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APPROXIMATION OF A REIFENBERG-FLAT SET
BY A SMOOTH SURFACE

Guy DAVID

Résumé. On montre que si E ⊂ R
n est ensemble Reifenberg-plat de dimension d à

l’échelle r0, il existe une surface lisse Σ0 de dimension d, qui est proche de E à l’échelle
r0. Ceci permet d’appliquer un résultat de G. David et T. Toro [Memoirs of the AMS 215
(2012), 1012], et de montrer que E est l’image de Σ0 par un homéomorphisme bi-Höldérien
de Rn. Quand d = n−1 et E est compact et connexe, Σ0 est automatiquement orientable,
donc R

n \ E a exactement deux composantes connexes.

Abstract. We show that if E ⊂ R
n is a Reifenberg flat set E of dimension d at scale

r0, we can find a smooth surface Σ0 of dimension d which is close to E at the scale r0.
Then we can apply a result of G. David and T. Toro [Memoirs of the AMS 215 (2012),
1012], and get a bi-Hölder homeomorphism of Rn that sends Σ0 to E. When d = n − 1
and E is compact and connected, Σ0 is automatically orientable, and R

n \ E has exactly
two connected components.

AMS classification. 28A75, 49Q20.
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1. Introduction.

The purpose of this paper is to prove that if E ⊂ R
n is a Reifenberg flat set of

dimension d at scale r0, we can find a smooth surface Σ0 of the same dimension, which is
close to E at the scale r0. This then allows us to apply one of the main results of [DT],
and get a bi-Hölder homeomorphism of the ambient space R

n that sends Σ0 to E.
Thus our result here can be seen a small preparation lemma that slightly weakens the

assumptions in [DT].
In the special case of a compact connected Reifenberg-flat set E of codimension 1, we

will get (or re-prove) as a corollary that R
n \ E has exactly two connected components,

and one does not need to mention this separation property as an additional assumption.
This will follow easily because Σ0 is automatically orientable, but surely there are more
direct arguments that do not use the full Reifenberg parameterization.

Fix integers 0 < d < n, let E be a (nonempty) closed set in R
n, and define the

(bilateral P. Jones) numbers γ(x, r), x ∈ E and 0 < r < +∞, by

(1.1) γ(x, r) = inf
{
dx,r(E, P ) ; P ∈ P(x)

}
,

where P(x) denotes the set of d-dimensional affine planes that contain x, and

(1.2)
dx,r(E, P ) =

1

r
sup

{
dist(y, P ) ; y ∈ E ∩B(x, r)

}

+
1

r
sup

{
dist(y, E) ; y ∈ P ∩B(x, r)

}
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is a normalized local Hausdorff distance from E to P .
We shall assume that there is a radius r0 > 0 such that

(1.3) γ(x, r0) ≤ ε for x ∈ E,

and prove that if ε is small enough, depending only on n and d, there is a smooth d-
dimensional surface Σ0 ⊂ R

n with no boundary, such that

(1.4) dist(x,Σ0) ≤ C0εr0 for x ∈ E

and

(1.5) dist(x, E) ≤ C0εr0 for x ∈ Σ0,

where C0 depends only on n and d. More precisely, we will show that there is a Λ > 0,
that depends only on n and d, such that for each y ∈ Σ0,

(1.6) Σ0 coincides with a smooth Λε-Lipschitz graph in B(y, 10−2r0).

That is, we can find a d-plane Py and a Λε-Lipschitz mapping Fy : Py → P⊥
y such that, if

(1.7) G(Fy) =
{
w + Fy(w) ; w ∈ Py

}

denotes the graph of Fy, then

(1.8) Σ0 ∩B(y, 10−2r0) = G(Fy) ∩B(y, 10−2r0).

In addition, the Fy are smooth, and there exist constants Λk, k ≥ 1, such that

(1.9) ||DkFy||∞ ≤ Λkεr
1−k
0 .

(For k = 1, we already knew this with Λ1 = Λ.) Let us summarize all this officially.

Theorem 1.10. There exist constants ε0 > 0 and Λk, k ≥ 1, that depend only on n and
d, such that if E ⊂ R

n is a nonempty closed set such that (1.3) holds for some r0 > 0 and
some ε ∈ (0, ε0), then we can find a smooth d-dimensional surface Σ0 with the properties
(1.4)-(1.9).

Notice that we do not require E to be flat at all scales smaller than r0, as in the next
result.

Theorem 1.10 is designed so that we can apply Theorem 12.1 in [DT], and get the
following statement, where we decided to work with r0 = 1 for convenience.

Corollary 1.11. There exist constants ε1 ≤ ε0 and C2 > 1, that depend only on n and
d, such that if E ⊂ R

n is a nonempty closed set such that

(1.12) γ(x, r) ≤ ε for x ∈ E and 0 < r ≤ 1,
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and if Σ0 is the smooth surface provided by Theorem 1.10, then there is a bijective mapping
g : Rn → R

n such that

(1.13) g(x) = x when dist(x, E) ≥ 10−1,

(1.14) |g(x)− x| ≤ C2ε for x ∈ R
n,

(1.15) C−1
2 |x′ − x|1+C2ε ≤ |g(x)− g(x′)| ≤ C2|x

′ − x|1−C2ε

for x, x′ ∈ R
n such that |x′ − x| ≤ 1, and

(1.16) g(Σ0) = E.

Let us check this. We want to apply Theorem 12.1 in [DT] to the set E′ = AE, where
we choose A = 2 · 104, and with the open set

(1.17) U =
{
x ∈ R

n ; dist(x, E′) > 3
}
.

The assumption (12.1) of [DT], relative to the smooth set Σ′
0 = AΣ0, is satisfied because

of (1.6)-(1.9) (although only with the constant Cε, which does not matter). The proximity
condition (12.3) follows from (1.4) and (1.5), and so Theorem 12.1 in [DT] gives a mapping
g′ that satisfies (12.4)-(12.8) in [DT].

Here we take g(x) = A−1g′(Ax), (1.13) holds because (12.4) in [DT] says that g′(x) =
x when dist(x, U) ≥ 13, (1.14) and (1.15) easily follow from (12.6) and (12.7) in [DT].
Finally, (12.8) in [DT] says that E′ ∩ U = g′(Σ′

0 ∩ U). But E′ = E′ ∩ U by (1.17), and
Σ′

0 ⊂ U by (1.5), so in fact E′ = g′(Σ′
0) and E = g(Σ0), as needed. So Corollary 1.11

follows from Theorem 1.10 and Theorem 12.1 in [DT]. �

Corollary 1.18. Suppose d = n− 1, and let E be a compact connected set that satisfies
the assumptions of Corollary 1.11. Then R

n \ E has exactly two connected components.

Probably there are more direct proofs of this, where one would count the number of
apparent components of Rn \ E at the scale r > 0, and control it for smaller and smaller
values of r. There is an argument in [DS], Chapter II.4, where something like this is done.
Here we can give a shorter proof, because Corollary 1.11 uses the full force of the Reifenberg
construction. The main point is only that the result is easier to prove for smooth sets E,
and we reduce to that case.

Let Σ0 and g be as in Theorem 1.10 and then Corollary 1.11. We know that Σ0

is a smooth hypersurface without boundary, and it is compact by (1.5). We shall soon
check that it is connected; let us conclude from here. By [AH], page 440 (for nonsmooth
manifolds), or rather [S] (a shorter argument for the smooth case, using transversality), Σ0

is orientable and R
n \Σ0 has exactly two connected components, which we denote by Ω+

and Ω−. Recall that g is smooth, bijective, and equal to the identity near infinity; then
we get that Rn \ E = g(Rn \ Σ0) has two components, namely the g(Ω±).
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We still need to check that Σ0 is connected. Let a1, a2 ∈ Σ0 be given. By (1.5), we
can find b1, b2 ∈ E such that |bi − ai| ≤ Cε. Because E is connectedness, we can find a
chain of points wi ∈ E, 0 ≤ i ≤ m, with w0 = b1, wm = b2, and |wi − wi−1| ≤ Cε for
1 ≤ i ≤ m. (Otherwise, the set of points of E that can be connected to b1 by such a chain,
which is open and closed in E, would contain b1 but not b2.) By (1.4), we can find yi ∈ Σ0

such that |yi − wi| ≤ Cε. By definition of b1 and b2, we can take y0 = a1 and ym = a2.
Finally, by (1.7)-(1.8), applied to the points yi, we get that for 1 ≤ i ≤ m, there is a curve
in Σ0 that connects yi−1 to yi. Thus Σ0 is connected, and Corollary 1.18 follows. �

Remark 1.19. For the proof we only need to assume that E is 1

20
-connected. That is,

that any two points b1, b2 in E can be connected by a chain {wi} in E as above, with
|wi − wi−1| ≤

1

20
for 1 ≤ i ≤ m.

If we do not suppose that, we only get that Rn \E has at least two component (pick
any point x0 ∈ E, and apply the result to the set of points x ∈ E that can be 1

20
-connected

to x0. This set alone separates Rn into two components.
We do not really need to assume that E is bounded either. Then we do not get that

Σ0 is compact, but its image under an inversion of Rn (centered away from E and Σ is
compact, and smooth except at one point (the image of ∞). Even then, it separates R

n

into two components (the argument of [S] goes through, just manage to avoid the bad
point), and we can conclude as before.

We mentioned Corollary 1.18 here because in some papers, one feels tempted to add
the fact that E separates R

n into two connected components to the assumptions that E
is connected and Reifenberg-flat. This extra assumption is thus unneeded.

Remark 1.20. In [DT] the authors also consider situations where instead of requiring
the bilateral control (1.12), one merely assumes that the points of E lie close to d-planes
P (x, r), with some control on how fast they depend on (x, r). Here we can try to construct
Σ0 with similar data; our construction will only give a smooth surface Σ0, but with a
boundary, and we shall not try to see whether it is contained in a smooth surface without
boundary. See Remark 2.31.

The rest of this paper will be devoted to a proof of Theorem 1.10, which will be
obtained by a simple construction where we start from a net of points and use a covering
to fill the holes in a finite number of steps.

The author wishes to thank T. D. Luu for discussions about Theorem 1.10 (we thought
at some time that a result like this would be needed for his PhD thesis, but it turned out
not to be the case), and A. Lemenant and A. Chambolle, in particular for asking about
Corollary 1.18 and discussions about orientability.

2. A proof of Theorem 1.10.

In this section we prove Theorem 1.10. Since the statement is invariant under dilations,
it will be enough to prove the theorem when r0 = 1.

Let E be as in the theorem, with r0 = 1, set a = 1

32
, and choose a maximal collection

X of points of E such that |x− x′| ≥ a for x, x′ ∈ X such that x′ 6= x. Thus

(2.1) dist(x,X) ≤ a for x ∈ E,
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because otherwise we could add x to X . Next decompose X as the disjoint union

(2.2) X =
⋃

1≤j≤N

Xj,

where for each j,

(2.3) |x− x′| ≥ 16a =
1

2
when x and x′ lie in Xj and x 6= x′.

Let us check that we can do this with anN that depends only on n. Define Xj by induction,
to be a maximal set contained in X \ ∪i<jXi and with the property (2.3); it is easy to
see that we can stop as soon as j is larger than the maximal number of points in a ball
of radius 16a that lie at mutual distances at least a. This number is in turn estimated by
saying that the balls of radius a/2 centered at these points are all disjoint and contained
in a ball of radius 17a, which yields N ≤ 34n by comparing Lebesgue measures.

For each x ∈ X , use (1.3) to find an affine d-plane Px through x such that

(2.4) dx,1(E, Px) ≤ ε

(see the definitions (1.1) and (1.2)). Then denote by πx : R
n → Px the orthogonal

projection on Px, and by π⊥
x the orthogonal projection on the vector space P⊥

x of dimension
n− d which is orthogonal to Px. Let us check that

(2.5) dx,1/4(Px, Py) ≤ 8ε for x, y ∈ X such that |x− y| ≤
1

2
.

Indeed, if z ∈ Px ∩ B(x, 1/4), we can use (2.4) to find w ∈ E such that |w − z| ≤ ε; then
w ∈ E ∩ B(y, 1) and (2.4) for y says that we can find z′ ∈ Py such that |z′ − w| ≤ ε and
hence |z′−z| ≤ 2ε. By a similar argument, for each z′ ∈ Py ∩B(x, 1/4) we can find z ∈ Px

such that |z − z′| ≤ 2ε, and (2.5) follows.
Thus in (2.5), Px and Py make a small angle; this will be useful because we want small

Lipschitz graphs over Px to be small Lipschitz graphs over Py as well.
We shall now construct a nondecreasing sequence of sets Sj , 0 ≤ j ≤ N . We start

with S0 = X , and our final set SN will be a good choice of Σ0, except for the fact that
we shall not immediately take care of the many derivatives in (1.9). Notice that X gives
the general position of Σ0, so our problem will essentially consist in completing S0 into a
smooth surface that contains it; we shall only use the set E marginally, to prove that Σ0

has no boundary.
We shall construct the Sj by induction, with the property that for each x ∈ X , there

is an Ajε-Lipschitz mapping Fj,x : Px → P⊥
x such that

(2.6) Sj ∩B(x, 4a) ⊂ G(Fj,x),

where G(Fj,x) denotes the graph of Fj,x over Px, defined as in (1.7). The constants Aj will
be chosen larger and larger, but since we can take ε as small as we want, the Ajε will stay
small.
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In order to prove (2.6), we shall first check that for each x ∈ X ,

(2.7) |π⊥
x (y)− π⊥

x (z)| ≤ A′
jε|πx(y)− πx(z)| for y, z ∈ Sj ∩B(x, 4a)

for some constant A′
j (that will depend on Aj−1 if j ≥ 1). As soon as we have (2.7),

we observe that πx is injective on Sj ∩ B(x, 4a), so can define a function Fj,x from H =
πx(Sj ∩ B(x, 4a)) to P⊥

x , by the relation Fj,x(πx(y)) = π⊥
x (y) for y ∈ Sj ∩ B(x, 4a). In

addition, (2.7) says that Fj,x is A′
jε-Lipschitz on H, and Sj ∩B(x, 4a) is its graph.

We then use the Whitney extension theorem to extend Fj,x into an Ajε-Lipschitz
function defined on Px, and we get (2.6). Since we allow ourselves to take Aj larger than
A′

j , we don’t need to use Kirzbraun’s theorem and the construction of the extension is
simpler.

Let us now check that (2.7) holds for j = 0. Recall that we took S0 = X . Let
y, z ∈ S0 ∩B(x, 4a) = X ∩B(x, 4a) be given. Then

(2.8) |π⊥
x (y)− π⊥

x (x)| = dist(y, Px) ≤ ε

because Px goes through x, because y ∈ X ⊂ E, and by (2.4) (also see the definition (1.2)).
Similarly, |π⊥

x (z) − π⊥
x (x)| ≤ ε. If y = z, the inequality in (2.7) is obvious. Otherwise,

|y − z| ≥ a by definition of X , and

(2.9) |π⊥
x (y)− π⊥

x (z)| ≤ 2ε ≤ 2a−1ε|y − z|;

then |πx(y) − πx(z)| ≥ |y − z| − |π⊥
x (y) − π⊥

x (z)| ≥ |y − z|/2 and (2.7) holds with A′
0 =

4a−1 = 128. So there are Lipschitz functions F0,x such that (2.6) holds for j = 0.
Next assume that 0 ≤ j < N and that we constructed Sj and the Fj,x with the

property (2.6). We take

(2.10) Sj+1 = Sj ∪
⋃

w∈Xj+1

G(Fj,w) ∩B(w, 3a).

Let us now prove (2.7) for j + 1. Let x ∈ X and y, z ∈ Sj+1 ∩B(x, 4a) be given; we need
to prove that

(2.11) |π⊥
x (y)− π⊥

x (z)| ≤ A′
j+1ε|πx(y)− πx(z)|.

If y, z both lie on Sj , (2.11) simply follows from (2.7) for j. So we may assume that one
of the two points (say y for definiteness) lies in G(Fj,w) ∩B(w, 3a) for some w ∈ Xj+1.

Case 1. We first assume that z ∈ G(Fj,w). Then

(2.12) |π⊥
w (y)− π⊥

w (z)| ≤ Ajε|πw(y)− πw(z)|,

just because Fj,w is Ajε-Lipschitz. This is not exactly (2.11), because we project on
different planes, but the difference will be small. Indeed, |w−x| ≤ |w−y|+ |y−x| ≤ 7a <
1/2, so (2.5) says that

(2.13) dx,1/4(Px, Pw) ≤ 10ε.
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The reader will not be surprised to learn that (2.11) follows from (2.12) and (2.13), but

let us check this anyway. Denote by P̃x and P̃w the vector planes parallel to Px and Pw,
and by π̃x (respectively π̃w) the orthogonal projection on P̃x (respectively P̃w); we want
to check that

(2.14) ||π̃x − π̃w|| ≤ 100ε.

Let v ∈ R
n be given; we want to estimate |π̃x(v)− π̃w(v)|, and we may as well assume that

v is a unit vector. We start with the case when v ∈ P̃x, and we first check that

(2.15) dist(v, P̃w) ≤ 25ε.

Observe that both x and x+ v/5 lie in Px ∩B(x, 1/4), so by (2.13) we can find x′ and x′′

in Pw such that |x′ − x| ≤ 10ε/4 and |x′′ − x− v/5| ≤ 10ε/4; then v′ = 5(x′′ − x′) lies in

P̃w, and |v′ − v| = 5|(x′′ − x− v/5) + (x− x′)| ≤ 25ε, as needed for (2.15).

Because of (2.15), we get that |π̃x(v) − π̃w(v)| = |v − π̃w(v)| = dist(v, P̃w) ≤ 25ε for

every unit vector v ∈ P̃x.
Now suppose v is a unit vector in P̃⊥

x . First set ξ = P̃w(v), and check that

(2.16) dist(ξ, P̃x) ≤ 25ε.

Pick x′ ∈ Pw such that |x′ − x| ≤ 10ε/4 (use (2.13) as before), and, since x′ + ξ/5 ∈
Pw ∩ B(x, 1/4), use (2.13) to find y ∈ Px such that |y − x′ − ξ/5| ≤ 10ε/4. Recall that

x ∈ Px; then 5(y − x) ∈ P̃x, and |5(y − x)− ξ| ≤ 5[|y − x′ − ξ/5|+ |x′ − x|] ≤ 25ε, which
proves (2.16). Thus

(2.17) |ξ − π̃x(ξ)| = dist(ξ, P̃x) ≤ 25ε.

Also, for each unit vector e ∈ P̃x, use (2.15) to find e′ ∈ P̃w, with |e′ − e| ≤ 25ε, and
observe that

(2.18)
|〈e, ξ〉| ≤ |〈e′, ξ〉|+ |e′ − e||ξ| ≤ |〈e′, ξ〉|+ 25ε = |〈e′, v〉|+ 25ε

≤ |〈e, v〉|+ |e′ − e|+ 25ε ≤ |〈e, v〉|+ 50ε = 50ε

because ξ − v ⊥ e′ by definition of ξ = π̃w(v), and v ∈ P̃⊥
x . Hence |π̃x(ξ)| ≤ 50ε and,

adding up with (2.17), |ξ| ≤ 75ε. Then |π̃x(v) − π̃w(v)| = |π̃w(v)| = |ξ| ≤ 75ε for every

unit vector v ∈ P̃⊥
x . Since we also have |π̃x(v)− π̃w(v)| ≤ 25ε for every unit vector v ∈ P̃x,

we get that |π̃x(v)− π̃w(v)| ≤ 100ε|v| for every v ∈ R
n. That is, (2.14) holds.

Return to our y and z ∈ Sj+1 ∩ B(x, 4a), recall that π⊥
x denotes the orthogonal

projection on the vector space P̃⊥
x , define π⊥

w similarly, and observe that

|(π⊥
x (y)− π⊥

x (z))− π⊥
w (y)− π⊥

z (z))| = |π⊥
x (y − z) − π⊥

w (y − z)|

= |π̃x(y − z) − π̃w(y − z)|

≤ ||π̃x − π̃w|| |y − z| ≤ 100ε|y − z|(2.19)
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because π⊥
x + π̃x = I = π⊥

w + π̃w Now (2.11) follows from (2.12) and (2.13), as soon as we
take A′

j+1 ≥ Aj + 100. This completes our proof of (2.11) when z ∈ G(Fj,w).

Case 2. We still need to check (2.11) when z /∈ G(Fj,w). Notice that z ∈ G(Fj,w′) ∩
B(w′, 3a) for some other w′ ∈ Xj+1 is impossible, because we would get that

(2.20) |w − w′| ≤ |w − y|+ |y − x|+ |x− z|+ |z − w′| ≤ 3a+ 4a+ 4a+ 3a < 16a,

which is forbidden by (2.3). By (2.10) and because z /∈ G(Fj,w), z ∈ Sj . In addition, by
(2.6) and because z /∈ G(Fj,w), z lies out of B(w, 4a), and so |z − y| ≥ |z − w| − |w − y| ≥
4a−|w− y| ≥ a (recall from the line below (2.11) that y ∈ G(Fj,w)∩B(w, 3a)), and (2.11)
will follow as soon as we prove that

(2.21) |π⊥
x (y)− π⊥

x (z)| ≤ Cε

for some C that depends on n and A′
j , because then |πx(y)− πx(z)| ≥ a/2. First observe

that

(2.22) |π⊥
x (x)− π⊥

x (z)| ≤ 4aA′
jε

by (2.7) and because we just checked that z ∈ Sj ∩B(x, 4a). We are left with

(2.23)

|π⊥
x (y)− π⊥

x (x)| ≤ |π⊥
x (y)− π⊥

x (w)|+ |π⊥
x (w)− π⊥

x (x)|

= |π⊥
x (y)− π⊥

x (w)|+ dist(w, Px)

≤ |π⊥
x (y)− π⊥

x (w)|+ ε.

by (2.4) for x, and because |w− x| ≤ |w− y|+ |y− x| ≤ 7a < 1/2. Let us again use (2.14)
(its proof is valid also in case 2; in fact neither the statement nor the proof involves z);
this yields

(2.24)

|π⊥
x (y)− π⊥

x (w)| = |π⊥
x (y − w)| ≤ |π⊥

w (y − w)|+ |y − w| ||π⊥
x − π⊥

w ||

= |π⊥
w (y − w)|+ |y − w| ||πx − πw||

≤ |π⊥
w (y − w)|+ 100ε|y − w|

because π⊥
x is a linear projection and π⊥

x + π̃x = I = π⊥
w + π̃w. Now recall that y ∈

G(Fj,w) ∩B(w, 3a) (see below (2.11)), and so does w (because w ∈ X = S0 ⊂ Sj , and by
(2.6)); then

(2.25)
|π⊥

w (y − w)| = |π⊥
w (y)− π⊥

w (w)| = |Fj,w(πw(y))− Fj,w(πw(w))|

≤ Ajε|πw(y)− πw(w)| ≤ Ajε|y − w| ≤ Ajε

because Fj,w is Ajε-Lipschitz. Altogether, |π⊥
x (y)− π⊥

x (z)| ≤ 4aA′
jε+ ε+300aε+Ajε, by

(2.22)-(2.25), which proves (2.21) and then (2.11) in our second case.
This completes our proof of (2.7) for j+1. Thus we have the local Lipschitz description

of Sj+1, with (2.6), and this completes our construction of sets Sj by induction.
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Let us now check that for 1 ≤ j ≤ N and x ∈ Xj,

(2.26) SN ∩B(x, 2a) = G(Fj−1,x) ∩B(x, 2a).

Set G = G(Fj−1,x). By (2.10), G ∩B(x, 3a) ⊂ Sj ⊂ SN so we get a first inclusion. Notice
also that since the Lipschitz constant is small and G goes through x,

(2.27) πx(G ∩B(x, 3a)) contains Px ∩B(x, 2a).

Now let z ∈ SN ∩ B(x, 2a) be given. Then πx(z) ∈ Px ∩ B(x, 2a); by (2.27) we can find
w ∈ G ∩ B(x, 3a) such that πx(w) = πx(z). Then w ∈ SN ∩B(x, 3a). But (2.6) says that
SN ∩B(x, 4a) is contained in a Lipschitz graph, so πx is injective on SN ∩B(x, 4a), hence
w = z and z ∈ G. So SN ∩B(x, 2a) ⊂ G, as needed for (2.26).

Now we check the properties (1.4) and (1.5) for SN . First let y ∈ E be given. By
(2.1), we can find x ∈ X such that |x − y| ≤ a. Let j be such that x ∈ Xj, and set
w = πx(y) and z = w+ Fj−1,x(w) ∈ G(Fj−1,x). We know from (2.26) that z ∈ SN , and so

(2.28)

dist(y, SN) ≤ |y − z| = |π⊥
x (y)− π⊥

x (z)| = |π⊥
x (y)− Fj−1,x(w)|

≤ |π⊥
x (y)− π⊥

x (x)|+ |π⊥
x (x)− Fj−1,x(w)|

= dist(y, Px) + |π⊥
x (x)− Fj−1,x(w)|

because πx(y) = πx(z) = w and then x ∈ Px. But x ∈ X ⊂ SN , so x ∈ G(Fj−1,x) by (2.26)
and hence Fj−1,x(x) = π⊥

x (x). Thus

(2.29) |π⊥
x (x)− Fj−1,x(w)| = |Fj−1,x(x)− Fj−1,x(w)| ≤ Aj−1ε|x− w| ≤ Cε

because Fj−1,x is Aj−1ε-Lipschitz. Since dist(y, Px) ≤ ε by (2.4), we deduce from (2.28)
that dist(y, SN) ≤ Cε. So (1.4) holds.

For (1.5), let y ∈ SN be given, and let j(y) be the first index such that y ∈ Sj ; if j(y) =
0, y lies in X ⊂ E, and dist(y, E) = 0. Otherwise, (2.10) says that y ∈ G(Fj−1,x)∩B(x, 3a)
for some x ∈ Xj . Set w = πx(y); then w ∈ Px ∩ B(x, 3a) and hence dist(w,E) ≤ ε by
(2.4). Now

(2.30)
dist(y, E) ≤ |y − w|+ dist(w,E) ≤ |y − w|+ ε = |π⊥

x (y − w)| = |π⊥
x (y − x)|

= |Fj−1,x(w)− Fj−1,x(x)|+ ε ≤ Aj−1ε|x− w|+ ε ≤ Cε,

where we used the facts that w = πx(y), that π⊥
x (w − x) = 0 because x and w lie in Px,

that y = w + Fj−1,x(w) and x = x+ Fj−1,x(w) (both points lie in G(Fj−1,x); also see the
definition (1.7)), and that Fj−1,x is Aj−1ε-Lipschitz. This proves (1.5) for SN .

The local Lipschitz description (1.7)-(1.8) for SN (but with no extra smoothness yet)
will easily follow from (2.26). Indeed, if y ∈ SN , (1.5) and (2.1) imply that dist(y,X) ≤
a + ε; we choose j ∈ [1, N ] and x ∈ Xj so that |x − y| ≤ a + ε and take Py = Px and
Fy = Fj−1,x; then (1.8) follows from (2.26) because B(y, 10−2) ⊂ B(x, 2a). (Recall that
a = 1

32
.) We also get (1.9) for k = 1 (i.e., Fy = Fj−1,x is Cε-Lipschitz).
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Our proof is not complete yet, because we want our smooth surface Σ0 to satisfy (1.9)
for all k. If we were only interested in a finite number of derivatives, we could modify
the argument above, use Withney extensions with functions of class Ck, and conclude as
before. But since we decided to require an infinite number of derivatives, the simplest
seems to start from SN and smooth it out. Notice that if we do not move it by more
than Cε, (1.4) and (1.5) stay true (with larger constants), so the reader should not expect
trouble here.

Let us rapidly describe the argument. The details would be standard and boring,
so we skip them. We shall use the same sets Xj, 1 ≤ j ≤ N , as before, and define sets
T0 = SN , T1, . . ., and finally Σ0 = TN , by induction. For j = 1, . . .N , we obtain Tj from
Tj−1 by smoothing Tj in the balls B(x, 3a

2
), x ∈ Xj. Since these balls are far from each

other, we can do this independently in all these balls. We start from a description of Tj−1

as a Lipschitz graph near B(x, 3a
2
) (which we get from an induction assumption), use a

convolution with a smooth function with a support of small diameter to smooth Tj−1 in
B(x, 3a

2
), interpolate smoothly in a small ring near ∂B(x, 3a

2
), and get the next Tj . Each

time we get a Lipschitz graph with a slightly worse constant, but this does not matter.
The smoothness that has been produced in the previous stages is preserved too, and at
the end, Σ0 = TN is the desired smooth set. This completes our proof of Theorem 1.10. �

Remark 2.31. In [DS], one also obtains parameterizations of sets that contain E, assum-
ing that for x ∈ E and 0 < r ≤ 1, we can find a d-dimensional affine plane P (x, r) through
x such that

(2.32) dist(y, P (x, r)) ≤ εr for y ∈ E ∩B(x, r),

and also that the P (x, r) vary slowly. Here we can do something similar, suppose that for
x ∈ E, we can find a d-plane Px through x, such that

(2.33) dist(y, Px) ≤ ε for y ∈ E ∩B(x, 1),

and such that (2.5) holds. Then our construction gives a set SN , with a Lipschitz descrip-
tion near E, as in (2.26) included. We also get (1.4) as before, but of course not (1.5).
But slightly more unpleasantly, SN has a boundary; that is, we only get (2.26) for balls
centered on X ⊂ E, but not necessarily for balls centered on points of SN far from E. For
instance, the parts near E may be far from each other and then SN stops somewhere in
between. It is possible that we can connect all the boundary pieces of SN , and get a larger
set Σ0 which is smooth and without boundary, but this could be unpleasant to do. The
author did not find any obvious topological obstruction either.

Remark 2.34. When E is unbounded, we can try to prove a variant of Theorem 1.10,
where the radius r0 depends slowly on the location of the balls. We shall not give any
detail.
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