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On redémontre de manière constructive un résultat de Naor and Neiman (à paraître, Revista Matematica Iberoamercana), qui dit que pour tout espace métrique doublant (E, d), il existe N ≥ 0, qui ne dépend que de la constante de doublement, tel que pour tout exposant α ∈]1/2, 1[, il existe une application bilipschitzienne F de (E, d α ) à valeurs dans R N .

The purpose of this paper is to give a simpler and constructive proof of a theorem proved by Naor and Neiman [NN], which asserts that if (E, d) is a doubling metric space, there is an integer N > 0, that depends only on the metric doubling constant, such that for each exponent α ∈ (1/2, 1), we can find a bilipschitz mapping F = (E, d α ) → R N .

Here R N is equipped with its Euclidean metric, the snowflake distance d α is simply defined by d α (x, y) = d(x, y) α for x, y ∈ E, and metrically doubling means that there is an integer C 0 ≥ 1 such that for every r > 0, every (closed) ball of radius 2r in E can be covered with no more than C 0 balls of radius r. We call C 0 a metric doubling constant for (E, d).

Remark 1. Notice that in a doubling metric space with doubling constant C 0 , every ball of radius 2 m r can be covered with C m 0 balls of radius r. More generally, for λ > 0, every ball of radius λr can be covered by C 0 λ N 0 balls of radius r, where N 0 = log 2 C 0 . To see this replace λ by the next power of 2.

A consequence of Naor and Neiman's main result in [NN] is the following.

Theorem 2. For each C 0 ≥ 1, there is an integer N and, for 1/2 < α < 1, a constant C = C(C 0 , α) such that if (E, d) is a metric space that admits the metric doubling constant C 0 , we can find an injection

F : E → R N such that (3) C -1 d(x, y) α ≤ |F (x) -F (y)| ≤ Cd(x, y) α for x, y ∈ E.
The theorem of Naor and Neiman is more general, but its proof is also more complicated. If we did not ask N to be independent of α, this would just be the usual Assouad embedding theorem from [A]. Here we do not try to get optimal values of N and C; see [NN] for better control of these constants, and for more information on the context. There is nothing special about the constant 1/2 in our statement; we just do not want to consider the case when α is close to 0, for which the dimension independence fails. Indeed, even when E = R, with the usual distance, one needs many dimensions to construct an α-snowflake with α small. The proof will be a rather simple modification of the standard proof of Assouad's theorem, but it took a surprising amount of energy to the authors, plus the knowledge of the fact that the result is true, to make it work.

Rather than using a probabilistic proof, we use an adaptive argument, and work at small relative scales to use the fact that there is a lot of space in R N ; the difficult part (for the authors) was to realize that using a very sparse collection of scales would not kill the argument, and instead helps control the residual terms. The constant C(C 0 , α) gets very large (when α gets close to 1), but this is expected.

The issue of giving a simpler proof of Theorem 2 came out in the AIM workshop on Mapping Theory in Metric Spaces in Palo Alto (January 2012); the authors wish to thank Mario Bonk for asking the question, other participants of the task force, and in particular U. Lang, C. Smart, J. Tyson, for very interesting discussions and their patience with at least one wrong proof, and L Capogna, J. Tyson, and S. Wenger who organized the event.

We need some notation before we start the proof. Here the doubling metric space (E, d) is fixed, and B(x, r) will denote the closed ball with center x and radius r. We may assume that α is close to 1, because otherwise we can use the standard Assouad result and proof.

We shall use a small parameter τ > 0, with τ ≤ 1 -α, and work at the scales (4)

r k = τ 2k , k ∈ Z.
We first prove Theorem 2 in the case that E has finite diameter; this allows us to start at k = k 0 , where k 0 is such that r k 0 ≥ diam(E).

For each k ≥ k 0 , select a maximal collection {x j }, j ∈ J k , of points of E, with d(x i , x j ) ≥ r k for i = j. Thus, by maximality

(5) E ⊂ j∈J k B(x j , r k ),
For convenience, we write B j = B(x j , r k ) and λB j = B(x j , λr k ) for λ > 0.

Letting N (x) denote the number of indices j ∈ J k such that d(x j , x) ≤ 10r k , we now check that ( 6)

N (x) ≤ C 5 0 for x ∈ E.
Indeed, we can cover B(x, 10r k ) with fewer than C 5 0 balls D l of radius r k /3. Each D l contains at most one x j (because d(x i , x j ) ≥ r k for i = j). Because all the x j that lie in B(x, 10r k ) are contained in some D l , (6) follows.

From inequality (6) and the assumption (for the present case) that E is bounded, we conclude J k is finite. Note, however, that even if E were unbounded, we could use the preceding discussion to construct the collection {x j } without using the axiom of choice.

Set Ξ = 1, 2, . . . C 5 0 (a set of colors). Now enumerate J k , and for j ∈ J k let ξ(j) be the first color not taken by an earlier close neighbor; specifically, choose ξ(j) to be the first color not used by an earlier i ∈ J k such that d(x i , x j ) ≤ 10r k . By construction we have ( 7) ξ(i) = ξ(j) for i, j ∈ J k with i = j and d(x i , x j ) ≤ 10r k .

Finally, for each ξ ∈ Ξ, define the set

J k (ξ) := j ∈ J k ; ξ(j) = ξ . Thus (8) d(x i , x j ) > 10r k for i, j ∈ J k (ξ) such that i = j. For each j ∈ J k , set ϕ j (x) = max{0, 1-r -1 k dist(x, B j )}.
The formula is not important; we just want to make sure that (9) 0 ≤ ϕ j (x) ≤ 1 everywhere, (10)

ϕ j (x) = 1 for x ∈ B j , (11) ϕ j (x) = 0 for x ∈ E \ 2B j , and (12) 
ϕ j is Lipschitz, with ||ϕ j || lip ≤ r -1 k .
We continue with the non-surprising part of the construction. For each ξ ∈ Ξ, we will construct two mappings: F ξ : E → R M and a slightly modified version F ξ : E → R M , where M is a very large integer depending only on the metric doubling constant. Our final mapping F : E → R N , will be the direct product of these 2C 5 0 mappings. Thus, the dimension N is 2C 5 0 M , which can probably be improved. We decide that F ξ will be of the form:

(13) F ξ (x) = k≥k 0 r α k f ξ k (x),
where

(14) f ξ k (x) = j∈J k (ξ) v j ϕ j (x),
and with vectors v j ∈ R M that will be carefully chosen later. F will take on the same form as F , but with a different choice of the vectors {v j }. However, for both functions we will choose the v j inductively, and so that (15)

v j ∈ B(0, τ 2 ) ⊂ R M ,
with the same very small τ > 0 as in the definition of r k = τ 2k above; τ will be chosen near the end. With this choice, we immediately see that

(16) ||f ξ k || ∞ ≤ τ 2
because the ϕ j , j ∈ J k (ξ), have disjoint supports by ( 8) and ( 11); hence the series in ( 14) converges. Moreover, if we set

(17) F ξ k (x) = k 0 ≤ℓ≤k r α ℓ f ξ ℓ (x),
we get that

(18) ||F ξ -F ξ k || ∞ ≤ ℓ>k r α ℓ τ 2 = r α k+1 τ 2 ℓ≥0 τ 2ℓα ≤ 2τ 2 r α k+1
(because r l = τ 2l and τ 2α < 1/2 when τ is small). Also, the Lipschitz norm of 12) and because the ϕ j are supported in disjoint balls; we sum brutally and get that (20)

f ξ k is (19) ||f ξ k || lip ≤ τ 2 r -1 k by (
||F ξ k || lip ≤ ℓ≤k r α ℓ ||f ξ ℓ || lip ≤ τ 2 ℓ≤k r α-1 ℓ = τ 2 r α-1 k ℓ≤k τ 2(ℓ-k)(α-1) = τ 2 r α-1 k (1 -τ 2(1-α) ) -1
by (17). We take τ ≤ 1 -α (many other choices would do, the main point is to have a control in (22) below by a power of τ , which could even be negative); then

(21) ln(τ 2(1-α) ) = 2(1 -α) ln(τ ) = -2(1 -α) ln 1 τ ≤ -2τ ln 1 τ ;
we exponentiate and get that τ 2(α-1) ≤ e -2τ ln( 1 τ ) ≤ 1 -τ ln( 1 τ ) if τ is small enough, hence 1 -τ 2(α-1) ≥ τ ln( 1 τ ), and finally

(22) ||F ξ k || lip ≤ τ ln( 1 τ ) r α-1 k ≤ r α-1 k
(again if τ is small enough; for example, τ < 1/2 works).

We now describe how to choose the vectors v j , j ∈ J k , so that the differences |F ξ k (x) -F ξ k (y)| will be as large as possible (toward proving that (F ξ k ) -1 is bilipschitz). Fix k ≥ k 0 , suppose that the F ξ k-1 were already constructed, and fix ξ ∈ Ξ. Put any order < on the finite set J k (ξ). We shall construct F ξ k with the order < and F ξ k with the reverse order.

Choose the v j for F ξ k according to the order <. Recall that we defined

(23) F ξ k (y) = F ξ k-1 (y) + r α k f ξ k (y) = F ξ k-1 (y) + r α k i∈J k (ξ) v i ϕ i (y)
in ( 13) and ( 14); for each j ∈ J k (ξ), we shall also consider the partial sum G ξ k,j defined by

(24) G ξ k,j (y) = F ξ k-1 (y) + r α k i∈J k (ξ) ; i<j v i ϕ i (y),
which we therefore assume to be known when we choose v j .

Lemma 25. For each j ∈ J k (ξ), we can choose v j ∈ B(0, τ 2 ) so that

(26) |F ξ k (x) -G ξ k,j (y)| ≥ τ 3 r α k for x ∈ B j and y ∈ B(x j , 10τ -2 r k ) \ 2B j .
The extra room in R M will be used to give lots of different choices of v j . Observe that for x ∈ B j , ϕ j (x) = 1 and the other ϕ i (x) are all null (because ϕ i is supported in 2B i by ( 11), and 2B i never meets B j by ( 8)). Thus ( 27)

F ξ k (x) = F ξ k-1 (x) + r α k f ξ k (x) = F ξ k-1 (x) + r α k v j
by ( 13) and ( 14). By ( 22),

||F ξ k || lip ≤ r α-1 k
, but the proof of ( 22) also yields

(28) ||G ξ k,j || lip ≤ r α-1 k
(we just add fewer terms). We shall use this to replace B j and B(x j , 10τ -2 r k ) \ 2B j with discrete sets. Set η = τ 3 r k , and pick an η-dense set X in B j , and an η-dense set Y in B(x j , 10τ -2 r k ) \ 2B j . We shall soon prove that we can choose v j so that

(29) |F ξ k (x ′ ) -G ξ k,j (y ′ )| ≥ 3τ 3 r α k for x ′ ∈ X and y ′ ∈ Y,
and let us first check that the lemma will follow.

Notice that for x ∈ B j , we can find x ′ ∈ X such that (30)

|F ξ k (x ′ ) -F ξ k (x)| ≤ ||F ξ k || lip η ≤ r α-1 k • τ 3 r k = τ 3 r α k ,
and similarly, for

y ∈ B(x j , 10τ -2 r k ) \ 2B j we can find y ′ ∈ Y such that (31) |G ξ k,j (y) -G ξ k,j (y ′ )| ≤ ||G ξ k,j || lip η ≤ τ 3 r α k .
Then (26) for x and y follows from (29), as needed. So we want to arrange (29). First we bound |X|, the number of elements in X. By Remark 1, we can cover B j = B(x j , r k ) by C 0 (2τ -3 ) N 0 balls of radius η/2; we just keep those that meet B j , pick an element of B j in each such ball, and get an η-dense net X, with |X| ≤ C 0 (2τ -3 ) N 0 . Similarly, we can find Y so that

(32) |Y | ≤ C 0 2 10τ -2 r k η N 0 = C 0 20τ -2 r k τ 3 r k N 0 = C 0 (20τ -5 ) N 0 .
The total number of pairs (x ′ , y ′ ) for which we have to check (29) is thus

(33) |X||Y | ≤ C 2 0 (40τ -8 ) N 0 ;
worse estimates on ||F ξ k || lip and ||G ξ k,j || lip above would have yielded worse powers of τ , but we would not care. Now pick a maximal finite set V in B(0, τ 2 ) ⊂ R M , whose points lie at mutual distances at least 7τ 3 from each other. For each pair (x ′ , y ′ ) as above, the different choices of v j ∈ V yield the same value of G ξ k,j (y ′ ) (because G ξ k,j does not depend on v j , by ( 24)), and values of F ξ k (x ′ ) that differ by at least 7τ 3 r α k , by ( 27). Thus (29) for this pair (x ′ , y ′ ) cannot fail for more than one choice of v j ∈ V , and it is now enough to show that V has more than |X||Y | elements. Taking C M to be the doubling constant of R M , it follows from Remark 1 that |V | ≥ C M (1/7τ ) M , which is indeed larger than |X||Y | if M > 8N 0 and τ is small enough (depending on M ). This completes our verification of (29); as noted earlier, Lemma 25 follows.

For each color ξ, choose the vectors v j , and hence the mappings F ξ k , as in Lemma 25. Also define a second version F ξ k of F ξ k using the opposite order on J k (ξ). Define F k : E → R N (with N = 2C 5 0 M ) to be the direct product of the 2C 5 0 maps F ξ k and F ξ k for all colors ξ ∈ Ξ. Finally set F = lim k→+∞ F k . We are ready to check that F is bilipschitz.

Lemma 34. We have that

(35) τ 5 8 d(x, y) α ≤ |F (x) -F (y)| ≤ 5N τ -2(1-α) d(x, y) α for x, y ∈ E.
Let x, y ∈ E be given; we may assume that x = y. Let k be such that

(36) 4r k ≤ d(x, y) ≤ 4r k-1 = 4τ -2 r k ,
where the last part comes from (4). Then r k ≤ 4r k ≤ d(x, y) ≤ diam(E) ≤ r k 0 by our definition of k 0 , and so k ≥ k 0 . By ( 22) and ( 36), ( 37)

|F ξ k (x) -F ξ k (y)| ≤ ||F ξ k || lip d(x, y) ≤ r α-1 k d(x, y) ≤ d(x, y) 4τ -2 α-1 d(x, y) = (4τ -2 ) 1-α d(x, y) α .
But (18) also says that

(38) |F ξ (x) -F ξ (y)| -|F ξ k (x) -F ξ k (y)| ≤ 2||F ξ -F ξ k || ∞ ≤ 4τ 2 r α k+1 = 4τ 2 τ 2α r α k ≤ 2τ 2 d(x, y) α
and ( 37) and (38) (and similar estimates for the F ξ k ) give the upper bound in (35). For the lower bound, notice that by (5) we can find j ∈ J k such that x ∈ B j . We shall just consider the color ξ ∈ Σ such that j ∈ J k (ξ), and distinguish between two cases.

We'll need to know that (39) y ∈ B(x j , 10τ -2 r k ) \ 2B j .

That y ∈ B(x j , 10τ -2 r k ) follows from (36), because d(x, x j ) ≤ r k since x ∈ B j . Moreover, if y ∈ 2B j , then d(x, y) ≤ d(x, x j ) + d(x j , y) ≤ 3r k , which would contradict (36). So (39) holds.

First assume that y ∈ 2B i for some i ∈ J k (ξ). Then i = j, by (39). Let us assume that i < j; otherwise, we would use F ξ k instead of F ξ k in the following calculations. Recall that all the ϕ l (y), l = i, are equal to 0, by ( 11) and (8). Then ( 23) and ( 24) yield ( 40)

F ξ k (y) = F ξ k-1 (y) + r α k v i ϕ i (y) = G ξ k,j (y) 
(with

F ξ k-1 (y) = 0 if k = k 0 )
. By (39), we can apply (26), which says that

(41) |F ξ k (x) -F ξ k (y)| = |F ξ k (x) -G ξ k,j (y)| ≥ τ 3 r α k .
We then combine this with (38) and get that (42) by (36). This proves (35) when y ∈ 2B i for some i ∈ J k (ξ). If not, all the ϕ i (x) vanish by (11), and F ξ k (y) = G ξ k,j (y) = F ξ k-1 (y) for all j, by ( 23) and (24). That is, (40) still holds (with j again chosen so that x ∈ B j ), and we can continue just as in the previous case. Lemma 34 follows.

|F ξ (x) -F ξ (y)| ≥ |F ξ k (x) -F ξ k (y)| -4τ 2 τ 2α r α k ≥ τ 3 r α k -4τ 2 r α k+1 = τ 3 r α k (1 -4τ -1 τ 2α ) ≥ τ 3
This completes the proof of Theorem 2 for bounded E. Now suppose E is an unbounded metric space with doubling constant C 0 . Fix an origin x 0 , and apply the construction above to the sets E m = E ∩ B(x 0 , 2 m ).

The set E m is itself doubling, the doubling constant C 2 0 . To see this note that if x ∈ E m and r > 0, we can cover E m ∩ B(x, 2r) with C 2 0 balls of radius r/2, which (when they meet E m ) we can replace with balls of radius r whose centers are in E m .

We get from the proof above a mapping F m such that (44) C -1 d(x, y) α ≤ |F m (x) -F m (y)| ≤ Cd(x, y) α

  and because we can take α > 2/3 and τ small. Now (43)|F (x) -F (y)| ≥ |F ξ (x) -F ξ (y)| ≥ τ

for x, y ∈ E m , where C depends on C 0 and α but not on m. We may assume that F m (x 0 ) = 0, after possibly adding a constant, which would not destroy inequality (44). Now define for each k ∈ Z, a maximal collection

Notice also that for each x j , the sequence {F m (x j )} is bounded (by ( 44) and because F m (x 0 ) = 0); hence we can extract a subsequence {m j }, so that the sequence F m j (x j ) converges for each x j . By (44) again, the convergence is uniform on each bounded subset of E, so (44) passes to the limit, and this limit F satisfies the conclusion of Theorem 2. This completes our proof.