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Abstract

We show in this paper that the gradient schemes (which encompass a
large family of discrete schemes) may be used for the approximation of
the Stefan problem 0,z — A{(@) = f. The convergence of the gradient
schemes to the continuous solution of the problem is proved thanks to
the following steps. First, estimates show (up to a subsequence) the weak
convergence to some function u of the discrete function approximating .
Then Alt-Luckhaus’ method, relying on the study of the translations with
respect to time of the discrete solutions, is used to prove that the discrete
function approximating (@) is strongly convergent (up to a subsequence)
to some continuous function x. Thanks to Minty’s trick, we show that
X = ¢(u). A convergence study then shows that u is then a weak solution
of the problem, and a uniqueness result, given here for fitting with the
precise hypothesis on the geometric domain, enables to conclude that
u = u. This convergence result is illustrated by some numerical examples
using the Vertex Approximate Gradient scheme.

Key words : Stefan problem, gradient schemes, uniqueness result, con-
vergence study.




Gradient schemes for the Stefan problem

1 Introduction

We are interested here in the approximation of @, solution to the so-called Stefan
problem:
ou — Al(u) = f, in Q x (0,T) (1)

with the following initial condition:
u(x,0) = upi(x), for ae. x € Q, (2)
together with the homogeneous Dirichlet boundary condition:

Cla(z, b)) = 0 on 9Q x (0,T), (3)

under the following assumptions:

Q) is an open bounded connected polyhedral subset of R?, d € N* and T > 0,

(4a)
Uini € L*(Q) (4b)
feL*(Qx(0,1), (4c)
¢ € C°(R) is non-decreasing, Lipschitz continuous with constant
L¢ and s.t. ¢(0) =0, (4d)
and
IC(s)| > als| — b for all s € R for some given values a,b € (0, +00). (4e)

The Stefan Problem (1)-(2)-(3) arises in particular in the study of the heat
equation in a nonmobile medium with two thermodynamical states, say solid and
liquid. Denoting, for (x,t) € Q x (0,T), by O(x,t) the temperature and by X (x, )
the normalised mass of liquid phase per unit volume (X (x,?) = 0 means that the
medium is solid at point (x,t) and X (x,¢) = 1 means that it is liquid), the internal
energy u(x,t) can be modelled by u(x,t) = H.O(x,t)+ L X (x,t), where H. denotes
the heat capacity (assumed to be constant and identical for the liquid and the solid
phases) and Ly denotes the latent heat of fusion at the given fusion temperature
©y. The heat equation can then be expressed by

0 — divIAVO(x, 1)) = f(a,t), in Q x (0,T), (5)

where A is the heat conductivity (assumed to be constant, isotropic and identical
for the liquid and the solid phases). Dirichlet boundary conditions are assumed to
be given on the temperature O, together with an initial condition given on #. The
thermodynamical equilibrium is then assumed to be expressed by

(O(x,t) <O and X(x,1)

=0
or (O(xz,t) =07and 0 < X(x,t) <1) (6)
or (O(x,t) >0 and X(x,t) =1) a.e. (x,t) € Qx(0,7T).
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Gradient schemes for the Stefan problem

We may then remark that, under condition (6), X (x,t) and ©(x,t) can be expressed
by X(z,) = £(u(, £)) and O(x,1) = 1 (a(x,1)), with

S — Lfg(s)
Aiﬂc

s— H.Oy

R.
I , Vs €

€(s) = min(max( ,0),1) and ((s) =
Plugging the preceding expression of ©(x,t) as function of @(x,t) in (5) leads to
(1), in which the function ¢ is Lipschitz continuous (it is in fact continuous and
piecewise affine), nondecreasing, and constant on the interval [H.©¢, H.©¢ + Ly].
Many results are known in this situation, in particular the fact that, if f = 0 and
if the measure of the set {x € Q,u(x,t) € [H.Of, H.O¢ + L]} (called the “mushy
region”) is equal to zero at ¢ = 0, then it remains equal to zero for all ¢ > 0, and
a discontinuity of u between the values H.©; and H.O; + L; may move inside the
domain (see [5]). Therefore, Problem (1)-(2)-(3) has to be considered in a weak
sense, which includes the Rankine-Hugoniot condition for the conservation of u in

the case of discontinuities. A function @ is said to be a weak solution of Problem
(1)-(2)-(3) if the following holds:

a€ LY (2% (0,7)), ¢(a) € L*(0,T; Hy(%2)),
/ / u(x, t)Opp(x,t) + V((a)(x,t) - V(x,t)) dedt — / Uini ()@ (2, 0)de

Q
/ / f(z, t)p(z, t)dedt, Yo € CZ(Q x [0,T]),
(7)
where we denote by C2°(Q2x [0, T'[) the set of the restrictions of functions of C2°(2x]—
T[) to  x [0,T7.

We also recall that, in mathematical finance, some derivative of the price of an
American option is the solution of some Stefan problem [3, 4], whose computation
is equivalent to the resolution of a variational inequality.

Let us first mention that the first proof of existence of a solution to Problem (7)
has been provided in [1]. This proof relies on the convergence, as ¢ > 0 tends to
zero, of the solution . of the following strictly parabolic regularization of (1):

Orue — A(C(ue) +ete) = f(z,t), in Q x (0,7). (8)

It is easy to prove that 0. remains bounded in L?(0,T; H-1(2)), and that ((@.)
remains bounded in L?(0,7; H}(2)) for all € > 0. But no compactness can be de-
duced from these two bounds. One remarkable idea in [1] is to show that ||((us) —
C(ue)(+, - + 7)llz2(@x(0,7)) tends uniformly to 0 with 7. Then Kolmogorov’s theo-
rem allows to build a sequence (&,,)men converging to 0 such that the sequence
(¢(te,,))men converges to some function x in L2(Q x (0,7)). A L>(0,T; L?(2))
bound on w. allows to extract a subsequence from the sequence (&y,)men (identi-
cally denoted) such that there exists 4 € L>(0,T; L?(Q2)) such that (i, )men weakly
converges to 4. Then Minty’s trick (which is available thanks to the monotonicity
of ¢) provides that x = ((a) (this is detailed in Lemma B.1).

These ideas have been used in the study of the convergence of a finite volume
method, done in [12]. In this paper, A—admissible meshes are used, in the sense
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that in each control volume K, there exists a given point xx such that, for two
neighbouring control volumes K and L sharing the interface ok, the line (xx, xr)
is parallel to the normal vector ng  to ok, oriented from xx to xy. Then the
approximation of @ in the control volume K (resp. L) is denoted by ug (resp. ur),
and the approximation of V{(@) - ng, at this interface is given by the so-called
two-point flux approximation %. A great advantage can be drawn from
this approximation: multiplying the discrete scheme by ux and summing on the
control volumes leads to expressions such as (((ur) — ((ug))(ur — ug). Thanks
to the Cauchy-Schwarz inequality, it is easy to prove that this expression is greater
than (n(uz) — n(ux))?, where 7 is a primitive of (¢’)*/2. Then functional properties
(including a discrete maximum principle), similar to that of the continuous problem,
can be shown, and the weak convergence of u and Vn(u) in L?, as well as the strong
convergence of () in L? thanks to monotony arguments and Kolmogorov’s theorem,
are proved. Stronger convergence properties (i.e. convergence of u and Vn(u) in
L?) could then easily be shown, following the ideas developed in the present paper
(see Lemma 3.2, Theorem 3.3 and Remark 1).

Unfortunately, if the diffusion term A((u) is approximated by another method
than two-point flux approximation, say a general finite element method or mixed
finite element method, all the results obtained from the multiplication by « no longer
hold.

Concerning the uniqueness of the solution of (7), many results are given in
the literature under various hypotheses. A uniqueness theorem was proved in [12]
with more restrictive assumptions on € than (4), and a uniqueness theorem for
nonlinear convection-diffusion problems was proved in [6]. This uniqueness result
was extended to the notion of entropy process solution in [11], useful to prove the
convergence of a numerical scheme, which extends the two-point flux approximation
[12]. Therefore we have to check the uniqueness of the solution under the precise
assumptions (4) made here. This is done in Theorem 4.1, the proof of which provides
the opportunity to study the convergence of some gradient schemes to regular linear
parabolic problems.

The purpose of this paper is to study the convergence of the so-called gradient
schemes for the approximation of the Stefan problem given by its weak form (7). This
framework includes, for example, the general case of the conforming finite elements
(see [2], [9], [16] for the use of this specific method). It also includes the case of
mixed finite element methods Gradient schemes have been studied in [13] for linear
elliptic problems, and in [8] in the case of nonlinear Leray-Lions-type elliptic and
parabolic problems. For such general methods, the monotony properties obtained
from the two-point flux approximation cannot be used, and the multiplication by
the solution w of the discrete scheme is of no use: in order to get estimates, one can
only multiply by ((u). We have therefore introduced the additional hypothesis (4e)
(which is not restrictive in practice, since it concerns the values of ((u) for large u,
whereas u remains generally bounded) in order that a L? estimate on ((u) implies
one on u.

This paper is organised as follows. We first apply the gradient discretisation
tools (described in an appendix) to the Stefan Problem in Section 2, and derive
some estimates, which are used in Section 3 for the convergence analysis. Then,
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turning to the uniqueness of the solution of (7), we first establish the existence of
the continuous solution of a linear parabolic problem, showing the regularity which
is further needed in the course of the uniqueness proof (see Section 4). Finally,
numerical examples show the behaviour of the VAG scheme [13] which presents
some interesting characteristics for coupled flows in porous media (see Section 5).

2 Approximation of the Stefan problem by space-time
gradient discretisations

Let D = (Xp,p, Vp, (t(”))nzo,_._vN) be a space-time discretisation in the sense of
Definition A.9 such that IIp is a piecewise constant function reconstruction in the
sense of Definition A.8. We define the following (implicit) scheme for the discretisa-
tion of Problem (7). We consider a sequence (u(”))nzo,m, n~ such that:

U(O) S X’D70,
n (n+3) w1 — (")
R O e
n+ L
/ (65;*2)u<w>ﬂpv< )+ Vol (D) (x) - vpv@z)) dx (9)
Q

(n+l

= +) /fthDv( )dedt, Vv e Xpy, Vn=0,...,N—1.
(n t(n)

We again use the notations IIp and Vp for the definition of space-time dependent
functions (note that we define these functions for all ¢ € [0,T7):

(x,0) = Opu® (x)for a.e. ® € Q,

Hpu(x,t) = Mpu™t) (z)

HDC(U)( t) = Tp (ul"V) () (10)
Vp((u)(z, t) = Vp (ul" ™) (x),

for a.e. x € Q, ¥Vt € (t™, t*D) Yn=0,... . N —1.

IIpu

We also denote
Spu(z, t) = 5ot Du(@), for ae. (1) € Qx ((® 10+ vn=0,... N 1. (11)
We finally introduce the function
= /05 ((x)dz, Vs € R. (12)
which is used several times in the convergence proofs. We then have
_ /Osg(m)d:n - /OS(C(:U) — ¢(0))dx < Le /0 sz = Lf;, (13)
and, from Hypotheses (4d) and (4e),

NS ¢(s)* _ (als| —b)
2/0 ((x)TCdxz 2L > ST (14)
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LeEMMA 2.1 (L*(0,T;L?*(f))) estimate, discrete L*(0,T; H}(f2)) estimate and
existence of a discrete solution)

Under Hypotheses (4), let D = (XD70,HD,VD,(t(”))n:07,,_7]v) be a space-time
gradient discretisation in the sense of Definition A.9 such that IIp is a piecewise
constant function reconstruction in the sense of Definition A.8. Then there exists
at least one solution to Scheme (9), which satisfies

AéLW%WWMWma

T (15)
N 0
+ /Q (Z(Tpu® (z)) — Z(Tpu®(z)))dz < /0 /Q (@, H)IIpC (u)(, t)dzdt.

Moreover, there exists C1 > 0, only depending on L¢, a, b, Cp > Cp, Ciy >
||tini — HDU(O)||L2(Q), f such that, for any solution u to this scheme,

ITIpC(w)l Loo (0,7;22(0)) < C1, and [|Hpul|peo,7;22(0)) < Ch, (16)

and
IVoC(u)ll 2 (x 0,y < C1- (17)

Proof
Before showing the existence of at least one discrete solution to Scheme (9), let
us first prove (16) and (17). From the properties of function Z defined by (12),

and using f: ((z)dz = Z(b) — Z(a) = ¢(b)(b—a) — f; ¢'(z)(z — a)dz, we get, from
Hypothesis (4d), that
1
302y TpC (™) > Mp Z (™) — MpZ(u™).

We then let v = &("Jr%)C(u(”“)) in (9), and we sum the obtained equation on
n=20,....,m—1 for a given m = 1,...,N. Accounting for the above inequality
yields (15). Thanks to the Cauchy-Schwarz inequality, we get that

$(m)
Mo 2™ oy + [ 19060
< £l 2625 (0,0 ITDE (W) 220 (0,40myy + TIDZ (@) | L1 ),

which in turn yields, thanks to the Young inequality, (13) and (14),

1 . t(m)
TI/C”HDC(u( ))H%m)ﬂr/o IV D¢ () (-, 1)1 (gyadt

0127 2 1 2 L¢ 0) 2
< 7||f||L2(QX(0’t(M))) + @HHDC(U)HLZ(QX(O,t(m))) + ?HHDU( )HLZ(Q)

Applying (54) concludes the proof.
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LEMMA 2.2 (Uniqueness results on the discrete solution)

Under Hypotheses (4), let D = (XD,(]aHD,V'Da(t(n))nzo,.A.,N) be a space-time
gradient discretisation in the sense of Definition A.9 such that IIp is a piecewise
constant function reconstruction in the sense of Definition A.8. Let u(®) € Xppo be
given, and, for n = 0,..., N — 1, let u(»™1) € Xp 4 be such that (9) holds. Then, for
alln=0,...,N — 1, OHpu™) € L2(Q) and ¢((u"*V) € Xp 4 are unique.

Proof

Let us consider two solutions, denoted w("t1) g+l ¢ Xpy, for some n =
0,...,N —1, such that (9) holds with IIpu(™ (x) = IIpa™ (), for a.e. € Q. We
then subtract the corresponding equation with (™1 to that with u(™t1). We get

L (D) _ (1) (g
/Q( Tp( 5 )( )Hpv(w) 1
PR ) — (@) (@) - Vou(e) )de =0, 1)
\V/'UGXD’O.

We let v = ¢(u™t1)) — (@YD) in (18). Using Hypothesis (4d), we may write that

(I (u™ ) — a0 (@))p (¢ (V) — (@™ )()
= (pu" " (2) — Tpua" ) (@)) (¢ (Mpu" V(@) — ([pa"(2))) = 0,

which implies that
/ Vo (¢(") = (@"))(x)Pdz = 0,
Q

and therefore that ¢(u(™t1) = ¢(u™+Y). We then get, from (18), that

(n+1) _ ~(n+1)
/ M (u ? )(w)HDU(az)dw =0, Yve Xpp.
Q &(n+§) ’

It now suffices to let v = w1 — G+ iy the preceding equation, to get that
Mpu™tV)(z) = Mpu"tY (z) for ae. = € Q.
O
In order to fulfil the hypotheses of discrete Alt—Luckhaus theorem B.3, let us
study the time translates.

LEMMA 2.3 (ESTIMATE ON THE TIME TRANSLATES)

Under Hypotheses (4), let D = (XD,O,HD,VD,(t(n))nzo,...,z\/) be a space-time
gradient discretisation in the sense of Definition A.9 such that IIp is a piecewise
constant function reconstruction in the sense of Definition A.8. Then there exists
Cy > 0, only depending on L¢, a, b, Cp > Cp, Cini > ||uini — H’DU(O)HLQ(Q), f such
that, for any solution u to Scheme (9),

I () (-4 7) = TpC () () B o rmyy < Calr + 8),%7 € (0,T). (19)

International Journal on Finite Volumes 7
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Proof

In order to make the proof clear, let us give its principle, assuming that a solution
@ of the continuous equation (1) is regular enough. We write the time translate of
this solution in L?(Q x (0,7 — 7)), for a step 7 € (0,T). We first note that
(Claa,t + 1)) = ((alz,)))* < Le(C(ale, t+ 7)) = C(ale, 1)) (@@, t +7) - al, 1)),
which gives, using (1),

(C(a(m,t + 7)) — ((alz, 1)) T
< Le(C(u(z,t + 7)) — C(u(x, 1)) / Ovu(x,t + s)ds

< Le(C(a(e, t + 7)) — ((a(z,1))) /;T(AC(E(%?? +5)) + f(x,t + 5))ds.

Therefore we have

= LC/ / /Q(C(‘(w t+ 7)) — C(a(a, 1))

A¢(u(x,t+s)) + f(x, t + s))dedtds
T—1
< LC/ / / —V{(u(x,t + 7)) + V{¢(u(zx, 1)) - V¢(u(z,t + s))dedtds

+L</ /T / (.t + 7)) — (@, ) f (. t + 5)dwdids.

Each product ab of the above right hand side is then bounded by %(a2 + b%), which
allows to conclude, thanks to the continuous estimates similar to (16), that

/T T/ (e, t+ 7)) - ((a(z, 1)) *dzedt < 7C.

Let us now use the same ideas for the proof of (19). Let 7 € (0,7"). Similarly
using that L¢ is a Lipschitz constant of ¢ and ¢ is nondecreasing, and using (58),
the following inequality holds:

2 T—1
/ (M) .t + 7) — TIp () (e 1)) dad < L / A(dt,  (20)
Qx(0,T—7) 0

where, for almost every ¢t € (0,7 — 7),

Al) = /Q (pC ().t +7) — TpC(w)(a. 1)) (Mpu(a. t+ ) — pula. 1)) da.

Let t € (0,7 — 7). Denoting ng(t), n1(t) =0,..., N — 1 such that t("0®) <t <
toM+1) and ¢tm®) <t 4 7 < O+ we may write

International Journal on Finite Volumes 8
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A@) = [ (Tog(™ O4)(@) - pg(u™ 1))
n1(t)

1
x( Z &(”+%)5gl+2)u(ac))dac,
n=no(t)+1
which also reads

A0 = [ (Hog@™ (@) - Hp((u ) (@)

“ N-1 L (21)
(3 xnltst 4 )@ sy () ) da,
n=1

with x,(t,t +7) = 1 if t™) € (t,¢t + 7] and x, (¢, t +7) = 0 if t™) & (t,¢ + 7].
Letting v = ¢(uM®+D) — ¢(u(0®+1) in Scheme (9), we get from (21)

A(t) =
N-1
Y xaltt+7)
n=1 t(n+1)
/ / f(x,t) dt HDC( (na(t ‘H))(ac)—HDQ(U("O(t)+1))(a:)>dm
N—-1 ™
Xn(t,t + 7)™ T2)
n=1

< [ Foctu)(@) - (Vocu™ ) (@) - Voo Y) @) ) da.

Using the inequality ab < %(a2 + b?), this yields:

1 1
A(t) < 5A0() + 5 A1) + Ax(t) + As(d), (22)
with
N-1 L
= Z Xn(t,t+ T)&(”+2)/ V(w0 O+ (x))2de,
n=1 Q
N-1 )
A(t) =) xnlt t+ )&t 2) / Vol (u™m®+1)) (2 [2de,
n=1 Q
N-1 L
= xult,t 7)) / Vol () (@) Pda,
n=1 Q
and
Asz(t) =
N—

t(n+1)

- (, MCSTORSY DN (x))de.
e+ V[ i O @)~ g0 ) @))a

n=

International Journal on Finite Volumes 9
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Applying [14, Proposition 9.3] yields

T—1
/O Ao(t)dt < (7 + &)1V ()22 @01

T—1
ad [ A0 < (¢ + DT a0
as well as

T—1
/0 Ay(H)dt < 79022 0.1 (24)

and, with again the application of [14, Proposition 9.3], and using the Young in-
equality as well as (16), we obtain

T—T
/0 Az(t)dt < (14 BTCF + 7/ 17205 (0.1)): (25)

Using inequalities (20), (22), (23), (24) and (25), we conclude the proof of (19).
g

3 Convergence results

THEOREM 3.1

Let Hypotheses (4) be fulfilled. Let (D;,)men be a consistent sequence of space-
time gradient discretisations in the sense of Definition A.10, such that the associated
sequence of approximate gradient approximations is limit—conforming (Definition
A.4) and compact (Definition A.5, it is then coercive in the sense of Definition A.2),
and such that, for all m € N, Ilp,, is a piecewise constant function reconstruction
in the sense of Definition A.8. For any m € N, let u,, be a solution to Scheme (9),
such that ||uin; — HDMUSS)HLQ(Q) — 0 as m — oo.

Then there exists u € L2(Q x (0,T)) such that

1. TIp,, u,, weakly converges in L?(Q x (0,T)) to u as m — oo,
2. TIp,, ¢(uy,) converges in L2(Q x (0,7T)) to ¢(u) as m — oo,
3. ((u) € L2(0,T; H(Q)) and Vp,, ((uy,) weakly converges in L2(Q x (0,7))? to
V{(u) as m — oo,
and u is the unique weak solution of Problem (7).

Proof
We consider, for all m € N, the spaces By, = llp, Xp,, 0 C L*(2), embedded
with the norm

|wlB,, = inf{||u|p,,, Ip,,u=w}, Yw € By, ¥Ym € N.

The compactness hypothesis of (Dy,)men allows to enter into the framework of dis-
crete Alt-Luckhaus’ theorem B.3.

International Journal on Finite Volumes 10
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Thanks to Lemma 2.1, we get that Hypothesis (h1) of Theorem B.3 is satisfied.
We classically identify L2(0,T;L?(Q2)) and L?(Q x (0,7T)), and we define, for 7 €
(0,7); gm(7) = [MpC(w)(; - +7) = HpC(w)(-; ) 2@ (0,7-7)) and g(7,t) = (Ca(T +
&))'/2. Thanks to Lemma 2.3 and to the continuity in means theorem (which implies
that g, is continuous in 0), we may apply Lemma B.2 and deduce that hypothesis
(h2) of Theorem B.3 also holds. Therefore, there exists x € L2(Q2 x (0,7")) such that
p,, ¢ (um) converges, up to the extraction of a subsequence, to x in L2(2 x (0,7)).
Again applying Lemma 2.1, we get that there exists u € L?(Q x (0,T)) such that
IIp,, u,y, weakly converges, up again to the extraction of a subsequence, to u in
L?(Q2x (0,T)). Thanks to Lemma B.1, we conclude that x(z,t) = (u(z,t)) for a.e.
(x,t) € @ x (0,T). It now remains to prove that u is the weak solution of Problem
(7).

Let m € N, and let us denote D = D,,, (belonging to the above subsequence)
and drop some indices m for the simplicity of the notation.

Let ¢ € C°([0,T)) and w € C(Q2) , and let v € Xp be such that

v = argmin Sp(w).
ZGX970

We take as test function v in (9) the function &("+%)4p(t("))v, and we sum the

resulting equation on n =0,..., N — 1. we get
™+ ) =74 20
with
N-1 ) 1
7™ = Y ar () / oy u(@)pu(e)da,
n=0 @
N-1 X
T = 7 a () / Vol(u")(@) - Vpu(a)da,
n=0 @
and
m) N-1 t(n+1)
Tim _ () / x,t)[Ipv(x)dzdt.
=2 e | [ @ hlipe(@)

n=0

Writing

T
T = _ / o () / Tpu(z, ) pv(z)dedt — o(0) / pu® (z)pv(z)de,
0 Q Q
we get that

T
lim 7™ = — /0 o () /Q u(z, yw(z)dzdt — o(0) / Uini () w(x)de.

m— 00 Q

We also immediately get that

T
lim T\™ = /0 o(t) /Q V((u)(x,t) - Vw(z)dzdt,

m—ro0

International Journal on Finite Volumes 11
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lim T( / /f x, t)w(x)dxdt.
m—0o0

Since the set 7 = {37 | pi(t)wi(x) : ¢ € N,p; € C[0,T),w; € C(2)} is dense
in C°(Q2 x [0,7)), we conclude the proof of Theorem 3.1 thanks to the uniqueness
of the limit solution proved in Theorem 4.1 below.

and

0

The next lemma states a continuous property, which is used below for proving
that the convergence of Vp, ((un) to V((u) is in fact strong.

LEMMA 3.2
Under Hypotheses (4), let u be a solution of (7). Then the following property
holds:

/ / VC(u) (@) Pdadt + [ (Z(a(a,T)) = Z(u(@))da
/ /f x,t)((u(x,t))dedt.
Proof

We first notice that (7) implies that O,u € L?(0,T; H1(2)) (and therefore u €
C([0,T), H71(2)) with u(0) = ujy;) and that we can write

/OT g(@tu( / V((u deac) dt o8)

= / / fwdxdt, Yw € L*(0,T; HA(Q)),
0 Q

(27)

denoting by (-, -) the duality product (H~1(Q), H}(2)). We prolong u by u(t) = ini
for all t <0, and by u(t) = u(T) for all ¢t > T.
Let h € (0,T). We consider oy, € L?(R; H~(Q)) defined by

(an(t), w) = % /t  (O(s).w)ds

1
E(u(w,t) —u(x,t — h))w(x)dz, for t € R, Yw € H(Q).

S~

Then oy, tends to dyu in L2(R; H=1(Q)) as h — 0, which implies that

Jim /Q %(u(m,t) (@, t — h))w(a, t)dsdt

h—0

T
. _ 2. 7yl
—I—/O Qvg(u) Vwdxdt /0 /wadwdt, Yw € L*(R; Hy(Q2)).

B>

Let us take w = ((u) in the above equation. We get

Jim / / — u(m, b — h)C(u(a, b)) dadt

h—0

/ /|v¢ )2 dzdt = /OT/QfC(u)dmdt.
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Again observing that fab ((z)dz = Z(b) — Z(a) = ¢(b)(b— a) f ((z)(x — a)dz,
which implies Z(b) — Z(a) < {(b)(b — a), we get that
// %(u(m,t) e, t — R)C(u(x, £))dadt
]R/Q )
> R/Qh(Z(u(m,t))Z(u(m,th)))dmdt.

Since

// L Z(u(@, 1) = Z(u(m, t — h)))dzdt

T-HL
/ / u(e, T))dxdt — / / (wini () )dadt

1)) — Z(uii(z)))dz
Q

We may then pass to the limit A — 0. We then obtain

/Q(Z(u(w,T)) (ini (@ d:c—l—/ /|vg |dwdt</ /fg Ydadt.
29)

We then follow the same reasoning, defining w = ((u) and 3, € L?(R; H=1(Q2)) by

1 [tt+h
(Br(t), w) = h/ (Oyu(s),w)ds, for t € R, Yw € HL ().
t

Remarking that f ((z)dz = Z(b) — Z(a) = ((a)(b—a) + f; ¢'(x)(b — z)dz, which

implies Z(b) — Z(a) > ((a)(b — a), we get that

//;L( (.t + h) — u(w, £))C(ul, 1)) dzdt

R

i
R

(Z(uw(z,t+h)) — Z(u(x,t)))dzdt.

S

Q

Since

// w(@,t+ ) — Z(u(e, 1)) dzdt
h/T h/ u(z,T))dxdt — / / (wini(x))dadt
-/,

(Z(u(e, T)) = Z(uini()))da

We may then pass to the limit h — 0. We thus get

/Q(Z(u(:c,T)) (uini(z daz—i—/ /yvg \dmdt>/ /fg )dadt,

which, in addition to (29), concludes the proof of (27).

We may now state the strong convergence of Vp((u).
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THEOREM 3.3 (STRONG CONVERGENCE OF THE NUMERICAL SCHEME)

Under the same hypotheses as those of Theorem 3.1, Then there exists u €
L2(Q x (0,T))nC([0,T), H(2)) such that

1. TIp,, um(t) weakly converges in L?(£2) to u(t), for all t € [0, 7], as m — oo,
2. TIp,, ¢ (up)(t) converges in L?(2) to ¢(u)(t), for all ¢t € [0,T], as m — oo,

3. ((u) € L2(0,T; H}(Q)) and Vp,,((um) converges in L2(Q x (0,7))? to V¢ (u)
as m — 00,

and u is the unique weak solution of Problem (7).

Proof

We first apply Theorem 3.1, which shows the weak convergence properties for
Ip,, um and Vp, ((um), and strong convergence for Ilp  ((uy,). Let ¢ € C(Q),
and let w,, such that

Wy, = argmin Sp(p).
z€Xp,0

We get from Scheme (9) and from the estimates given in Lemma 2.1 the following
property: there exists ('3, only depending on the data introduced in 4, such that,
for all 0 < s <'t,

< (t— 54 28)"2Cs|lwmllp,,,

/Q(Hpmum(m,t) —p,, um(x, s))p,, wy,(x)de

which gives, thanks to (16),

[ 010, tn(2,0) T, )
Q
< (t = s+ 28m) 2 Cslwmlp,, + 2C1 [0 — TIp, winll2(0)-

Using va + b < \/a + Vb, we get
[ @t (a.6) = T, (. 8) () < gl = 5,15,
Q

with g(a,b) = /aCy + b, with Cy = C3max,, |wn|p,, and hi = (20,,)/2Cy +
2C1 |l — Up,, wm||r2(q). We then may apply Theorem B.4 (given in the Appendix),
proving that, for all ¢t € [0,T], IIp,, um(t) tends to u(t) for the weak topology of
L3(9).

Thanks to the convexity of Z, we then get

/Z(u(m,T))dmgliminf/ Z(Ip, um(x,T))dx,
Q Q

m— 00

and we classically have, from the weak convergence property of Vp, ((um),

T T
/0 /vag(u)(x,t)y?dmdtghminf/o /Q|vpmg(um)(:c,t)|2dmdt.

m—r0o0

International Journal on Finite Volumes 14



Gradient schemes for the Stefan problem

Therefore, we may pass to the limit sup as m — oo in (15), and subtract (27). We
thus obtain

m—00

T
. 2
hms;p /0 /Q Vo, (1) (, £) [2dadlt + /Q Z(Tp, up(z, T))da
T 2 i uU\x xI.

This shows that

m—ro0

lim /OT/Q|VDmC(um)(iB,t)|2dwdt:/()T/Q|V§(u)(a:,t)|2da:dt,

which concludes the proof of the convergence of Vp, ((uy) to V{(u) in L*(Q x
(0,7))¢, and

lim | Z(p, up(z, T))da / Z(u(, T))dz. (30)

m

Note that the preceding limit result holds in fact for all ty € [0, 7] instead of T'. We
then remark that, thanks to the monotony of ¢, there holds [10, Lemma 2.3]

1

QTC(C(CL)—C((?))2 </ (C(s) = C(a))ds = 2(b) — Z(a) = ((a)(b - a), Va,b € R.

We then deduce

224 Q(C<HDmum(a:,t0)) — C(u(z, t)))dw

< /Q(Z(Hpmum(x,to» — Z(u(w, to)))dw
— Jo Clu(z, to)) (Hp,, um (2, to) — u(z, to))d.

Since the right hand side tends to zero using (30) and the weak convergence of
p, um(- to) to u(-,tg), we conclude the convergence in L?(Q) of ((Ilp,, um(-,t0))
to ¢(u(+,to)), hence concluding the proof.

O

Remark 1 In the case of where a two-point flux approximation is used instead of a
gradient scheme, one can get with the same arguments that the approximation of u
is strongly convergence at all times to the weak solution.

4 Proof of uniqueness by a regularised adjoint problem

Let us state and prove the uniqueness theorem, admitting some existence theorem
proven below. The method is similar to that of [12], where the existence result for
the adjoint problem is given under some regularity hypotheses on €2 which are not
done in this paper.

THEOREM 4.1 Under Hypotheses (4), there exists at most one solution to (7).
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Proof
Let u; and uy be two solutions of Problem (7). We set ug = u; — ug. Let us
C(Ul(w,t)) — C(u2<$7t)) if Ul(m,t) #
ui (@, t) — ua(x,t)
us(x,t), else q(z,t) = 0. For all T € R and for all ¢y € L?(0,T; H}(Q)) with
Op € L2(2 x (0,T)) and A € L2(Q x (0,T)), we deduce from (7), approximating
1 by regular functions ¢ € C2°(Q2 x [0,7")), that

also define, for all (z,t) € Q x RY, q(=,t) =

T
/ / ug(x,t) <8tw(zc,t) + q(m,t)Az/z(a:,t))da:dt = 0. (31)
0 Q
Let w € C°(Q2 x (0,T)). Let us denote, for ¢ > 0, g- = ¢ + . We have
€ < g(x,t) < L¢ +¢, for all (x,t) € Q x (0,7,

and
(QE(:B’ t) — q(m> t))2
g=(z, 1)
Let 1. be given by lemma 4.2 below, with g = ¢.. Substituting v by . in (31) and
using (36) give

<e. (32)

T T
\/ /ud(m,t)w(m,t)d:cdt| < ]/ /ud(m,t)(qs(w,t) — q(x, 1)) At (x, t)dadt|.
0o Ja o Ja
(33)
The Cauchy-Schwarz inequality, (37) and (32) imply

/ /ud x,t)(g-(x,t) — q(x, 1)) A (, t)\dwdt}2
/ /ud 1) a(, t;g xqgt( 1)) da:dt/ /q6 1) (Awe(m t)) dzdt  (34)

<5/ /udmt ) daedt 4T/ /|Vw:nt|da:dt

We deduce that the right hand side of (34) tends to zero as ¢ — 0. Hence the left
hand side of (33) also tends to zero as € — 0, which gives

T
|/O /Qud(cc,t)w(w,t)dwdﬂ =0. (35)

Since (35) holds for any function w € C2°(2 x (0,T")), we get that ug(x,t) =0
for a.e. (x,t) € Q x (0,T), which concludes the proof of Theorem 4.1.
O
Let us now prove the properties of the function 1, used in the course of the proof
of Theorem 4.1.

LEMMA 4.2

Under Hypothesis (4a), let w € L*(0,T; H}(Q)) and g € L=(Q x (0,T)) with
9(x,t) € [gmin, gmax) With given gmax > gmin > 0 for a.e. (x,t) € Q x (0,7). Then
there exists at least one function 1 such that,
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1. ¢ € L*(0,T; H (), 0y € L*(Q x (0,T)), Ay € L*(Q x (0,7)) (hence
b € CO0, T L(92))),

w('7 T) = 07
. the following holds
oY(x,t) + g(x, t) AY(x,t) = w(x,t), for a.e. (x,t) € Q2 x (0,T), (36)

SN

4. and
/0 ! /Q gz, 1) (A¢(m,t))2dwdtg4T /0 ! /Q Vw(z, t)2dzdt.  (37)

Proof

We first apply Lemma 4.4, which states the convergence of a gradient scheme to
Y € L0, T; HE(Q)) with 9p € L*(Q x (0,T)) and Ay € L*(Q x (0,T)) such that
(36) holds, setting v = 1/g, f = w/g, u(s) = s, ¥ini = 0 and changing ¢ in —¢ (this
ensures that Hypotheses (45) are fulfilled). Therefore the existence of ¢ satisfying
(36) follows. Let us prove that it satisfies (37). Approximating 1) by a sequence of
regular functions and passing to the limit, we get that [V ()| 12 € Co([0,T7)
and that

|| atanav.odait = =5 [ (Vi@ rPde + 5 [ (Vo0 Pa,
Q
for all s <7 € [0,7] and
/ / x, ) Ay (x, t)dedt = /T/ Vuw(zx,t) - Vi(x,t)dzdt.
Q

We thus obtain, multiplying (37) by Aw(x,t) and integrating on Q x (0, 7) for any
7€ 10,7,

/]Vq/J:BOQd:c— /|V¢m7|dm // azt Awmt))dwdt_

/O/QV (z,t) - Vip(z, t)dedt.

(38)
Since Vi (-, T) = 0, letting 7 = T in (38) leads to

/|wm0|da,~+// a:t A¢mt)) dedt =
/ /Vwaz t) - V(x,t)dadt.

Integrating (38) with respect to 7 € (0,7") leads to

//\VzmeQdacdr< /|V¢w0|dw I
/ / wt Aww t)) dedt  +  (40)
/0 /Q]Vw x,t) - V(x,t)|dedt.
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Using (39) and (40), we get

1 [T ) T
2/0 /Q\Vlﬁ(wﬁ)\ dxdr < 2T/0 /Q‘vw(fcvt)‘vw(:r,t)\dwdt. (41)

Thanks to the Cauchy-Schwarz inequality, the right hand side of (41) may be
estimated as follows:

[/OT/Q |Vw(zx,t) - Vw(a:,t)\da:dt]2

T T
g/ /|w(m,t)\2da;dt/ /yw(m,m?dmdt.
0 Q 0 Q
With (41), this implies

[Adé;%@JyVM%ﬂMuﬂQ )
§4T/O /Q\Vw(w,t)-vw(a:,t)\dwdt/o /Q\Vw(ac,t)dedt.

Therefore,

T T
/ / V(@ t) - Vob(a, £)|dwdt < 4T/ / Vo (a, ) Pdadt,
0 Q 0 Q

which, together with (39), yields (37).
O
In Lemma 4.2, we have used a result of existence of & € L?(0,T; H}(Q)) N
H'(0,T; L?(2)), such that Aa € L?(Q x (0,T)), solution to the following problem:

v(z,t)ou(x,t) — Au(zx,t) = f(x,t), for a.e. (x,t) € Qx (0,T) (42)
with the following initial condition:
a(x,0) = uipi(x), for a.e. z € Q, (43)
together with the homogeneous Dirichlet boundary condition:

u(x,t) =0 for a.e. (x,t) € 00 x (0,7, (44)

under the following assumptions (which are not exactly the standard ones done
in the literature):

Q) is an open bounded connected polyhedral subset of Rd, deN“and T > 0,

(45a)
uini € Hg () (45b)
feL*(Qx(0,T)), (45¢)

and
veL*(Qx(0,7)) and v(x,t) € [Vmin, Vmax) With given vmax > vimin > 0
for a.e. (x,t) € Q x (0,7). (45d)
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This problem, issued from (31), is called the regularised adjoint problem to Problem
(1). In order to prove the existence of a solution to Problem (42)-(43)-(44) under
hypotheses (45), we consider an approximation of this solution, using a gradient
scheme. Let D = (Xp,Ip, Vp, (t(”))nzow,N) be a space-time discretisation in the
sense of Definition A.9. We define the fully implicit scheme for the discretisation of
Problem (51) by the sequence (u(”))nzo,,,,,N C Xp, such that:

( U(O) S XD70,
(D) _ ()

u(”H) S XD() (5(n+%)u = HD
P &+3)

9

t(n+1)

(n+%)
/(n) / v(w,t)op 2 u(x)lpv(x)dedt (46)

$(n+1)
—f—& n+ /Vpu n+1)( ) VDU diL’—/

/ f(z, t)lIpv(x)dedt,
(n) Q
V’U € Xp .05 Yn=20,...,N —

We then denote by up(t) € Xpo the function defined by
up(t) = u™Y for ae. (x,t) € Q x (t™ ")) vp=0,... N -1 (47)

We then use the notations IIp and Vp for the definition of space-time dependent
functions, defining

pu(x,t) = Hput(x) and Vpu(z,t) = Vpul»t(zx),

for a.e. (x,t) € Q x (t™ ¢ty VYn=0,... N — 1. (48)

and

1
Spul, t) = 09 u(x), for ae. () € Qx (H D) v =0, N —1. (49)

Let us state some estimates and the existence and uniqueness of the solution to
the scheme.

LEMMA 4.3

L*(Q x (0,T)) estimate on épu and L>®(0,T; Xp,) estimate on u.

Under Hypotheses (45), let D be a space-time gradient discretisation in the sense
of Definition A.9. Then, for any solution u to Scheme (46), it holds:

t(m)
me/ / (opu(x 2da3dt+ ||Vpum\|L2

(50)
< ||Vpul® ||L2 QT ||f||L2 @x(1) Ym=1...,N.
mln
As a result, there exists one and only one solution u to Scheme (46).
Proof
We set v = vt — 4" in (46) and we sum on n =0,..., N — 1. We can then
write

%l%u“*lkmw - éwou(”’(scﬂ? < Vpu™(@) - (Vpul™™ (@) — Vpul™ (x)).
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Thanks to the Young inequality applied to the right hand side, we conclude (50),
which ensures the existence and uniqueness of the solution to the linear Scheme (46),
which leads to square linear systems.

O

We then have the following convergence lemma.

LEMMA 4.4 (A CONVERGENCE PROPERTY OF THE FULLY IMPLICIT SCHEME)

Let Hypotheses (45) be fulfilled. Let (D, )men be a consistent sequence of space-
time gradient discretisations in the sense of Definition A.10, such that the associated
sequence of approximate gradient approximations is limit—conforming (Definition
A.4) and compact (Definition A.5, it is then coercive in the sense of Definition A.2).

For any m € N, let u,, be the solution to Scheme (46) for a given W) e Xp,, 0, such

that HVUini — meugg))HLz(Q)d — 0 as m — oc.

Then there exist a sub-sequence of (Dy,)men, again denoted (Dp,)men, and a
function w € L2(0,T; HE(Q)) N HY(0,T; L*(€)) such that

1. TIp,, uy, converges in L2(2 x (0,T)) to 4 as m — oo,

2. Op,, um weakly converges in L2(2 x (0,7)) to 9y as m — oo,

3. Vp,, um weakly converges in L2(2 x (0,7))? to Vi as m — oo.

4. Au e L*(Q2 x (0,7)),

5. (42)-(43)-(44) hold.
Proof

Thanks to (50), Vp,,um, remains bounded in L>(0,T; L2(Q)%) and Tp,, un,
remains bounded in L?(2 x (0,7)). Since (50) also provides an L?(Q x (0,T))

estimate of dp, u;,, which immediately provides an L®°(0,T; L?(f2)) estimate on
(Ilp,, Um )men, thanks to

n—1

n 1y (k+3)
Iput™ —Tpu®|[f, g = 113 & )dp " ullZzq)
k=p
< () — t(p_l))||5Dm“m||%2(gx(0,T))'

Classically applying the Kolmogorov theorem (prolonging the functions by 0 outside

of 2% (0,T)), we deduce that there exists a function @ € L?(2x (0,T)) such that, up

to the extraction of a subsequence, (Ilp,, U )men converges to @ in L2(Q x (0,T)).
We then get that @ is such that

€ L*(0,T; Hy(Q)) N H' (0, T; L*(2)),
u(x,0) = ujpi(x) for a.e. x € Q,

T T (51)
/ / (v Oyt v+ Vi - Vo) dedt = / / f vdzdt,Yv € L*(0,T; Hy ().
0 Q 0 Q

Then (51) shows that Au € L%(Q x (0,T)) and that (42)-(43)-(44) hold.

International Journal on Finite Volumes 20



Gradient schemes for the Stefan problem

5 Numerical examples

5.1 The Vertex Approximate Gradient scheme

In the numerical tests proposed in this section, We use the Vertex Approximate
Gradient scheme [13]. In this scheme, a primary mesh M in polyhedra is given. We
assume that each element K € M is strictly star-shaped with respect to some point
x . We denote by Ex the set of all interfaces K N L, for all neighbours of K denoted
by L € M and, for a boundary control volume, £x also contains the element K NJS).
Each o € £k is assumed to be the reunion of d — 1 simplices (segments if d = 2,
triangles if d = 3) denoted 7 € S,. We denote by V, the set of all the vertices of o,
located at the boundary of o, and by V9 the set of all the internal vertices of . We
assume that, for all v € V2, there exists coefficients (aZ)zey, , such that

v = Z afx, with Z ol = 1.

eV, €V

Therefore, the d vertices of any 7 € S, are elements of V) U V,. We denote by

V=]V,

oe€

and by Vi the set of all elements of V which are vertices of K. For any K € M,
o €&k, T €Sy, we denote by Sk, the d-simplex (triangle if d = 2, tetrahedron if
d = 3) with vertex & and basis 7.

e We then define Xp as the set of all families © = ((ux ) Kem, (Uv)vey) and Xp o
the set of all families © € Xp such that u, = 0 for all v € V N IN.

e Disjoint arbitrary domains Vi, C UUE? Sk, are defined for all v € Vg.
Then the mapping Ilp is defined, for any u € Xp, by llpu(x) = ug, for a.e.
xe K\ UveVK Vi v, and Ilpu(x) = u, for a.e. € Vi, It is important to
notice that it is not in general necessary to provide a more precise geometric
description of Vi, than its measure.

e The mapping Vp is defined, for any u € Xp, by Vpu = Vﬁpu, where ﬁpu
is the continuous reconstruction which is affine in all Sk, for all K € M,
o € &k and T € S,, with the values ux at xx, u, at any vertex v of 7 which
belongs to V,, and )y, agug at any vertex v of 7 which belongs to V.

The advantage of this scheme is that it allows to eliminate all values (ug)geaq with
respect to the values (uy)yey, leading to linear systems which are well suited to
domain decomposition and parallel computing.

We then have the following result.

LEMMA 5.1 (GRADIENT SCHEME PROPERTIES OF THE VAG SCHEME)

We assume that, for all m € N, a gradient discretisation D,,, = (Xp,,,Ip,,, Vp,,)
is defined as specified in this section, respecting a uniform bound on the maximum
value of the ratio between the diameter of all K € M and that of the greatest ball
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with centre x g inscribed in K, and the ratio between the diameter of all Sk » and
that of the greatest ball inscribed in Sk -, for K € M, 0 € g and 7 € S,. We also
assume that hp, , the maximum diameter of all K € M, tends to 0 as m — co. Then
the sequence (D, )men is consistent, limit-conforming and compact (and therefore
coercive).

Proof
For all © € Xp, the following property

ITipu — Hpull 20y < hol|Voul| 120, (52)

is resulting from ﬁpu(w) —Ilpu(x) = (x — y(x)) - Vpu(x), for all ¢ € Sk ,, where
y(x) € Sk, is the point of the mesh M defined by y(x) = g if € € Sk, \
UvEVK Vi, and by y(x) = v if * € Sk N Vi .

Let us check that the hypotheses of Lemma A.7 are satisfied, for some C' only
depending on regularity factors specified in the statement of the lemma, for YSm =
(Xp,,,IIp, ,Vp, ). Then (57a) results from the interpolation results on the P finite
element under the regularity factor of the mesh, (57b) results from

/ (Vpu(m) ~p(x) + ﬁpu(w)divgo(a:)> de =0,
Q
and (57c) results from
[Tipu(- + &) ~ Fipullagee) < €IVoul 2y (59)

Therefore we obtain that the sequence (ﬁm)meN is consistent, limit-conforming and
compact. From this result and thanks to (52), it is immediate to check that the
sequence (D, )men is consistent and limit-conforming. We then remark that

[Tpu(- +€) ~ Mpullauay < [Mpu(- +€) — Hpu(- + &)z
+|Hpu(- + &) = Hpul|p2ra)y + [[Hpu — Hpul| p2(ga),
which leads, using (52) and (53), to
[Mpu(- + &) — Hpul r2rd) < (2hp + [ED VDUl L2(0)a-

The application of (60) proved in Lemma B.2 leads to the relative compactness in B
of any sequence (Ilp,, tm)men, if um € Xp,, o is such that ||u,,||p,, remains bounded.
This completes the proof that the sequence (Dy,)men is compact.

O
5.2 A 2D test case on a variety of meshes

In this 2D test case, we approximate Stefan’s problem (1) by using the VAG scheme
previously described in the domain = (0,1)? with the following definition of ¢ (),

U if w <0,
((u)y=¢ u—1 ifu>1,
0 otherwise.
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The Dirichlet boundary condition is given by & = —1 on 92 and the initial condition
(2) is given by @(x,0) = 2. Four grids are used for the computations, a Cartesian
grid with 322 = 1024 cells, the same grid randomly perturbed, a triangular grids
with 896 cells and a “Kershaw mesh” with 1089 cells as illustrated for example on the
Figure 3 (such meshes are standard in the framework of underground engineering).
The time simulation is 0.1 for a constant given time step of 0.001.

Figures 3,4, 5 and 6 represent the discrete solution wu(-,t) on all grids for ¢t =
.025,0.05,0.075 and 0.1. For a better comparison we have also plotted the interpo-
lation of u along two lines of the mesh, the first line is horizontal and joins the two
points (0,0.5) and (1,0.5), the second one is diagonal and joins points (0,0) and
(1,1). The results thus obtained are shown in Figures 1 and 2.

We can see that the obtained results are weakly dependent on the grid, and that
the interface between the regions u < 0 and u > 1 are located at the same place for
all grids. It is worth to notice that this remains true for the very irregular Kershaw
mesh, although it presents high ratios between the radii of inscribed balls and the
diameter of some internal grid blocks.

(a) t = 0.025 (b) ¢ = 0.050

(c) t =0.075 (d) t =0.1

Figure 1: Interpolation of u along the line [, 0.5] of the mesh for each grids : the
Cartesian in blue, the perturbed in red, the triangular in green and the Kershaw in
black dashed.
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(c) t =0.075 (d) t=0.1

Figure 2: Interpolation of u along a diagonal axe of the mesh for each grids : the
Cartesian in blue, the perturbed in red, the triangular in green and the Kershaw in
black dashed.

A Appendix: gradient discretisations for diffusion prob-
lems

A gradient scheme can be viewed as a general framework for nonconforming ap-
proximation of elliptic or parabolic problems. These methods have been studied in
[13] for linear elliptic problems, and in [8] in the case of nonlinear Leray-Lions-type
elliptic and parabolic problems. The interest of the notion of gradient schemes is
that it includes conforming finite elements with mass lumping (see Remark 6 below),
mixed finite elements, hybrid mixed mimetic methods [7, 8], some discrete duality
finite volume schemes, some particular Multi-point Flux Approximation and many
other schemes. We begin with the discrete elements used for space partial differential
equations.

DEFINITION A.1 (Gradient discretisation) A gradient discretisation D for a space-
dependent second order elliptic problem, with homogeneous Dirichlet boundary con-

ditions, is defined by D = (Xp o, IIp, Vp), where:

1. the set of discrete unknowns Xp g is a finite dimensional vector space on R,

2. the linear mapping IIp : Xpgo — L?(£2) is the reconstruction of the approxi-
mate function,
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(a) Cartesian (b) Perturbed

(¢) Triangular (d) Kershaw

Figure 3: Discrete solution u on all grids at t = 0.025.

3. the linear mapping Vp : Xpg — L?(Q)? is the discrete gradient operator. It
must be chosen such that || - |p := [[Vp - [[12(q)a is a norm on Xp .

Remark 2 (Boundary conditions.) The definition of ||-||p depends on the considered
boundary conditions. Here for simplicity we only consider homogeneous Dirichlet
boundary conditions, but other conditions can easily be addressed. For example, in
the case of homogeneous Neumann boundary conditions, we will use the notation
Xp instead of Xp g for the discrete space, and define

I llo 2= (1T - By + 19D - [220y0)2
DEFINITION A.2 (Coercivity) Let D be a gradient discretisation in the sense of Def-
inition A.1, and let Cp be the norm of the linear mapping Ilp, defined by
IIpv
> = max —“ b ||L2(Q). (54)
vexpo\{(0}  [[vllp

A sequence (D, )men of gradient discretisations is said to be coercive if there exists
Cp € Ry such that Cp,, < Cp for all m € N.

Remark 3 (Discrete Poincaré inequality.)
Equation (54) yields |[IIpv|[z2(q) < Cpl|Vovlr2(q)

The consistency is ensured by a proper choice of the interpolation operator and
discrete gradient.

DEFINITION A.3 (Consistency) Let D be a gradient discretisation in the sense of
Definition A.1, and let Sp : H}(Q) — [0, 4+00) be defined by

Vo € H(Q). Sole)= min (IMpv ¢l +[Vov = Vel ag) . (55)
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I [
1 1

(a) Cartesian (b) Perturbed

(¢) Triangular (d) Kershaw

Figure 4: Discrete solution u on all grids at ¢ = 0.050.

A sequence (Dp,)men of gradient discretisations is said to be consistent if, for all
© € H}(Q), Sp,, () tends to 0 as m — oo.

Since we are dealing with nonconforming methods, we need that the dual of the
discrete gradient be “close to” a discrete divergence.

DEFINITION A.4 (Limit-conformity) Let D be a gradient discretisation in the sense
of Definition A.1. We let Hg(Q) = {p € L2(Q)% divp € L2(Q)} and Wp:
Hgiv (2) — [0, 4+00) be defined by

VQO € Hdiv(Q)

Wp(e) = (56)

max Vpu(x) - p(x) + lpu(x)dive(x)) dz| .
| (Vou(e) - o) + Tou@dive(@))

A sequence (D, )men of gradient discretisations is said to be limit-conforming
if, for all ¢ € Hgiy(2), Wp,,(¢) tends to 0 as m — oo.

Dealing with generic non-linearity often requires compactness properties on the
scheme.

DEFINITION A.5 (Compactness) A sequence (D, )men of gradient discretisations is
said to be compact if, for all sequence u,, € Xp,, ¢ such that ||uy,|p,, is bounded,
the sequence (Ilp,, U )men is relatively compact in L?(€2).

Let us state an important relation between compactness and coercivity.
LEMMA A.6 (COMPACTNESS IMPLIES COERCIVITY)

Let (Dy,)men be a compact sequence of gradient discretisations in the sense of
Definition A.5. Then it is coercive in the sense of Definition A.2.
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(a) Cartesian (b) Perturbed

(¢) Triangular (d) Kershaw

Figure 5: Discrete solution u on all grids at ¢ = 0.075.

Proof

Let us assume that the sequence is not coercive. Then there exists a subsequence

of (D) men (identically denoted) such that, for all m € N, there exists um, € Xp,, 0\
{0} with

. M, umll 2@

lim ———

= 4-00.
m=oo  lum||p,,

This means that, denoting by vi, = wm/|uml|p,,, Mmoo [[p,, vimll2(q) = +00.

But we have ||v,,||p,, = 1, and the compactness of the sequence of discretisations
implies that the sequence (IIp,, vy )men is relatively compact in L2(Q2). This gives a
contradiction.

O

Thanks to [13, Lemma 2.4], we may check the consistency and limit-conformity
properties of given gradient schemes, only using dense subsets of the test functions
spaces. The following lemma, useful in Section 5, is an immediate consequence of
[13, Lemma 2.4] and of Kolmogorov’s theorem.

LEMMA A.7 (SUFFICIENT CONDITIONS)

Let F be a family of gradient discretisations in the sense of Definition A.1.
Assume that there exist C,v € (0,00) and, for all D € F, a real value hp € (0, +0o0)
such that:

Sp(p) < Chpllpllwze (o), for all ¢ € C°(Q), (57a)
WD(QO) < Ch'D||(P”(W1,oo(Rd))d7 for all ¢ € Ccoo(Rd)d, (57b)
Ilpv(- + &) — llpv
max IMpv(- +¢&) il V200 < Clg|”, for all & € RY, (57¢)
v€Xp o\{0} [vlp
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(a) Cartesian (b) Perturbed

(¢) Triangular (d) Kershaw

Figure 6: Discrete solution u on all grids at ¢t = 0.1.

where Cp, Sp, Wp are defined in this appendix.
Then, any sequence (D, )men C F such that hp, — 0 as m — oo is consistent,
limit-conforming and compact (and therefore coercive).

Remark 4 In several cases, hp stands for the mesh size: this is the case for the
numerical schemes used in Section 5.

DEFINITION A.8 (Piecewise constant function reconstruction)

Let D = (Xp,,IIp, Vp) be a gradient discretisation in the sense of Definition
A.1, and I be the finite set of the degrees of freedom, such that Xp o = R!. We say
that IIp is a piecewise constant function reconstruction if there exists a family of
open subsets of 2, denoted by (€2;);¢cr, such that Uielﬁi =Q, 2;NQ; =0 for all i #
J, and Ipu = >, uixq, for all u = (u;)icr € Xpo, where xq, is the characteristic
function of ;.

Remark 5 Let us notice that [[IIp - [[12(g) is not requested to be a norm on Xp.
Indeed, in many examples that can be considered, some degrees of freedom are
involved in the reconstruction of the gradient of the function, but not in that of the
function itself. Hence it can occur that some of the €); are empty.

Remark 6 An important example of gradient discretisation D = (Xp g, IIp, Vp) in
the sense of Definition A.1, such that Ilp is a piecewise constant function reconstruc-
tion in the sense of Definition A.8, is the case of the mass-lumping of conforming
finite elements. Indeed, assuming that (&;);cr is the basis of some finite-dimensional
space Vi, C H}(£2), we consider a family (€;);cs, chosen such that

1Y " uixe, = > uiillra) < B uwiVEl 2y, Yu € Xpy.

el el el
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We then define IIp as in Definition A.8, and Vpu = 3, ; u;V§;. This is easily per-
formed, considering P! conforming finite element, splitting each simplex in subsets
defined by the highest barycentric coordinate, and defining €2; by the union of the
subsets of the simplices connected to the vertex indexed by 3.

Remark 7 Note that we have the two important following properties, in the case of
a piecewise constant function reconstruction in the sense of Definition A.8:

g(Ilpu(x)) = lipg(u)(x), for a.e. x € Q, Yu € Xpy, Vg € C(R), (58)

where for any continuous function g € C(R) and u = (u;)ier € Xp,0, we classically
denote by g(u) = (g(ui))icr € Xp, and

Ipu(x)Ipv(x) = Hp(uv)(x), for a.e. x € Q, Yu,v € Xp, (59)
where, for u = (u;)icr and v = (v;)icr € Xp o, we denote by uv = (u;v;)icr € Xp .

DEFINITION A.9 (Space-time gradient discretisation) Under Hypothesis (4a), we say
that D = (Xp,,1Ip, Vp, (t("))n:o,._,,N) is a space-time gradient discretisation of
Q% (0,7T) if

e (Xp,Ilp, Vp) is a gradient discretisation of €2, in the sense of Definition A.1,
et =0<tM <t =1

We then set &"+3) = ¢(nt+1) _ t) forn=0,...,N —1, and
1
dp = max,—g,_n_1&"+2).
DEFINITION A.10 (Space-time consistency) A sequence (D, )men of space-time gra-
dient discretisations of €2 x (0,7), in the sense of Definition A.9, is said to be con-
sistent if it is consistent in the sense of Definition A.3 and if d&p,, tends to 0 as
m — 0.

B Appendix: technical results

The next result, which is known in the literature as the Minty trick, is used in the
proof of the convergence theorem.

LEMMA B.1 (MINTY TRICK)

Let ¢ € C°(R) be a nondecreasing function such that there exist ¢,d > 0 with
IC(s)| < c|s| +d for all s € R. Let w be an open bounded subset of RN, N > 1. Let
(tn)nen C L?(2) such that

(i) there exists u € L?(w) such that (uy,),en weakly converges to u in L?(w);

(iii) there exists a function y € L?(w) such that ({(uy))nen converges to x in
L?(w).

Then x(x) = ((u(x)), for a.e. € w.
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Proof
We consider, for a given v € L?(),

A, = / (Cun(@)) — C(0(@))) () — v(w))de.

Since ( is a nondecreasing, we have A, > 0. By weak/strong convergence, we get
that

lim A, — /(X(a:) ~ (@) (@) — v(z))dz > 0.

The above inequality holds in particular for v = u —t¢, with ¢ > 0 and ¢ € C°(w).
Then we get, dividing by ¢ > 0,

[ (xt@) - c(ute) - to(a))playia > 0

Letting t — 0 in the above equation, we get, by dominated convergence, that

[ @)~ gla(@))e(@)de > o

Since the same inequality holds for —¢ instead of ¢, we get

[ @)~ gla(@))e(a)dz = o

Since the above inequality holds for all ¢ € C2°(w), the conclusion of the lemma
follows.
O
The following result is used in the convergence proof, for proving the compactness
of a particular scheme.

LEMMA B.2 (UNIFORM LIMIT.)

Let N € N* and (g, )men be a sequence of functions from RY to R* such that
gm(0) = 0 and g,, is continuous in 0. We assume that there exists a function
g : RN xRt — R*, with ¢(0,0) = 0, continuous in (0, 0), and for all m € N, there
exists p, € RT verifying W%gnoo wm = 0, such that

gm(&) < g(&, m), Ym €N, V€ € RY.

Then

lim sup g,(§) = 0. (60)
|€]—0 meN
Proof
Let € > 0. Let n > 0 be such that, for all (§,t) € B(0,n) x [0,7], g(§,t) <e. Let
mg € N such that, for all m > mg, uy, < 7. For all m = 0,...,mg, thanks to the
continuity of g,,, there exists 1, > 0 such that, for all £ verifying |£| < n,,, we have

gm(§) <e.
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We now take & € RY such that |£] < min(n, (m)m=o,...me)- We then get that,
for all m = 0,...,mg, the inequality ¢,,(§) < e holds, and for all m € N such that
m > my, then g(&, ) < e. Gathering the previous results gives (60).

]

We finally state a discrete version of Alt-Luckhaus theorem [1], whose proof is
immediate following [15].

THEOREM B.3 (DISCRETE ALT-LUCKHAUS THEOREM) Let T > 0, let B be a Ba-
nach space, and let p € [1,400). Let (By)men be a sequence of normed subspaces
of B such that, for any sequence (w.,)men such that wy,, € By, and (||wn] B, )men
is bounded, then the set {wy,, m € N} is relatively compact in B. Let (v, )men such
that v, € LP(0,T; B,,) for all m € N. We assume that

(h1) the sequence (|[vimlzr(0,1;B,,))men is bounded,

(h2) [|vm(-+h) = vmllLeo,r—n;B) tends to 0 as h € (0,7') tends to 0, uniformly with
respect to m € N.

Then the set {vy,, m € N} is relatively compact in LP(0,T’; B).

Proof

Our aim is to apply Theorem 2.1 of [15]. We then prolong v, by 0 on (—o0,0) U
(T, 400), for all m € N. Let us prove that [[v,(- + h) — vl Lew;p) tends to 0 as
h € (0,T) tends to 0, uniformly with respect to m € N. Let us first remark that
there exists Cy > 0 such that,

vm €N, Yv € B, vl < On|lvls,,-

Indeed, otherwise one could, up to a subsequence of (B, )men, construct a sequence
such that ||vn||B,, = 1 and ||v.,||p tends to infinity, which is in contradiction with
the relative compactness in B of {v,,, m € N}. Hence we can define

Cp = sup ||vm|* oy
pe I ”LP(O,T,B)
We have, for all h € (0,7,

|[vm (- + h) — Um”ip(R;B) = |lvm(-+h) - Um”ip(o,Tfh;B) + HUmHip(Qh;B)

+va”]j§p(T_h,T;B)'

Let us prove that
: P _
}g% fnlé% vaHL’“((Lh;B) =0 (61)

Let e > 0. We first choose hg € (0,7) such that, for all h € (0, hy),
||Um( + h‘) - UmHI[)/p(O,T—h;B) S g, Vm c N (62)

Let 7 € (0,7 — ho), h € (0,hp) and m € N be given. We have

| om0yt < 2t (/ Jom e+ 1) = (Ot + [ ||vm<t+h>|%dt)-
0 0 0

International Journal on Finite Volumes 31



Gradient schemes for the Stefan problem

Thanks to (62), the above inequality gives

/OT om (£) | Bdt < 29 <€ + /0 v (t + h)H%dt) . (63)

We then remark that

ho
/ /||vmt+h|pdtdh // lom(t + B[
// |vm () |I5dhdt < Cpr.

This proves that

ho inf m(t 4+ h)||%dt < Cpr.
o, nt [ umt+ W)t < Cor

Taking the infimum on A in (63), we get, for all 7 € (0,7 — hg) and m € N,

T C

[ ool < 2 (4 527,
0 ho
It now suffices to take 7 € (0, min(7T — hy, hOE)) for getting
T
/ lom(DIdL < 2P, Vim € N.
0

This concludes the proof of (61). A similar proof can be done for proving that

e P _
s sup [voml[Locr i) = 0-
We thus conclude that
lim sup ||vm (- + h) — UmHLp ®RB) = =0,

h—0 me

which enables to apply Theorem 2.1 of [15], hence providing the conclusion of the

proof.
O

THEOREM B.4 Let € be an open bounded subset of R?, a < b € R and (u,)men
be a sequence of functions from [a, b] to L?(£2), such that there exists C; > 0 with

()l 22y < Ci, ¥m €N, Vit € [a,b]. (64)

We also assume that there exists a dense subset R of L?(Q) such that, for all ¢ € R,
there exists a function g, : R* x RT with ¢(0,0) = 0, continuous in (0,0) and a
sequence (hfy)men with Af, > 0 and lim,, .o hfn = 0 and such that

}<um(t2) — um(tl),(p>L2(Q)’L2(Q)} é g(p(tg—tl,hﬁb), VYm € N, Ya é tl S t2 S b. (65)

Then there exists u € L>(a,b; L?(Q)) with u € Cy([a,b], L*(R2)) (where we denote
by Cy([a,b], L?(Q2)) the set of functions from [a, b] to L?(£2), continuous for the weak
topology of L?(£2)) and a subsequence of (tm)men, again denoted (t,)men, such
that, for all t € [a,b], um () converges to u(t) for the weak topology of L?(€2).
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Proof

The proof follows that of Ascoli’s theorem. Let (t,),en be a sequence of real num-
bers, dense in [a,b]. Due to (64), for each p € N, we may extract from (um (tp))men
a subsequence which is convergent to some element of L?(€2) for the weak topology
of L?(Q). Using a diagonal method, we can choose a sub-sequence, again denoted
(Um)men, such that (wm(tp))men s is weakly convergent for all p € N. For any
t € [a,b] and v € L*(2), we then prove that the sequence ((un(t),v)12(0),12(0))meN
is a Cauchy sequence. Indeed, let € > 0 be given. We first choose ¢ € R such that
¢ —vll2() < e. Let n > 0 such that, for all (s,t) € [0,7]2, we have g,(s,t) < e.
Then, we choose p € N such that [t —t,| <n. Since ((um(tp), ¥)12(0),22(Q))men is a
Cauchy sequence, we choose ng € N such that, for k,1 > ny,

[(ur(tp) — wiltp), ©) r2@).r2@)| < €

and such that h{,h{ <n. We then get, using (65),

[(ur(t) —wi(t), 0) 20, 20)| < 9ot = tpl, b)) + g ([t — 1], b)) + &,
which gives
‘<“k(t) —w(t), <P>L2(Q),L2(Q)| < 3e.

This proves that the sequence ((um(t),v)r2(q),2(q))men converges. Since

[(um (1), v) 2(0), 22| < Cillvllz2(0)s

we get the existence of u(t) € L?() such that (um,(t))men converges to u(t) for the
weak topology of L?(€)). Then u € Cy([a,b], L?(£2)) is obtained by passing to the
limit m — 0o in (65), and by using the density of R in L?().

g
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