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MATHEMATICAL MODEL OF CANCER GROWTH CONTROLED BY

METRONOMIC CHEMOTHERAPIES ∗

N. André1, 2, D. Barbolosi1, F. Billy3, G. Chapuisat4, F. Hubert2, E. Grenier5

and A. Rovini1

Abstract. We propose in this article to compare the e�ciency of two chemotherapeutic schedules:

the traditional and the metronomic. For this, we develop a new mathematical model describing the

growth dynamics of tumor and endothelial cells as well as the impact of molecules as oxygen or vas-

cular endothelial growth factor on this dynamics. The model construction: biological assumptions,

description of the equations and their discretization, constitutes the core of the article. Numerical

experiments illustrate the expected behavior of the disease under the two chemotherapeutic schedules.

Résumé. Nous proposons dans cet article de comparer l'action de deux protocoles d'administration de

chimiothérapie. Pour cela, nous développons un nouveau modèle mathématique décrivant la dynamique

de croissance de diverses cellules tumorales et endothéliales et l'impact sur cette dynamique de molécules

comme l'oxygène et de facteurs de croissances endothéliales. La construction du modèle, à savoir les

hypothèses biologiques sous-jacentes, la description des équations et leur discrétisation constitue le

coeur de cet article. Nous donnons quelques illustrations numériques de l'évolution de la maladie sous

l'action des deux protocoles thérapeutiques et retrouvons les résultats attendus par les oncologues.

1. Introduction

Metronomic chemotherapy.
Cancer is a major cause of death worldwide and tends to become the �rst cause of death in the industrialized

countries. Many studies were and are still designed to improve the e�cacy of existing anti-cancer treatment by
optimizing the administration schedule. Based on the concept that the more anti-cancer drug are administered
to the patient, the more tumor cells may die, the chemotherapeutic schedule traditionally used in clinical practice
consists in the administration of the maximal dose of anti-cancer drugs that can be tolerated by the patient,
also called the maximal tolerated dose (MTD). As chemotherapy kills not only cancer cells but any cell in state
of rapid proliferation, MTD induces serious toxicities, depending on the type of anti-cancer agent used, and
thus requires prolonged breaks (generally of 2-3 weeks in duration) between successive cycles to allow recovery
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from the harmful side e�ects but also time for cancer tissue to eventually resume growth. Moreover, in the long
term, MTD e�cacy can be hampered by the propensity of cancer cells to develop resistance to the drug. Hence,
toxicity as well as the possible emergence of resistance are main disappointing issues with such chemotherapeutic
schedule. In a search for new targets as well as new strategies to �ght cancer, Judah Folkman's works on tumor
angiogenesis at the beginning of the 70's brought outstanding biological knowledge about tumor biology and
initiated a pioneer switch in treatment thinking. Indeed, these works showed that angiogenesis, the process
of new blood vessel formation, plays a central role in both local tumor growth and distant metastasis [22, 23].
Therefore, it has become increasingly evident that agents which interfere with blood vessel formation also block
tumor progression. Although promising results were initially obtained with such anti-angiogenic treatments,
clinical data suggest resistance to these drugs is a very real problem. A new alternative arose in 1991 when R.
Kerbel suggested that anti-cancer agents may be able to target tumor vasculature [34]. Then, Klement et al. [36]
and mainly Browder et al. [11] showed that a more frequent, regular and lower-dose therapy, administered at
one-third of the MTD, had highly anti-angiogenic and anti-tumor e�ects on several mouse tumor cell lines.
This kind of approach was then termed metronomic by Hanahan et al. [28]. Such a protocol, that consists
in the frequent, even daily, administration of chemotherapeutics at doses signi�cantly below the MTD, with
no prolonged drug-free breaks, seems to inhibit tumor growth primarily through anti-angiogenic mechanisms
while signi�cantly reducing undesirable toxic side e�ects. Both, resistant or not, tumors cells eventually get
killed [1, 48]. Recent �ndings suggest that metronomic chemotherapy might also restore anti-cancer immune
response and induce tumor dormancy [48]. Nowadays, there is real clinical needs for de�ning the best schedule
of drug administration and related parameters (doses of agent, choice in combination, treatment duration...).

Resorting to mathematical modeling appears as a good way to help clinicians to design optimal administration
schedules, for instance by generating hypotheses to explain the e�ect of metronomic chemotherapies on the
vascular network and by performing optimization numerical simulations.
Mathematical models.

E�cient cancer therapy requires a throughout and upgraded understanding of cancer biochemistry, phar-
macology, kinetics and clinics. By using mathematical models, numerous authors have attempted for several
years to manage all the available information in order to optimize cancer therapy ( [25]). To optimize drug
e�cacy, both drug amounts (intensi�cation) and administration schedule (densi�cation) should be determined
to ensure a desired rate of tumor cell kill with acceptable toxicity. Twenty years ago, the group of D. Barbolosi
and A. Illiadis developed a mathematical model able to calculate densi�ed administration protocols [3, 31].
Their approach has been validated through two pioneer works; in [41] they illustrate how such approach may
assist to design a phase I trial in oncology, in [53] they report a phase I clinical trial including twenty patients
with metastatic breast cancer whose treatment were driven/optimized by a mathematical model. The model
consists in a Gompertz model with a death term that represented the cytotoxic action of the chemothera-
peutic agent. Pharmacokinetic (PK) and pharmacodynamic (PD) models are used for the cytotoxic action
of the chemotherapeutic agents on the cancer cells and for the hematological toxicities. We also can mention
few optimization problems analyzed to determine optimal drug infusion schedules taking into account drug
toxicity [6, 7, 19, 37, 44�46, 51]. Note that these articles studied the optimization of one anti-cancer therapy
(chemotherapy, anti-angiogenic therapy, ...) or of combination of several ones. In order to be more �realistic�
such optimization problems can not rely on simple Gompertz law for tumor growth and require more sophis-
ticated model taking into account angiogenic process. Among the models of angiogenesis, let us mention the
pioneer works made by the group of J. Folkman [22, 23, 26, 27] since the beginning of the seventies. Several
complex models of angiogenesis were then developed, for instance in [2, 12�17, 35, 47, 49]. Such angiogenesis
models were also coupled to tumor growth models in order to study the tumor vascular growth stage, for in-
stance in [8, 10, 12, 18, 30, 47, 50, 55]. In [8], to study the e�ects of an anti-angiogenic therapy on tumor growth,
the authors coupled, via the concentration of oxygen, the avascular tumor growth model developed by Bresch
et al. in [9] with a new multiscale PDE model of angiogenesis. This angiogenesis model accounts for endothelial
cell (cells that constitute blood vessel inner wall) density and for pro- and anti-angiogenic agent concentrations.
Endothelial cells were assumed to be in two di�erent states, that can be named active and non active, according
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to their ability to respond to pro-angiogenic signals emitted by quiescent tumor cells. Thus active endothelial
cells were assumed to proliferate and migrate in the direction of the gradient of pro-angiogenic concentration,
i.e. towards the tumor mass, whereas active endothelial cells were supposed not to proliferate nor migrate but
to constitute the wall of e�cient blood vessels, source of oxygen. Non active endothelial cells were assumed
to be able to be active whereas the inverse was assumed to be impossible, i.e. active endothelial cells could
not become non active. By means of this model, Billy et al. analyzed the e�ects on the vascular network, and
so on tumor growth, of several treatment schedules of an anti-angiogenic therapy consisting in promoting the
secretion of an anti-angiogenic agent by tumor cells.

Few works exist on the metronomic schedules modeling. Hahnfeldt et al. [26] developed in 2003 a two
population ODE model to compare the e�ciency of �conventional� and metronomic chemotherapies. The
authors considered two cancer cells populations di�ering by their sensitivity to chemotherapy. Cells of these
populations were supposed to proliferate, to gain or loose sensitivity by transiting from one population to the
other, and to die due to chemotherapeutic action. Hahnfeldt et al. analyzed several perfusion schedules including
a metronomic one and concluded that this one led to better decrease of the tumor size than the other ones.

Majumder and co-workers [39, 40, 42] compared the e�ects of metronomic chemotherapy to conventional
chemotherapy infusion schedules by means of discrete models. For instance, in [39] the authors developed a
discrete model (de�ned on a point grid) that includes the tumor system, the microvasculature system, and the
nearby blood vasculature system. This model also takes into account a tumor angiogenic factor and �bronectin
that are known to guide the endothelial cell motion. At each point of the grid and for each time step, the
microvascular cell diameter is given by a discrete equation that depends on the probabilities of an individual
endothelial cell to move on the nearby points of the grid. The time evolution of the tumor mass was supposed to
depend on the microvascular cell diameter at the tumor site. This model enabled to compare the conventional
maximum tolerable dose (MTD) strategy with the metronomic one. The authors concluded that metronomic
chemotherapy was more e�cient to control tumor growth than the maximum tolerable dose chemotherapeutic
strategy. In [42], the authors considered two types of tumor cells, i.e. resistant and sensitive to the drug, and
the clearance rate of the excretory system that is known to in�uence the drug concentration and so to in�uence
its toxicity.

The impact of metronomic chemotherapy and conventional chemotherapy on both metastatic and primary
tumors, is investigated in [5] by means of a structured transport equation endowed with non local boundary
condition. The tumor growth speed, they used was inspired by [27].

For an unresectable glioblastoma, a phenomelogical mathematical model is proposed in [21] able to take into
account a classical MTD (Maximum Tolerated Dose) chemotherapy regimen (whose primary targets are the
tumor cells) as well as a metronomic chemotherapy regimen (whose primary targets are the tumor endothelial
cells) for the administration of Temozolomide (Temodal) in order to compare the e�ectiveness of these two
types of protocols. The model is built from 5 natural hypotheses: without treatment the tumor growth follows a
Gompertz model, endothelial cells are more sensitive to temozolomide than cancer cells, the anti-angiogenic e�ect
blocks tumor growth, endothelial cells are genetically stable and thus don't develop resistance to temozolomide,
the main chemotherapeutic is due to drug resistance; thus in particular this model of tumor growth take into
account this resistance.

As far as the resistance problem is concerned, let us mention the works of [24, 32, 33, 52]. For instance,
Jackson et al. [33] developed a PDE model that describes the chemotherapeutic response of a spherically-
symmetric tumor composed of two types of cells di�ering by their drug sensitivity. The tumor vasculature
is indirectly taken into account through the prescribed blood concentration of drug and through the space-
dependent rate of blood-tissue transfer of this drug. The authors analyzed the e�ect of several drug infusion
schemes (bolus vs continuous infusion) on the two tumor cell populations. They also analyzed the e�ect of the
vascular distribution on the tumor chemotherapeutic response. Later, Jackson et al. [32] extended this study
to asymmetric tumors and included into the model a more mechanistic modeling of the tumor vasculature by
considering the density of e�ective vessels as a dynamic variable of the model.
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Outline. We present a uni�ed continuous PDE model, able to handle both conventional chemotherapies with
their problems of resistance and metronomic schedule with their anti-angiogenic e�ect. This model, derived
from [8] study the combined dynamics of proliferant tumor cells, quiescent tumor cells, dead cells, normal cells
with the endothelial cells (active or non active). The in�uence of oxygen, angiogenic factors and chemotherapy
drugs on these cells is investigated.

This paper is organized as follows: Section 2 presents the biological assumptions we made and the resulting
equations; rules that have to be respected by the model are summarized in paragraph 2.4; �nally the numerical
illustrations constitute Section 3 and the conclusion stands in Section 4 together with a discussion.

2. Construction of the model

2.1. Biological hypotheses

At �rst, the tumor cells divide continuously, we call them proliferating and the resulting tumor consumes
nutrients and oxygen brought by the blood and lumph pre-existing systems. During this phase, termed avascular,
tumor is o� a few millimeters and is rarely detected by medical imaging. When it reaches a diameter of 2-3 mm,
nutrient intakes and oxygen become insu�cient so that a portion of proliferating tumor cells stop their division
and enter in a quiescent state. This is called hypoxia when oxygen tension [pO2] is less than 2.5mmHg. Note
that quiescent tumor cells may die if hypoxia is to high. For further growth, the tumor stimulates endothelial
cells (ECs) forming the walls surrounding blood vessels, through secretion of �pro-angiogenic� factors, foremost
among which VEGF to develop neovascularization. These compete with those so-called �anti-angiogenic� factors
naturally present in the body and secreted in response to the abnormal presence of pro-angiogenic factors. These
factors take over, active the division of endothelial cells that migrate to the area of secretion of VEGF to form
the neo-vasculature. These new blood vessels di�er from the physiological vasculature; they are dense and
irregular, some of them may be non-active. Therefore quiescent tumor cells within the tumor may become
again proliferating as soon as the concentration of oxygen is again su�cient.

Non active ECs proliferate and become active when the number of ECs point is large enough. Tumor cells
as well as dead cells can destroy ECs in the neighborhood of the tumor (hence a potential decline in the supply
of O2). Dead cells are gradually eliminated by macrophages arriving via the blood vessels.

The chemotherapy is a cytotoxic agent supposed to kill all proliferating cells (tumor cells and endothelial
cells). In contrast to ECs, tumor cells can develop resistance to chemotherapy, depending on the amount of
drug already administered (cumulative drug dose).

2.2. Equations

All the variables of the model depend on time t and space x ∈ R
d with d = 2 or d = 3.

The variables appearing in the model are directly linked to the biological entities we considered, i.e.

o2: Tissue relative concentration (in [0; 1]) of oxygen.
ang: Angiogenic balance between pro- (VEGF,...) and anti- (angiostatin, ...) angiogenic factors.
eca: Active EC density.
ecna: Non active EC density.
p: Proliferant tumor cell density.
q: Quiescent tumor cell density.
m: Viable healthy cell density.
d: Dead cell density coming from the tumor as well as the healthy tissue.
v: Velocity of cell moving linked to cell proliferation.
p: Pressure linked to cell proliferation.
C: Chemotherapeutic agent (cytotoxic) pulsed concentration.

Figure 1 summarizes the principle of the dynamics.
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Figure 1. The model principle. The dynamics of cancer cells is linked to the presence of
nutrients (oxygen). In case of hypoxia, they activate angiogenic factors. These angiogenic
factors act on the dynamics of endothelial cells. These endothelial cells in turn act on the
dynamics of oxygen. The growth of cancer cells induces �nally a transport of both cancer cells
and normal cells.

Oxygen. Oxygen is supposed to di�use in the surrounding tissue from the functional blood vessels represented
by active ECs. It is also assumed to disappear because of natural degradation. The cell consumption is neglected
and the concentration is maintained at a maximal �xed value omax

2 in the active blood vessel. We assume that
the time scale associated to oxygen di�usion is very small compared to the one of cell division, so that the
oxygen dynamics is governed by a quasi-static equation:

0 = Do∆o2 − δoo2 + δoo
max
2 eca (1)

where Do is the di�usion rate, δo the degradation rate. The quantities Do, o
max
2 and δo are assumed to be

constant and positive.

Angiogenic balance. The angiogenic balance resumes the e�ects of pro- and anti- angiogenic factors. We
supposed that they di�use in the tissue. They are produced by quiescent tumor cells at a constant rate, and
are naturally eliminated. As we did with oxygen, we assumed that the dynamics of angiogenic factors is also
governed by a quasi-static equation:

0 = Dv∆ang + αvq− δvang , (2)
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where Dv is the di�usion rate, αv the excretion rate by quiescent tumor cells q, δv the degradation rate. The
quantities Dv, αv and δv are assumed to be constant and positive.

Active ECs. Active ECs are assumed to di�use in the tissue. Part of them may become non active as soon as
angiogenic factors reached a given threshold sang,ec. Non active ECs are supposed to stabilize, i.e. to become
active as soon as the total ECs density was higher than a given threshold ecmin. These cells are also supposed
to disappear due to necrotic and tumor cells local dominance. Active ECs are to recolonize slowly the space in
case of low ECs density. Thus, the evolution of the active EC density is given by:

∂teca =Dec∆eca + µstab1ecna+eca>ecmin
ecna − (βp,eca

p+ βq,eca
q+ βd,eca

d)eca

− µinstSig(ang, rang,ec, sang,ec)eca + αrecoleca (1 − (ecna + eca)) ,
(3)

where Dec represents the di�usion coe�cient, µstab the constant transition rate from non active to active ECs,
βp,eca

, βq,eca
, βd,eca

the elimination rates due to necrotic and tumor cell local dominance, αrecol the proliferation
rate, µinstSig(ang, rang,ec, sang,ec) the transition rate from non active to active ECs where µinst is assumed to

be constant, and where the function Sig is de�ned by: Sig(w, y, z) =
w

1 + e−y(w−z)

Non active ECs. As said before, we assume that non active ECs derived from active ECs as soon as angiogenic
factors reach a threshold sang,ec. They begin to proliferate until the total EC density reach a maximal value
ecmax = 1. Non active EC loss is supposed to be induced by stabilization into active ECs, by elimination due
to necrotic and tumor cell local presence and by the cytotoxic e�ect of the chemotherapy. Thus non active EC
density follows the equation:

∂tecna =αec1ang>sang,ec
ecna (1 − (ecna + eca)) + µinstSig(ang, rang,ec, sang,ec)eca

− µstab1ecna+eca>ecmin
ecna − (δec + βp,ecna

p+ βq,ecna
q+ βd,ecna

d)ecna

− ηec(C(t) − cmin,aa)
+ecna

(4)

where αec represents the proliferation rate, µinst the destabilization rate, µstab the stabilization rate, βp,ecna
,

βq,ecna
and βd,ecna

the loss rates due to tumor cell presence, δec the natural decay rate and ηec the cytotoxic
e�ect rate. The function Sig is previously de�ned.

Note that for both ECs, the migration under growing tumor pressure has been neglected.

Tumor cells. We distinguish among the tumor cells, the proliferant and the quiescent cells. Proliferant cells
divide with a constant rate αp and are supposed to become quiescent if the oxygen level falls below a given
threshold hpq. Quiescent tumor cells are supposed to become proliferant if the oxygen level exceeds a given
threshold hqp or to die of the oxygen level falls below a given threshold hqd. Tumor cell proliferation and
death induce a passive transport movement whose velocity is denoted by v (cf. below for more details about
v). Proliferant tumor cells, as well as all proliferant cells, are also supposed to be killed by the cytotoxic e�ect
of the chemotherapy. So the evolution of the proliferant and quiescent tumor cell densities is given by:

∂tp+ ∇.(vp) = αpp− γpqf−(o2, hpq)p+ γqpf+(o2, hqp)q− ηpe
−αr expo(t)(C(t) − cmin,ct)

+p , (5)

∂tq+ ∇.(vq) = γpqf−(o2, hpq)p− γqpf+(o2, hqp)q− γqdf−(o2, hqd)q , (6)

where x+ = 1
2 (x + |x|), f−(o, h) = 1o<h(1 − o

h
), and f+(o, h) = 1o>h( o−h

o
max
2

−h
). The positive constants

γpq, γqp, γq,d are elimination rates. The chemotherapy's action will be detailed further.

Viable healthy cells. Viable healthy cells are transported under the velocity v induced by the tumor growth.
We assume that healthy cells are eliminated in case of shortage of oxygen. Their equation reads:

∂tm+ ∇.(vm) = −γmdf−(o2, hmd)m (7)

where f− is de�ned above and hmd stands for the oxygen threshold, γmd is a degradation rate.
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Necrotic / apoptotic tumor and healthy cells.
Necrotic cells are supposed to result from quiescent cells and healthy cells if the oxygen level falls below

some threshold hqd and hmd. They are gradually eliminated by macrophages due to in�ammatory processes: we
assume that these macrophages di�used from the surrounded functional blood vessels so we suppose that their
concentration was proportional to the oxygen concentration. Necrotic cells are also supposed to be transported
with velocity v by the growing tumor mass. So the evolution of the density of necrotic cells is given by:

∂td+ ∇.(vd) = γqdf−(od, hqd)q+ γmdf−(o2, hmd)m− δinflo2d (8)

where f− is de�ned above and where δinfl represented the degradation rate due to macrophages.

Velocity. We assume that the cell movement due to the growing tumor mass follows a Darcy's law:

v = −∇p , (9)

where p is the pressure induced by the tumor growth. The velocity is supposed to be independant of the type
of cells.

To prescribe an expression for the pressure p, we assumed that the total number of tumor, necrotic and
healthy cells P + Q + D + M is constant (equal to 1) with respect to time when no chemotherapy is applied.
So by summing equations (5) to (8), and using Darcy's law, we get:

−∆p = ∇.v = αpp− δinflo2d− ηpe
−αr expo(t)(C(t) − cmin,ct)

+p (10)

Chemotherapeutic agent. The chemotherapy acts on any proliferating cells, that is here on both proliferating
tumor cells and non active ECs. We �rst assume that the concentration of the drug has to reach a threshold
cmin,ct to be e�cient on the proliferating tumor cells and a threshold cmin,aa on endothelial cells. As tumor cells
tend to develop drug resistance, we assumed that this drug response was exponentially decreasing according to

the total drug exposure expo(t) =
∫ t

0
C(τ) dτ . Remark that endothelial cells are genetically more stable and

thus much less likely to become resistant.

The model. The model equations are summarized below.

0 = Do∆o2 − δoo2 + δoo
max
2 eca

0 = Dv∆ang + αvq− δvang

∂teca = Dec∆eca + µstab1ecna+eca>ecmin
ecna − (βp,eca

p+ βq,eca
q+ βd,eca

d)eca

−µinstSig(ang, rang,ec, sang,ec)eca + αrecoleca (1 − (ecna + eca))

∂tecna = αec1ang>sang,ec
ecna (1 − (ecna + eca)) + µinstSig(ang, rang,ec, sang,ec)eca

−µstab1ecna+eca>ecmin
ecna − (δec + βp,ecna

p+ βq,ecna
q+ βd,ecna

d)ecna

−ηec(C(t) − cmin,aa)
+ecna

∂tp+ ∇.(vp) = αpp− γpqf−(o2, hpq)p+ γqpf+(o2, hqp)q− ηpe
−αr expo(t)(C(t) − cmin,ct)

+p

∂tq+ ∇.(vq) = γpqf−(o2, hpq)p− γqpf+(o2, hqp)q− γqdf−(o2, hqd)q

∂tm+ ∇.(vm) = −γmdf−(o2, hmd)m

∂td+ ∇.(vd) = γqdf−(o2, hqd)q+ γmdf−(o2, hmd)m− δinflo2d

v = −∇p

−∆p = ∇.v = αpp− δinflo2d− ηpe
−αr expo(t)(C(t) − cmin,ct)

+p

where Sig(w, y, z) =
w

1 + e−y(w−z)
, f−(o, h) = 1o<h(1 − o

h
), f+(o, h) = 1o>h( o−h

o
max
2

−h
) et expo(t) =

∫ t

0
C(τ)dτ

(see Figure 2).
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Figure 2. (Left). Graph of the function w 7→ Sig(w, y, z) with y = rang,ec and z = sang,ec.
(Right). Graph of the functions o 7→ f−(o, h) with h = hpq and o 7→ f+(o, h) with h = hqp.

m, eca at t = 0p at t = 0

0

0
1

1

Figure 3. Radial representation of initial data p, m and eca for the various simulations.
Distances are in millimeters. The tumor is located at the center of the domain and has an
initial radius of 0.1 mm

Boundary conditions. The computational domain is assumed to be large enough to avoid boundary e�ects.
We assumed homogeneous Dirichlet boundary conditions, except for o2 and m that were supposed to respectively
satisfy o2 = omax

2 and m = 1 on the domain boundaries.

Initial conditions. We restrict in this paper to radially initial conditions (at time t = 0):

ecna = 0, eca = 1x6∈tumor, p = 1x∈tumor, q = 0, d = 0, m = 1x6∈tumor

where tumor corresponds to the initial tumor location, i.e., a circle (in 2D) or a sphere (in 3D) centered on the
space location (0, 0) (in 2D), (0, 0, 0) (in 3D), whose radius is equal to rtumor (see �gure 3).

2.3. Discretization scheme

The assumption on the polar/spherical initial location of the tumor, implies a polar/spherical symmetry of
the solution of the model. All the scalar quantities Y are thus functions Y (t, r) of the time and the radius r of
the tumor and the velocity v = v(t, r) is radially oriented. The new domain of calculation is [0, T ]× [0, R], and
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the new set of equations just consists in replacing the two operators ∆ and ∇· by

∆ ↔ ∆r :=
1

rd−1
∂r(r

d−1∂r·) with d the space dimension

∇· ↔ (∇·)r :=
1

rd−1
∂r(r

d−1·).

Let dt = 1
N

denote the time step; the time interval [0, T ] is uniformly discretized by tn = n dt for n = 0, · · · , N .

Let h = 1
M+1 the space step; the interval [0, R] = ∪M

i=1Ji is split into M sub-interval Ji = [ri− 1
2
, ri+ 1

2
] with

ri+ 1
2

= ih. Let ri = 1
2 (ri− 1

2
+ ri+ 1

2
) = (i − 1

2 )h be the center of the intervals Ji. All the functions Y (t, r) are

approximated at (tn, ri) by a quantity Y n
i . Let Y n be the vector Y n = (Y n

i )i=1,··· ,M .
We use a semi-implicit Euler scheme for the time discretization. The terms treated implicitely are speci�ed

below:

0 = Do∆
h
ro

n+1
2 − δoo

n+1
2 + δoo

max
2 ecn

a

0 = Dv∆
h
ra

n+1
ng + αvq

n − δva
n+1
ng

−∆h
r pn+1 = αpp

n − δinflo
n+1
2 dn − ηpe

−αr expo(tn)(C(tn) − cmin,ct)
+pn

vn+1 = −∇h
r pn+1

1

dt
(ecn+1

na − ecn
na) = αec1an+1

ng >sang,ec
ecn+1

na (1 − (ecn
na + ecn

a))

+µinstSig(an+1
ng , rang,ec, sang,ec)ec

n
a − µstab1ecn

na+ecn
a >ecmin

ecn+1
na

−(δec + βp,ecna
pn + βq,ecna

qn + βd,ecna
dn)ecn+1

na

−ηec(C(tn) − cmin,aa)
+ecn+1

na

1

dt
(ecn+1

a − ecn
a) = Dec∆

h
rec

n+1
a + µstab1ecn

na+ecn
a >ecmin

ecn+1
na

−(βp,eca
pn + βq,eca

qn + βd,eca
dn)ecn+1

a

−µinstSig(an+1
ng , rang,ec, sang,ec)ec

n+1
a

+αrecolec
n
a (1 − (ecn

na + ecn
a))

1

dt
(pn+1 − pn) + (∇.)h

r (vpn+1) = αpp
n − γpqf−(on+1

2 , hpq)p
n+1 + γqpf+(on+1

2 , hqp)q
n

−ηpe
−αr expo(tn)(C(tn) − cmin,ct)

+pn

1

dt
(qn+1 − qn) + (∇.)h

r (vqn+1) = γpqf−(on+1
2 , hpq)p

n+1 − γqpf+(on+1
2 , hqp)q

n − γqdf−(on+1
2 , hqd)q

n+1

1

dt
(dn+1 − dn) + (∇.)h

r (vdn+1) = γqdf−(on+1
2 , hqd)q

n+1 + γmdf−(on+1
2 , hmd)m

n − δinflo2d
n

1

dt
(mn+1 −mn) + (∇.)h

r (vmn+1) = −γmdf−(on+1
2 , hmd)m

n

Note that this discretization preserves the mass balance equation p+ q+ d+m = Cte, ie for all n,

pn + qn + dn +mn = 1.

The �nite volume discretization in space (see [20]) consists in multiplying all the equations by rd−1, with d

being the space dimension, and integrating the resulting equations over Ji. The di�usion terms
∫

Ji

rd−1∆rY =
[

rd−1∂rY
]x

i+ 1
2

x
i− 1

2
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are approximated by hrd−1
i ∆h

r Y where for Y ∈ R
M

hrd−1
1 (∆h

r Y )1 = rd−1
3
2

Y2 − Y1

h

hrd−1
i (∆h

r Y )i = rd−1
i+ 1

2

Yi+1 − Yi

h
− rd−1

i− 1
2

Yi − Yi−1

h
, i = 2, · · · , M

hrd−1
M (∆h

r Y )M = rd−1
M+ 1

2

YM+ 1
2
− YM

h
2

− rd−1
M− 1

2

YM − YM−1

h
,

where YM+ 1
2
is given by the boundary condition at r = R.

Note that the velocity v is then naturally approximated at the vertices ri+ 1
2
of the segments Ji by vi+ 1

2
=

1
h
(pi+1 − pi) for i = 1, · · · , M − 1 and vM+ 1

2
= 2

h
(0 − pM ) using the homogeneous boundary condition on p at

r = R. The velocity v 1
2
can be taken equal to zero without loss of generality since it is always multiplied by

r 1
2

= 0. The transport terms are then approximated thanks to an upwind scheme

∫

Ji

rd−1(∇.)r(vY ) = [∂r(vY )]
x

i+ 1
2

x
i− 1

2

∼ hrd−1
i (∇.)h

r (vY )

with

hrd−1
1 ((∇.)h

r (vY ))1 = rd−1
3
2

(v+
3
2

Y1 − v−3
2

Y2)

hrd−1
i ((∇.)h

r (vY ))i = rd−1
i+ 1

2

(v+
i+ 1

2

Yi − v−
i+ 1

2

Yi+1) − rd−1
i− 1

2

(v+
i− 1

2

Yi−1 − v−
i− 1

2

Yi), i = 2, · · · , M − 1

hrd−1
M ((∇.)h

r (vY ))M = rd−1
M+ 1

2

(v+
M+ 1

2

YM − v−
M+ 1

2

YM+ 1
2
) − rd−1

M− 1
2

(v+
M− 1

2

YM−1 − v−
M− 1

2

YM )

where x+ = 1
2 (|x| + x) and x− = 1

2 (|x| − x) and YM+ 1
2
is given by the boundary condition at r = R.

2.4. Parametrization

Values of most of all parameters used in the model were not directly given in the literature. By cross-checking
data available in the literature, we could solely deduce �realistic� values of the model parameters. Consequently,
basing ourselves on biological observations, we de�ned a set of rules to prescribe the model dynamics. We
determined parameter values �by hand� so that the simulation results satisfy all these rules.

The basis of rules is a set of biological facts that enabled to limit the range of the �realistic� values of the
model parameters. If this method did not make it possible to determine single set of parameter values, it
enabled us to de�ne sets of parameter values that led to realistic model dynamics. These biological rules are
given below.

(1) A tumor can grow until a diameter of 2 or 3 mm without developing angiogenesis.
(2) In absence of new vascularization, the tumor stays dormant.
(3) On the small part of healthy tissue considered here, the mean oxygen concentration is assumed to be

constant in time and space.
(4) In the hot spots of a tumor, the part of proliferant cells between tumor cells is of 20 to 30 %.
(5) Resistance mechanisms make the tumor start growing again after 6 to 8 month in the MTD protocol.
(6) Metronomic chemotherapies seem to be more e�cient than MTD chemotherapies after 8 to 9 months.
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A �reference� set of parameter values. Distances are given in 1/10 millimeters, time in weeks.

Parameters Reference value Meaning
Do 0.1 Di�usion coe�cient of oxygen in the tissues
δo 0.005 Coe�cient of elimination of the oxygen

omax
2 1 Normal concentration of o2 in the tissue
Dv 2 Di�usion coe�cient for ang

δv 2 10−4 Coe�cient of spontaneous degradation
αv 4 10−3 Coe�cient of ang production by quiescent cells (vascular growth)

0 Coe�cient of ang production by quiescent cells (avascular growth)
αec 40 Proliferation coe�cient: ecna → ecna

sang,ec 0.2 Threshold on ang that control ec proliferation
rang,ec 103 Transfer parameter involved in the ang control of ec proliferation
µinst 0.4 Transfer coe�cient: eca → ecna

µstab 20 Transfer coe�cient: ecna → eca

ecmin 0.5 Threshold involved in the transfer ecna → eca

δec 0.04 Coe�cient of ecna degradation
βp,ecna

4 Coe�cient of ecna degradation by proliferating cells p
βq,ecna

8 Coe�cient of ecna degradation by quiescent cells q
βd,ecna

40 Coe�cient of ecna degradation by dead cells d
Dec 1 Di�usion coe�cient for eca

αrecol 10 Recolonization rate of eca

βp,eca
13 Coe�cient of eca degradation by proliferating cells p

βq,eca
36 Coe�cient of eca degradation by quiescent cells q

βd,eca
140 Coe�cient of eca degradation by dead cells d

αp 0.5 Proliferation rate of p
γpq 3 Transfer coe�cient p→ q acting when o2 small
γqp 3 Transfer coe�cient q→ p acting when o2 large
γqd 3 Transfer coe�cient q→ d acting when o2 small
γmd 3 Transfer coe�cient m→ d acting when o2 small
hpq 0.38 o2 threshold involved in the transfer p→ q

hqp 0.45 o2 threshold involved in the transfer q→ p

hqd 0.18 o2 threshold involved in the transfer q→ d

hmd 0.25 o2 threshold involved in the transfer m→ d

δinfl 8.333 Elimination coe�cient of dead cells by in�ammatory system
ηP 10−3 E�ciency coe�cient of the drug on p
ηec 0.14 E�ciency coe�cient of the drug on ecna

αr 1.1 10−4 Drug resistance coe�cient of p
rtumor 1 Initial size of the tumor
cmin,ct 950 E�ciency threshold on the cytotoxic e�ect of the drug
cmin,aa 655 E�ciency threshold on the anti-angiogenic e�ect of the drug

3. Results

3.1. Without treatment

First, simulations without treatment were made with this model of tumor growth. We have started by repro-
ducing and comparing the growth of tumors able to produce angiogenic factors and thus new vascularization, we
will refer as vascular tumor growth, and tumors not able to produce angiogenic factors, we will refer as avascular
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tumor growth. Of course, a tumor able to produce angiogenic factors starts its growth without modifying the
vascularization thus it starts with an avascular growth.

We recall that Figure 3 presents the initial tumor for all the following simulations. Particularly, we assume
that the tumor has an initial diameter of 0.2 millimeter and is centered in the domain (so centered at r = 0).
Figure 4 presents the time evolution of the tumor in an avascular setting (αV = 0) and in a vascular setting
(αV > 0). Times are in weeks and distances in millimeters. We observe that in both cases, proliferant cells
reproduce and make the tumor grows until the vascularization is not su�cient to provide energy for every
cell. Part of the proliferant tumor cells becomes quiescent (from t ≥ 4) and then die (from t ≥ 7). Then in
the avascular case, the elimination of dead cells by the immune system compensates with the proliferation of
proliferant cells and the tumor stops growing (from t ≥ 15) and the all system converges to a stationary state.

Meanwhile in the vascular case, once quiescent cells appeared, they produce angiogenic factors which triggers
proliferation of endothelial cells. The endothelial cells thus settle at the periphery of the tumor, supplying
oxygen to the tumor and allowing growth to pursue.

We observe that the tumor grows until it reaches a maximum diameter between 2 and 3 mm. The tumor does
not shrink, it stays still waiting for better conditions for growing. This result is consistent with the biological
literature [29,38,54].

Figure 5 compares the dynamics for avascular and vascular tumors. We can observe that rules (1)-(4) have
been here respected.

3.2. Comparison of MTD and metronomic chemotherapies

Let us now test what is the e�ect of chemotherapy on the tumor growth. The treatment starts at the beginning
of the 15th week. We compare two di�erent types of protocol classically used for unresectable glioblastoma.
The Maximal Tolerated Dose (MTD) protocol is the protocol described in [43]. The drug (Temozolomide) is
administered with 5 intravenous injections of 200 mg/m2/day at the �rst 5 days of a cycle. The cycle is assumed
to last for 21 days. In the sequel, the standard patient is supposed to have a body area around 1.7m2. We
simulate here the case where 12 cycles of chemotherapy are administered.

The metronomic protocol is taken from [4]. The drug (Temozolomide) is per os administered each day during
42 days at a dose of 65 mg/m2/day or 85mg/m2/day, followed by a pause of 7 days. The number of cycles of
chemotherapy is not limited in that case.

Figure 6 compares the evolution of the tumor volume depending on the type of protocol used. We can notice
that the MTD protocol is clearly more e�cient than the metronomic one at the beginning of the treatment,
but due to resistance mechanisms, the cytotoxic e�ect of the MTD chemotherapy decreases after few cycles
of treatment. Thus the metronomic protocol becomes more e�cient than the MTD one after approximately 8
months. The tumor volume decreases in the metronomic protocol is mainly due to anti-angiogenic e�ect and
thus is less sensible to acquired resistances. However, the decrease of the tumor volume in the metronomic
protocol is very slow. We also note that the metronomic treatment fails at doses too low. It is interesting to
observe that at the dose 65 mg/m2/day the tumor volume still grows though very slowly. This is a consequence
of the probable existence of a biological threshold below which the drug loose its e�ciency. In the model, this
fact is expressed through the presence of thresholds cmin,ct and cmin,aa.

Remark that the rules (5)-(6) are again satis�ed for this chemotherapeutic agent.
Note that the pharmacodynamics as well as the pharmacokinetics of the drugs have not been taken into

account in this work. The concentration C(t) of the drug is simply linked to the administered dose as shown in
Figure 6 (Right). It is well known in particular that the PK of intravenous injections and per os administration
are very di�erent. The introduction of the PK/PD of the drug will be fundamental in view of clinical applications
of the model.
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(a) t = 4 avascular (b) t = 4 vascular

(c) t = 7 avascular (d) t = 7 vascular

(e) t = 10 avascular (f) t = 10 vascular

Figure 4. Comparison of avascular (left) and vascular (right) tumor growth. Times are given
in weeks and distances in millimeters.
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(g) t = 15 avascular (h) t = 15 vascular

(i) t = 20 avascular (j) t = 20 vascular

(k) t = 30 avascular (l) t = 30 vascular

Figure 4. Comparison of avascular (left) and vascular (right) tumor growth. Times are given
in weeks and distances in millimeters. (continued)
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Figure 5. Comparison of tumor volumes (p + q + d) depending on time for �vascular� and
�avascular� tumor growth. Time is in months and volumes are in mm2. We show here that
angiogenesis promotes tumor growth, which would otherwise be stabilized.

Figure 6. Left . Comparison of tumor volumes (p + q + d) without treatment, with MTD
chemotherapy and with metronomic chemotherapy depending on the time in month. Volumes
are given in mm2. Right. The pulsed concentration t 7→ C(t) of Temozolomide for the di�erent
protocols.

4. Conclusion and discussion

Nowadays, the paradigm of metronomic chemotherapies is a challenge in oncology, it would have good
e�ciency while limiting toxicities. However, to improve the e�ciency of a metronomic chemotherapy, it is
essential to be able to answer some clinical questions: What is a small dose? What is the most appropriate
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dose? What is the best rhythm for the drug administration? How chronology of drug administration between
metronomic chemotherapy and anti-angiogenic impacts the e�ect of the therapy? This present work is a �rst
step in the construction of a numerical tool able to give answers to all these questions.

The model proposed here, that combines the dynamics of tumors cells and endothelial cells in interaction
thanks to molecules as oxygen and angiogenic factors, enables us to reproduce the expected e�ciency of MTD
and metronomic schedule in the case of Temozolomide chemotherapy. These �rst results are hopeful. Of
course, this model is not restricted to the administration of Temozolomide and can be adapted to any kind of
chemotherapy, in particular to any cocktails of anti-cancer agents. To take into account the clinical reality of
the drugs' e�ects, we will have to enrich the model using a pharmacokinetics and pharmacodynamics (PK/PD)
model for each drug administrated.

Furthermore, we exhibit here a good set of parameter values suitable for a glioblastoma non treated or treated
by Temozolomide. In practice, there exists a huge variability of these parameters due to both the type of cancer
or the diversity of metabolism in the patients. Thus a clinical transfer of such a huge system requires to reduce
the set of parameters. A careful parametric study of the system as well as new biological quantitative rules will
help us to identify a small set of parameters crucial for such dynamics.

Note that we present here results for tumors that are radially distributed, but of course the model could
handle any kind of tumor shape, just by changing initial condition. In the same way, it could be interesting to
take into account the heterogeneity of the tumor, by considering anisotropic di�usion of the di�erent quantities.
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