.20] and it extension up to balls intersecting the boundary of the domain [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 9.26], we infer that

sup B 1/2 ∩Q w ≤ C 1 1 |B 1 | B1∩Q w + + C 2 C 0 L N (B1∩Q) ,
where 

C 1 = C 1 (B) and C 2 = C 2 (B)
B1∩Q w + ≤ B1∩Q u + B1∩Q C Γ 2δ/3 ∞ ∞ ≤ 2 max 2 max R r k -, m Γ + C Γ 2δ/3 ∞ ∞ |B 1 |.
Recalling that M = max u is achieved at the center of the ball B 1/2 , we deduce form the upper estimates that

M ≤ C Γ 2δ/3 ∞ ∞ + C 1 2 |B 1 | max 2 max R r k -, m Γ + C Γ 2δ/3 ∞ ∞ + C 2 C 0 |B 1 | .
This concludes the proof of the lemma.

We now provide a control of the tails of the solutions as |z| → ∞ by appropriate Gaussian functions (recall estimate [START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF]).

Lemma 3.4 (Gaussian control of the tails of u)

There exists M > 0 such that, for all a > 0, b ≥ b 0 > 0, 0 ≤ τ ≤ 1, any solution (c, u) of P τ (a, b) with 0 ≤ c ≤ c * + 1 satisfies 0 ≤ u(x, z) ≤ M Γ 2δ/3 ∞ (z), ∀(x, z) ∈ [-a, a] × [-b, b].
Proof. First observe that

-E(u) -cu x -r(z)u ≤ 0 on Q, u ≤ CΓ 2δ/3 ∞ on ∂Q. ( 22 
) Define φ(x, z) = φ(z) := M Γ 2δ/3 ∞ (z), with M > 0 to be specified later. Recall that Γ 2δ/3 ∞ solves (15) so that -E( φ) -c φx -r(z) φ = 2δ 3 z 2 + λ 2δ/3 ∞ φ. Therefore, if β := max 1 δ , -3λ 2δ/3 ∞ 2δ , we have -E( φ) -c φx -r(z) φ ≥ 0 on (-a, a) × (β, b). (23) 
Let us now select

M := max C, M min [-β,β] Γ 2δ/3 ∞ , ( 24 
)
where M is as in the previous lemma. The choice (24

) enforces φ(x, z) ≥ CΓ 2δ/3 ∞ (z) ≥ u(x, z) on {∓a} × [β, b] ∪ [-a, a] × {b}, and φ(x, z) ≥ M ≥ u(x, z) on [-a, a] × {β}. Hence the comparison principle -note that r(z) ≤ 0, when z ≥ β-yields u ≤ φ on [-a, a] × [β, b] and, by the choice (24), on [-a, a] × [0, b]. Similarly, u ≤ φ on [-a, a] × [-b, 0].
The lemma is proved.

A priori estimates for c

We provide a priori bounds for the speed c of solutions to P τ (a, b). We first show that, roughly speaking, too rapid waves solutions of P τ (a, b) have too small value at (x, z) = (0, 0). We recall that the speed c * was defined in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF]. Lemma 3.5 (A priori upper bound for c) Let b > 0 and ε ∈ (0, 1) be arbitrary. Then there exists a 0 = a 0 (ε, b) > 0 such that, for all a ≥ a 0 , all 0 ≤ τ ≤ 1, any solution (c, u) of P τ (a, b) with c > c * satisfies u(0, 0) < ε -and therefore cannot solve P (a, b, ε).

Proof. Let b > 0 be given. Assume c > c * and let us show that u(0, 0) → 0 as a → ∞.

The function u satisfies -E(u) -cu x -r(z)u ≤ 0 in Q. Therefore, changing variables, the function

v(x, y) := u x -By √ B 2 + 1 , B 2 + 1 y , (25) 
satisfies

-v xx -v yy -c B 2 + 1v x -r B 2 + 1 y v ≤ 0, (26) 
in

Q 1 := (x, y) : |y| < b √ B 2 +1 , x-By √ B 2 +1 < a .
We shall now construct a positive solution. Since c > c * , one can select µ < 0 such that

µ 2 + c √ B 2 + 1µ + c * 2 4
B 2 + 1 = 0 and define ϕ(s) := e µs which solves

-ϕ ′′ -c B 2 + 1ϕ ′ - c * 2 4 B 2 + 1 ϕ = 0. Now, let us define w(x, y) := κ a ϕ(x)Γ 0 ∞ B 2 + 1y , κ a := Γ δ/3 b ∞ min [-b,b] Γ 0 ∞ e µ a √ B 2 +1-Bb √ B 2 +1
, with Γ 0 ∞ the eigenfunction appearing in Definition 1.2. Using direct computations and the definition of c * in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF] we see that

-w xx -w yy -c B 2 + 1w x -r B 2 + 1 y w = 0 in Q 1 . (27) 
We now compare the values of v and w on the boundary. If (x, y) ∈ ∂Q 1 is such that x-By

√ B 2 +1 = -a, then v(x, y) = 0 < w(x, y). If (x, y) ∈ ∂Q 1 is such that x-By √ B 2 +1 = -a then v(x, y) = Γ δ/3 b B 2 + 1 y ≤ κ a e µ -a √ B 2 +1+ Bb √ B 2 +1 min [-b,b] Γ 0 ∞ ≤ w(x, y).
As a result, we have v ≤ w on ∂Q 1 . Now a classical argument will imply v ≤ w on the whole of Q 1 . Indeed, since v is bounded and w > 0 on Q 1 , we can define α 0 := max α > 0 : αv ≤ w in Q 1 > 0. Then α 0 v ≤ w and there is a point (x 0 , y 0 ) such that α 0 v(x 0 , y 0 ) = w(x 0 , y 0 ). In view of ( 26), [START_REF] Hermsen | On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient[END_REF] and the strong maximum principle the point (x 0 , y 0 ) has to lie on ∂Q 1 , which enforces α 0 ≥ 1. Thus v ≤ w in Q 1 , and

u(0, 0) = v(0, 0) ≤ w(0, 0) = κ a → 0 as a → ∞,
which concludes the proof of the lemma.

Next, we show that standing waves (i.e. c = 0) have too large value at (x, z) = (0, 0). Lemma 3.6 (Standing waves: a priori lower bound for u(0, 0)) There is ε * > 0 such that if a, b are large enough, then, for all 0 ≤ τ ≤ 1, any standing solution (c = 0, u) of P τ (a, b) satisfies u(0, 0) > ε * -and therefore cannot solve P (a, b, ε) for any ε ∈ (0, ε * ).

Proof. For R > 0, let us introduce (µ R , Υ R ) as the solution of the principal eigenvalue problem

     -E(Υ R )(x, z) -r(z)Υ R (x, z) = µ R Υ R (x, z) for all (x, z) ∈ (-R, R) 2 Υ R = 0 on ∂ (-R, R) 2 Υ R (x, z) > 0 for all (x, z) ∈ (-R, R) 2 , Υ R (0, 0) = 1. (28) 
If R = ∞, the above problem is equivalent to [START_REF] Berestycki | Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts[END_REF], and µ R → λ 0 ∞ as R → ∞. Let us therefore fix R > 0 large enough so that

λ 0 ∞ ≤ µ R < λ 0 ∞ 2 < 0, (29) and k 
+ [-R,R] c M Γ 2δ/3 ∞ (z) dz ≤ -λ 0 ∞ 4 . (30) 
Next, let a ≥ R + 1, b ≥ R + 1, 0 ≤ τ ≤ 1 be given, and (c = 0, u) be a solution of P τ (a, b). Thanks to the Harnack inequality, there exists C > 0 (independent of a and b), such that u L ∞ ([-R,R] 2 ) ≤ Cu(0, 0), and then

max (x,z)∈[-R,R] 2 τ b -b k(z, z ′ )u(x, z ′ ) dz ′ + γ(1 -τ )u ≤ C 2Rk + + γ u(0, 0) + -λ 0 ∞ 4 ,
where we have used Lemma 3.4 and (30). As a result, u satisfies

-E(u) -r(z)u ≥ -C 2Rk + + γ u(0, 0) + λ 0 ∞ 4 u in (-R, R) 2 ,
and

u > 0 on ∂ (-R, R) 2 . Hence, if u(0, 0) ≤ -λ 0 ∞ /4 C (2Rk + + γ) =: ε * ,
u becomes a super-solution for (28) -thanks to [START_REF] Jabin | On selection dynamics for competitive interactions[END_REF]. We conclude as in the proof of Lemma 3.5: defining α 0 := max α > 0 : αΥ R ≤ u in [-R, R] 2 > 0 and using the strong maximum principle we see that α 0 Υ R ≡ u on [-R, R] 2 , which contradicts u > 0. It follows that u(0, 0) > ε * . The lemma is proved.

On some related local problems

First, we show the well-posedness of the local problem P 0 (a, b).

Lemma 3.7 (Well-posedness for τ = 0) There exists γ > 0 such that, if a, b are large enough and ε ∈ (0, ε * ), there exists a unique (c,

u ≥ 0) ∈ R × W 2,∞ (Q), solution of P 0 (a, b), namely P 0 (a, b)    -E(u)(x, z) -cu x (x, z) = (r(z) -γ u(x, z)) u(x, z) in Q u(x, z) = 1 {x=-a} (x)Γ δ/3 b (z) on ∂Q,
such that u(0, 0) = ε. Moreover, by the above a priori estimates, 0 < c ≤ c * and 0 ≤ u ≤ M .

Proof. A standard argument proves that there is a unique positive solution to P 0 (a, b). For the convenience of the reader let us prove this fact. Since 0 and a large enough positive constant are respectively a sub-and a super-solution of P 0 (a, b), the existence of a positive solution to P 0 (a, b) can be obtained using a classical monotone iterative scheme. Also, by the maximum principle, any positive solution of P 0 (a, b) is bounded. Now let u and v be two bounded positive solutions of P 0 (a, b). Thanks to the boundary condition and the Hopf lemma the following quantity is well defined:

τ * := inf τ > 0 : ∀(x, z) ∈ Q, u(x, z) ≤ τ v(x, z) .
Assume by contradiction that τ * > 1. From the definition of τ * , the boundary condition and the Hopf lemma, there exists (x 0 , z 0 ) ∈ Q such that u(x 0 , z 0 ) = τ * v(x 0 , z 0 ). At this point, we get the contradiction

0 ≤ E(τ * v -u)(x 0 , z 0 ) + c(τ * v -u) x (x 0 , z 0 ) ≤ γτ * (1 -τ * )v 2 (x 0 , z 0 ) < 0.
Thus τ * ≤ 1 and we have u ≤ v. By interchanging the role of u and v, we get u ≡ v. Hence there is a unique positive solution to P 0 (a, b).

In order to apply a sliding method, we slightly modify the Dirichlet boundary conditions and consider, for small η > 0,

P η 0 (a, b)      -E(v η )(x, z) -cv η x (x, z) = (r(z) -γ v η (x, z)) v η (x, z) in Q v η (x, z) = x -a -2a Γ δ/3 ,η b (z) on ∂Q,
where

Γ δ/3 ,η b (z) := Γ δ/3 b (z) + ηΓ δ/3
∞ (z). Note that for any nonnegative η, 0 and a large enough positive constant are respectively a sub-and a super-solution of P η 0 (a, b). Thus the existence of a positive and bounded solution of P η 0 (a, b) can be obtained using a classical monotone iterative scheme. We shall now select γ > 0 so that (x, z) → Γ δ/3, η b (z) become a super-solution for P η 0 (a, b). Using ( 15), ( 16), 

λ δ/3 b ≥ λ δ/3 ∞ and Γ δ/3, η b ≥ Γ δ/3 b we see that -B 2 + 1 ∆ z Γ δ/3, η b -r(z) -γΓ δ/3, η b Γ δ/3, η b ≥ λ δ/3 ∞ + δ 3 z 2 + γΓ δ/3 b Γ δ/3, η b , (31) 
< v η (x, z) < Γ δ/3, η b (z), ∀(x, z) ∈ Q. ( 32 
)
Indeed, for v η a non negative solution of P η 0 (a, b), the following quantity is well defined

α 0 := sup{α ≥ 0 : ∀(x, z) ∈ Q, αv η (x, z) ≤ Γ δ/3, η b (z)} ∈ (0, 1], since Γ δ/3, η b > 0 in Q.
Let us assume by contradiction that α 0 < 1. In view of the boundary conditions for v η , this implies that a point (x 0 , z 0 ) where [START_REF] Kirkpatrick | Evolution of a species' range[END_REF] follows by applying the strong maximum principle.

α 0 v η (x 0 , z 0 ) = Γ δ/3, η b (z 0 ) cannot be on ∂Q. Hence w := Γ δ/3, η b -α 0 v η has a zero minimum at (x 0 , z 0 ) ∈ Q and 0 ≥ (-E(w) -cw x )(x 0 , z 0 ) ≥ γα 0 (v η ) 2 (x 0 , z 0 )(1 -α 0 ) > 0, which is absurd. Hence α 0 = 1, and 0 ≤ v η ≤ Γ δ/3, η b in Q. Then
By the classical sliding method [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF], v η is strictly decreasing in the x variable. For the convenience of the reader, let us give a proof of this fact. For h > 0, define v η h (x, z) := v η (x + h, z). Since v η 2a ≡ 0 < v η thanks to [START_REF] Kirkpatrick | Evolution of a species' range[END_REF], one can define

h * := inf {h > 0 : ∀τ ∈ [h, 2a], v η τ ≤ v η } . Assume h * > 0. Then there are sequences h n ր h * , (x n , z n ) with v η hn (x n , z n ) > v η (x n , z n ).
After extraction and using that the infimum h * is achieved, we have a point

(x ∞ , z ∞ ) such that v η h * (x ∞ , z ∞ ) = v η (x ∞ , z ∞ ), i.e. a point of zero maximum for v η h * -v η .
Because of the boundary conditions the point (x ∞ , z ∞ ) cannot lie on the upper or the lower boundary of (-a, a-h * )×(-b, b). In view of [START_REF] Kirkpatrick | Evolution of a species' range[END_REF], it is neither allowed to lie on the left or right boundary of (-a, a-h * )×(-b, b). Since v η and v η h * are both solutions of -E(v)-cv x = (r(z) -γv) v in (-a, a-h * )×(-b, b), the maximum principle then yields v η h * ≡ v η , i.e. v η (x, z) = v η (x + h * , z). Hence v η (x, z) = v η (x + nh * , z) for all n ≥ 0. Letting n → ∞ yields v η ≡ 0, which is a contradiction. It follows that h * = 0 and v η is non increasing in the x variable. Now, we construct a solution to P 0 (a, b) as a limit, as η → 0, of solutions to P η 0 (a, b). The interior elliptic estimates imply that, for all 1 < p < ∞, the sequence (v η ) is bounded in W 2,p (Q). From Sobolev embedding theorem, one can extract a subsequence (v η ) converging to some u, strongly in C 1,β (Q) and weakly in W 2,p (Q). Moreover, u is a solution of P 0 (a, b). As a limit of decreasing functions, u is decreasing in the x variable. By differentiating the equation and applying the maximum principle, one then obtains the strict decreasing of u w.r.t. x.

It is then standard that, if (c 1 , u 1 ) and (c 2 , u 2 ) are two solutions of P 0 (a, b) with c 1 > c 2 , then u 1 < u 2 . Indeed, u 2 is a super-solution of the equation for (c 1 , u 1 ). Hence there exists a solution for this equation which is below u 2 . By uniqueness this solution is u 1 . Hence u 1 ≤ u 2 and, by the strong maximum principle, u 1 < u 2 . As seen in Lemma 3.5, Lemma 3.6, the solution of P 0 (a, b) with speed c = 0, c > c * satisfy u(0, 0) > ε * > ε, u(0, 0) < ε respectively, if a, b are large enough. Then, there is a unique c, which belongs to (0, c * ], such that the solution (c, u) of P 0 (a, b) is ε-normalized. The lemma is proved.

In order to apply a Leray-Schauder degree argument in the next subsection, we also need to consider the family 0 ≤ σ ≤ 1 of local problems

Pσ (a, b)    -E(u)(x, z) -cu x (x, z) = (r(z) -(1 -σ)R -σγu(x, z)) u(x, z) in Q u(x, z) = 1 {x=-a} (x)Γ δ/3 b (z) on ∂Q, (33) 
where R := max z∈R r(z) (ii) Let b > 0 and ε ∈ (0, 1) be arbitrary. Then there exists a 0 = a 0 (ε, b) > 0 such that, for all a ≥ a 0 , all 0 ≤ σ ≤ 1, any solution (c, u ≥ 0) of Pσ (a, b) with c > c * satisfies u(0, 0) < ε.

+ δ 3 z 2 .
(iii) There exists ε 0 > 0, a 0 > 0 such that, for any a ≥ a 0 , there exists a speed -c = -c(a) < 0 such that for all b ≥ 1, all 0 ≤ σ ≤ 1, any solution (c, u ≥ 0) of Pσ (a, b) with c ≤ -c satisfies u(0, 0) > ε 0 .

(iv) If a, b are large enough and ε ∈ (0, ε 0 ), then there exists a unique (c,

u ≥ 0) ∈ R × W 2,∞ (Q) solution of P0 (a, b)    -E(u)(x, z) -cu x (x, z) = (r(z) -R)u(x, z) in Q u(x, z) = 1 {x=-a} (x)Γ δ/3 b (z) on ∂Q, (34) 
with u(0, 0) = ε. Moreover, by the above a priori estimates, -c < c ≤ c * and 0 ≤ u ≤ M .

Proof.

Item (i) follows from -E(u) -cu x ≤ σ(R -γu)u, (18) 
and the maximum principle. Define

v(x, y) := u x -By √ B 2 + 1 , B 2 + 1 y , Q 1 := (x, y) : |y| < b √ B 2 + 1 , x -By √ B 2 + 1 < a .
Then v is a subsolution of ( 26) and, to prove (ii), we can reproduce the proof of Lemma 3.5.

Let us prove (iii). Observe that v solves

-v xx -v yy -c B 2 + 1v x = r( B 2 + 1 y) -(1 -σ)R -σγv v in Q 1 , (35) that v(x, y) 
= 0 for (x, y) ∈ ∂Q 1 such that x-By √ B 2 +1 = -a, and that v(x, y) = Γ δ/3 b √ B 2 + 1 y for (x, y) ∈ ∂Q 1 such that x-By √ B 2 +1 = -a.
It follows from ( 16) and the Harnack inequality that there exists C > 0 such that

Γ δ/3 b (z) > CΓ δ/3 b (0) = C, for all b ≥ 1, all |z| ≤ 1. (36) 
Define, for α > 0,

ψ α (x, y) := C max [-1,1] Γ 0 1   1 - x + α + a √ B 2 + 1 + B √ B 2 +1 2a √ B 2 + 1   Γ 0 1 B 2 + 1y , in Q 2 := (x, y) : |y| < 1 √ B 2 +1 , x-By √ B 2 +1 < a = Q 1 ∩ |y| < 1 √ B 2 +1 . Since ψ α=2a √ B 2 +1 ≤ 0 < v in Q 2 , we can define α 0 := min α ∈ 0, 2a B 2 + 1 : ∀(x, y) ∈ Q 2 , ψ α (x, y) ≤ v(x, y) .
Assume by contradiction that α 0 > 0. Observe that ψ α0 (x, y) < 0 = v(x, y) for (x, y) ∈ ∂Q 2 such that x-By

√ B 2 +1 = a and |y| < 1 √ B 2 +1 , that ψ α0 (x, y) = 0 < v(x, y) for (x, y) ∈ ∂Q 2 such that |y| = 1 √ B 2 +1 and -a ≤ x-By √ B 2 +1
< a, and that -by (36)-

ψ α0 (x, y) < Γ δ/3 b √ B 2 + 1 y = v(x, y) for (x, y) ∈ ∂Q 2 such that x-By √ B 2 +1 = -a.
Therefore the only two points on ∂Q 2 where v -ψ α0 may attain its zero minimum value are

a √ B 2 +1 ± B √ B 2 +1 , ± 1 √ B 2 +1
. But since α 0 > 0 we see that, for ε > 0 small enough, ψ α0-ε ≤ 0 ≤ v in a neighborhood of these two points of the boundary ∂Q 2 . Hence, by the definition of α 0 , there must be a point (x 0 , y 0 ) ∈ Q 2 where v -ψ α0 attains its zero minimum value, so that 0 ≥ -∆ x,y (v -ψ α0 ) (x 0 , y 0 ) -c √ B 2 + 1∂ x (v -ψ α0 ) (x 0 , y 0 ). Using ( 35), [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF] and straightforward computations, we arrive at

0 ≥ v(x 0 , y 0 ) -(1 -σ)R -λ 0 1 -σγv(x 0 , y 0 ) - c 2a C max Γ 0 1 Γ 0 1 B 2 + 1 y 0 ≥ v(x 0 , y 0 ) -R -λ 0 1 -γM - c 2a C max Γ 0 1 Γ 0 1 B 2 + 1 y 0 . Since v(x 0 , y 0 ) = ψ α0 (x 0 , y 0 ) ≤ C max Γ 0 1 Γ 0 1 √ B 2 + 1 y 0 and since -R-λ 0 1 ≤ -max [-1,1] r -λ 0 1 ≤ 0 we end up with 0 ≥ C max Γ 0 1 Γ 0 1 B 2 + 1 y 0 -R -λ 0 1 -γM - c 2a .
Hence, for large negative speed, namely

c ≤ -c = -c(a) := 2a -R -λ 0 1 -γM < 0,
we get a contradiction, so that α 0 = 0. It follows that

u(0, 0) = v(0, 0) ≥ ψ 0 (0, 0) = C max [-1,1] Γ 0 1 1 2 - B 2a (B 2 + 1) > C 3 max [-1,1] Γ 0 1 =: ε 0 ,
for a ≥ a 0 , with a 0 > 0 sufficiently large and independent on b ≥ 1 and 0 ≤ σ ≤ 1. This concludes the proof of (iii).

To prove (iv), observe that, since -R ≤ λ

δ/3 ∞ , Γ δ/3, η b (z) := Γ δ/3 b (z)+ηΓ δ/3
∞ (z) is a supersolution for [START_REF] Mirrahimi | Population structured by a space variable and a phenotypical trait[END_REF]. Hence we can reproduce the proof of Lemma 3.7. Notice in particular that if (c 1 , u 1 ) and (c 2 , u 2 ) are two solutions of P0 (a, b) with c 1 > c 2 , then u 1 < u 2 .

Construction of a solution in the box

Equipped with a priori estimates of Subsections 3.4 and 3.3, we are now in the position to construct a solution to P (a, b, ε), with ε ∈ (0, min(ε * , ε 0 )). We shall use a Leray-Schauder topological degree argument (see e.g. [START_REF] Berestycki | Traveling wave solutions to combustion models and their singular limits[END_REF] or [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF] for related arguments). Proposition 3.9 (The solution in a box) Let ε ∈ (0, min(ε * , ε 0 )) be arbitrary. There exist K > 0 and b 0 > 0 such that for any b ≥ b 0 the following holds. There exists a 0 = a 0 (b, ε) such that, for all a ≥ a 0 , the problem P (a, b, ε) has a solution (c, u) such that

u C 2 (Q) ≤ K, 0 < c ≤ c * . ( 37 
)
Proof. For a given nonnegative function v defined on Q and satisfying the Dirichlet boundary conditions as requested in P (a, b, ε), consider the family 0 ≤ τ ≤ 1 of linear problems

(P τ c )              -E(U )(x, z) -cU x (x, z) = r(z) -τ b -b k(z, z ′ )v(x, z ′ ) dz ′ -γ(1 -τ )v(x, z) v(x, z) in Q U (x, z) = 1 {x=-a} (x)Γ δ/3 b (z) on ∂Q. (38) 
Let us define K τ the solution operator of the above system. More precisely K τ is the mapping of the Banach space

X := R × C 1,α (Q) -equipped with the norm (c, v) X := max (|c|, v C 1,α )- onto itself defined by K τ : (c, v) → (ε -v(0, 0) + c, U τ c := the solution of (P τ c )) .
Constructing a solution of P (a, b, ε) is equivalent to showing that the kernel of Id-K 1 is nontrivial.

The operator K τ is compact and depends continuously on the parameter 0 ≤ τ ≤ 1. Thus the Leray-Schauder topological argument can be applied. Define the open set

S := {(c, v) : 0 < c < c * + 1, v > 0, v C 1,α < M + 1} ⊂ X,
where M > 0 is as in Lemma 3.3. It follows from the a priori estimates Lemma 3.3, Lemma 3.5 and Lemma 3.6, that there exists a 0 = a 0 (b, ε) > 0 such that, for any a ≥ a 0 , 0 ≤ τ ≤ 1 the operator Id -K τ cannot vanish on the boundary ∂S. By the homotopy invariance of the degree we thus have deg(Id -K 1 , S, 0) = deg(Id -K 0 , S, 0). Additionally, thanks to Lemma 3.7, any element of the kernel of Id -K 0 belongs to S, so that deg(Id -K 0 , S, 0) = deg(Id -K 0 , S, 0),

where S := {(c, v) : -c < c < c * + 1, v > 0, v C 1,α < M + 1} ⊂ X,
with c = c(a) > 0 as in Lemma 3.8 (iii).

Let us now consider the family 0 ≤ σ ≤ 1 of local and linear problems associated with [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], namely

( P σ c )    -E(U )(x, z) -cU x (x, z) = (r(z) -(1 -σ)R -σγv(x, z)) v(x, z) in Q U (x, z) = 1 {x=-a} (x)Γ δ/3 b (z) on ∂Q,
and let Kσ be the associated solution operator, that is

Kσ : (c, v) → ε -v(0, 0) + c, Ũ σ c := the solution of ( P σ c ) .
The operator Kσ is compact and depends continuously on the parameter 0 ≤ σ ≤ 1. The analysis of the local problems Pσ (a, b) in Lemma 3.8 shows that Id -Kσ cannot vanish on the boundary of S. Since K 0 = K1 we have deg Id -K 0 , S, 0 = deg Id -K0 , S, 0 .

To complete the proof, let us compute deg Id -K0 , S, 0 by using two additional homotopies. First, consider, for 0 ≤ τ ≤ 1, 

G τ : (c, v) → ε -(1 -τ )v(0, 0) -τ Ũ 0 c ( 
H τ : (c, v) → ε -Ũ 0 c (0, 0) + c, τ Ũ 0 c + (1 -τ ) Ũc0 . If H τ (c, v) = (c, v) for some (c, v) ∈ ∂ S, then the uniqueness in Lemma 3.8 (iv) enforces c = c 0 , Ũ 0 c = Ũc0 = v so that (c, v) ∈ ∂ S solves the local problem P 0 (a, b
) and is such that v(0, 0) = ε, which cannot be. Therefore Id -H τ does not vanish on the boundary ∂ S.

Since H 1 = G 1 we have deg Id -G 1 , S, 0 = deg Id -H 0 , S, 0 , where Id -H 0 : (c, v) → Ũ 0 c (0, 0) -ε, v -Ũc0 .
As seen in the proof of Lemma 3.8 (iv), Ũ 0 c (0, 0) is strictly decreasing in c so the degree of the first component of the above operator is -1. Clearly the degree of the second one is 1. Hence deg(Id -H 0 , S, 0) = -1 so that deg(Id -K 1 , S, 0) = -1 and there is a (c, u) ∈ S solution of P (a, b, ε). This concludes the proof of the proposition. [START_REF] Benichou | Front acceleration by dynamic selection in Fisher population waves[END_REF] The front with minimal speed c * Equipped with the solution (c, u) of P (a, b, ε), with ε ∈ (0, min(ε * , ε 0 )), of Proposition 3.9, we now let a → +∞. Note that we have the bounds (37) on c and u, and also the Gaussian control of the tails in Lemma 3. 

-E(u)(x, z) -cu x (x, z) = r(z) - R k(z, z ′ )u(x, z ′ ) dz ′ u(x, z) in R 2 (39) u(0, 0) = ε (40) 0 ≤ u(x, z) ≤ M Γ 2δ/3 ∞ (z), ∀(x, z) ∈ R 2 . ( 41 
)
4.1 The constructed wave has the minimal speed c * Here, we show that, by reducing the normalization (40) if necessary, the above constructed solution has speed c = c * .

Lemma 4.1 (A priori estimate for the infimum) There exists ε > 0 such that any solution (c, u) of ( 39), ( 41) with c ≥ 0 and inf x∈R u(x, 0) > 0 actually satisfies inf x∈R u(x, 0) > ε.

Proof. We choose R > 0 large enough, such that

λ 0 ∞ ≤ λ 0 R < λ 0 ∞ 2 < 0, k + [-R,R] c M Γ 2δ/3 ∞ (z) dz ≤ -λ 0 ∞ 4 . (42) 
Thanks to the Harnack inequality, there exists C > 0 such that

u(x, z ′ ) ≤ Cu(x, z) for all x ∈ R, |z| ≤ R, |z ′ | ≤ R, (43) 
which, combined with (41) and the second part of (42

), implies k(z, z ′ )u(x, z ′ ) dz ′ ≤ -λ 0 ∞ 4 + 2k + CR u(x, z) in the strip R × (-R, R). Hence, -E(u) -cu x ≥ r(z) - -λ 0 ∞ 4 + 2k + CR u u in R × (-R, R).
Changing variables, the function v(x, y) := u x-By √ B 2 +1 , √ B 2 + 1 y then satisfies

-v xx -v yy -c B 2 + 1v x ≥ r B 2 + 1 y - -λ 0 ∞ 4 + 2k + CR v v, (44) 
in

S := R × -R √ B 2 +1 , R √ B 2 +1
. Now let η > 0 be arbitrarily given. Define, for α > 0,

ψ α (x, y) := α(1 -ηx 2 )Γ 0 R B 2 + 1y .
Observe that the Harnack inequality [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF] 

implies ψ α ≤ v for α = C -1 Γ 0 R -1
∞ inf x∈R u(x, 0), and that (41) implies ψ α (0, 0) = M ≥ v(0, 0) for α = M . We can therefore define α 0 := max α > 0 : ∀(x, y) ∈ S, ψ α (x, y) ≤ v(x, y) ∈ (0, M ].

Hence v -ψ α0 attains a zero minimum at a point (x 0 , y 0 ) -depending on η-which must lie in

-1 √ η , 1 √ η × -R √ B 2 +1 , R √ B 2 +1
so that 0 ≥ -∆ x,y (v -ψ α0 ) (x 0 , y 0 ) -c B 2 + 1∂ x (v -ψ α0 ) (x 0 , y 0 ).

where we have used the second inequality in (45) and ( 46 We have ψ = 0 on ∂Ω and, using the first inequality in (45),

-ψ xx -ψ yy -c B 2 + 1ψ x -r B 2 + 1 y ψ = (B 2 + 1) c2 4 + λ 0 R ψ ≤ -

B 2 + 1 2 c * 2 -c2 4 ψ,
in Ω. Since 0 < v ≤ K, we can define α 0 := max{α > 0 : αψ ≤ v in Ω} > 0 and there is a point (x 0 , y 0 ) ∈ Ω where w := α 0 ψ -v attains a zero maximum. In view of the above inequalities, we have at point (x 0 , y 0 ), 0 ≤ -w xx -w yy -c B 2 + 1w x -r B 2 + 1 y w ≤ -B 2 + 1 4 c * 2 -c2 4 + k + 2CRu(0, 0) v(x 0 , y 0 ), (47) which in turn implies u(0, 0) ≥ (B 2 + 1) c * 2 -c 2 32k + CR . In view of (46), the argument is invariant under translation w.r.t. x variable, so that

inf x∈R u(x, 0) ≥ (B 2 + 1) c * 2 -c2 32k + CR > 0,
which contradicts lim inf x→∞ u(x, 0) = 0. The proposition is proved.

Behaviors as x → ±∞

The following proposition will show that the constructed wave satisfies the lower bound in [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF] and [START_REF] Berestycki | Travelling fronts in cylinders[END_REF] in Theorem 1.4.

Proposition 4.3 (Behaviors at infinity) Let (c, u) be a solution of (39), [START_REF] Polechová | Speciation through competition: a critical review[END_REF], [START_REF] Prevost | Applications of partial differential equations and their numerical simulations of population dynamics[END_REF] with c ≥ 0.

Then the following holds.

(i) There exist R > 0 and κ > 0 such that u(x, z) ≥ κΓ 0 R (z) for all (x, z) ∈ (-∞, 0] × [-R, R].

(ii) If ε > 0 is as in Lemma 4.1, then both R u(x, z) dz → 0 and max z∈R u(x, z) → 0, as x → ∞.

Proof. Let us prove (i). We start as in the proof of Lemma 4.1: choose R > 0 large enough so that (42) holds, choose C > 0 such that both (43) and min 

Conclusion.

The family (u b ) b is uniformly bounded, and is then uniformly bounded in C 2,α R 2 , and we may pass to the limit b → ∞, possibly along a subsequence. In this limit, we have u b → u, which is a solution of (49) in R 2 , and satisfies (58), (59) in R 2 and u(0, 0) ≥ ε > 0. Hence, we have constructed u which satisfies (10), ( 13) -which in turn implies [START_REF] Berestycki | Travelling fronts in cylinders[END_REF]-and the upper bound in [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF]. Last, the lower bound in [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF] follows from Proposition 4.3 (i). This concludes the proof of Theorem 1.4 in the case c > c * .

  are positive constants. Notice that C 1 does not depend on c, which is a coefficient of the operator L(w) := E(w) + cw x + w, because c belongs to a bounded interval, namely [0, c * + 1]. Using successively u ≥ 0 and Lemma 3.2 we deduce that

3 b 3 b 3 ∞

 333 which is clearly nonnegative for |z| ≥ z := -3λ δ/3 ∞ δ . Now, as soon as b ≥ z + 1, it follows from the Harnack inequality that there is C > 0 such that Γ δ/(z) ≥ 1 C Γ δ/(0) = 1 C for all |z| ≤ z. Hence if we select γ := -Cλ δ/> 0, the right-hand side member of (31) becomes nonnegative for |z| ≤ z, and (x, z) → Γ δ/3, η b (z) is a super-solution for P η 0 (a, b). Next, we show that, any solution of P η 0 (a, b) satisfies 0

Lemma 3 . 8 (

 38 On local problems Pσ (a, b)) (i) There exists M > 0 such that, for all a > 0, b > 0, 0 ≤ σ ≤ 1, any solution (c, u ≥ 0) of Pσ (a, b) satisfies 0 ≤ u ≤ M .

  0, 0) + c, Ũ 0 c := the solution of ( P 0 c ) . If G τ (c, v) = (c, v) for some (c, v) ∈ ∂ S, then (c, v) ∈ ∂ S solves the local problem P 0 (a, b) and is such that v(0, 0) = ε. By the a priori estimates of Lemma 3.8, this cannot be. Therefore Id -G τ does not vanish on the boundary ∂ S. Since K0 = G 0 we have deg Id -K0 , S, 0 = deg Id -G 1 , S, 0 . Next, we know from Lemma 3.8 (iv) that there is a unique (c 0 , Ũc0 ) ∈ S which solves the local problem P 0 (a, b) and is such that Ũc0 (0, 0) = ε. Then, consider, for 0 ≤ τ ≤ 1,

4 .

 4 This enables to construct -passing to a subsequence a n → +∞-a speed 0 ≤ c b ≤ c * and a function u b ∈ C 2 b (R × [-b, b]) with the same bounds as those of u. Similarly, we can then consider b → +∞, to construct, via a subsequence b n → +∞, a speed 0 ≤ c ≤ c * and a function u ∈ C 2 b (R 2 ), such that 0 < u ≤ K, and

) with x 1 RB 2 +

 12 = 0. Next, define the function ψ(x, y) := Γ 0

B 2 √B 2 B 2 .

 222 observe that v(x, y) := u x-By √ +1 , √ B 2 + 1 y satisfies[START_REF] Xin | Front propagation in heterogeneous media[END_REF] in the stripS := R × -R +1 , R √ +1. Now for η > 0, we defineψ η (x, y)The definition of α then enforces ψ 1 ≤ v on S -, whereS -:= (-∞, 0) × -R √ B 2 +1 , R √ B 2 +1. We can therefore defineη 0 := min η ≥ 0 : ∀(x, y) ∈ S -, ψ η (x, y) ≤ v(x, y) ∈ [0, 1].Since η > 0 can be arbitrarily small, we discover that v b (x 0 , y 0 ) ≥-λ 0 ∞ 8k + CR , which in turn implies α 0 ≥ ε := -λ 0 ∞ 8k + CR Γ 0 R ∞ . Since ψ α0,η -2 η , 0 = α 0 there is a point x b where v b (x b , 0) ≥ ε, which in turn provides a point x ′ b where u b (x ′ b , 0) ≥ ε.Since the problem in the strip is invariant w.r.t. translation in the x variable, we can assume without loss of generality that x ′ b = 0. Thus we have the desired lower uniform bound u b (0, 0) ≥ ε.
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Using [START_REF] Xin | Front propagation in heterogeneous media[END_REF] and straightforward computations, we arrive at

Using the first part of [START_REF] Shen | Traveling wave solutions of spatially periodic nonlocal monostable equations[END_REF], α 0 ≤ M and |x 0 | ≤ 1 √ η , this yields

It follows from the Harnack inequality [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF] that v(x 0 , y 0 ) ≥ 1 C inf x∈R u(x, 0) > 0, so that

Since η > 0 can be chosen arbitrarily small, we have v(x 0 , y 0 ) ≥ -λ 0 ∞ 8k + CR and then α 0 ≥ ε :=

+ 1y for all (x, y) ∈ S. Since η > 0 can be chosen arbitrarily small, we have v(x, y) ≥ ε 2 Γ 0 R √ B 2 + 1y , and in particular inf x∈R u(x, 0) = inf x∈R v(x, 0) ≥ ε 2 . This proves the lemma. As a result, the constructed solution of ( 39), ( 40), [START_REF] Prevost | Applications of partial differential equations and their numerical simulations of population dynamics[END_REF] satisfies inf x∈R u(x, 0) = 0. Without loss of generality, we may assume lim inf x→∞ u(x, 0) = 0. The following proposition then enforces c = c * for the constructed wave. It is also of independent interest since it proves the non existence of waves for 0 ≤ c < c * as stated in Theorem 1.4 (ii). 

Proof. Assume by contradiction that

4 as R → ∞, we can choose R > 0 such that

Let us define the open rectangle

Thanks to the Harnack inequality, there exists C > 0 such that for any solution (c, u) of ( 39), [START_REF] Prevost | Applications of partial differential equations and their numerical simulations of population dynamics[END_REF] with 0 ≤ c ≤ c * , and for all

Following the change of variables of Lemma 3.5, we see that v(x, y)

Let us assume by contradiction that η 0 > 0. Function v -ψ η0 then attains a zero minimum at a point (x 0 , y 0 ); the definition of α and the Harnack inequality (48) prevents x 0 = 0 so that (x 0 , y 0 ) has to lie in 44), ∂ x ψ η0 ≥ 0 and the first part of ( 42) we arrive at

. This concludes the proof of (i). Thanks to the Harnack inequality and the control of the tails u(x, z) ≤ M Γ 2δ/3 ∞ (z), in order to prove (ii) it is enough to prove u(x, 0) →, as x → ∞. Assume by contradiction that there exists ν > 0 and x n → +∞ such that u(x n , 0) ≥ ν, for all n. Then, the proof of (i) shows

and then for all x ∈ R.

Hence inf x∈R u(x, 0) > 0 so that Lemma 4.1 implies inf x∈R u(x, 0) > ε, which contradicts the normalization [START_REF] Polechová | Speciation through competition: a critical review[END_REF]. This proves (ii).

Faster fronts (c > c * )

In this section we fix c > c * = 2

Using the change of variables v(x, y)

Note also that solving the problem in the box

is equivalent to solving

We first adapt the strategy of [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF]: we construct a solution in the box by using sub and supersolutions and the Schauder fixed point theorem. This will allow to let a → ∞ but we shall need a extra argument to let b → ∞.

Construction of sub and supersolutions. We use again the supersolution of Lemma 3.5: since c > c * , one can select µ < 0 the largest root of

with Γ 0 ∞ the eigenfunction appearing in Definition 1.2, satisfies Lw(x, y) = 0 in R 2 . Next, we aim at constructing a kind of subsolution. Precisely we look after a function h such that (note that the supersolution w appears in the integral term)

Let us choose ε > 0 small enough so that -ρ

B 2 + 1 < 0 and µ + ε < 0. For a constant A > 1 to be selected later, let us define

with is nonnegative if and only if x ≥ ε -1 ln A. Thanks to the estimate (54), we have 

and

We claim (see proof below) that there exists M > 0 such that, for all a > 0, b > 0,

Now, for a given b > 0, choose A = A b as in the construction of h above. The family (u a,b ) a is uniformly bounded, and is then uniformly bounded in C 2,α (Q). This allows to let a → ∞, possibly along a subsequence. In this limit, we have u a,b → u b , which is a solution of (49) in the strip S b := R × (-b, b), and satisfies (58), (59) in S b ; in particular (58) yields

Since the problem in the strip is invariant w.r.t. translation in the x variable, we may assume z Γ 0 ∞ (z) dz. For -a ≤ x ≤ 0, observe that u a,b = h 0 = 0 on ∂((-a, 0)×(-b, b)) so that we can follow Lemma 3.2 to obtain that the mass satisfies a Fisher-KPP inequality. Since m(-a) = 0 and m(0) ≤ C, the maximum principle yields m(x) ≤ max 2 max r k -, C for -a ≤ x ≤ 0 and thus for -a ≤ x ≤ a. This uniform bound for the mass enables to argue exactly as in subsection 3.3 -recall that c > c * has been fixed-to get (59).

Uniform lower bound for u b (0, 0). We choose R > 0 large enough so that (42) holds, and C > 0 such that (48) holds. Then, for b

. We are therefore in the position to reproduce the proof of Proposition 4.3 (i). Hence, there is