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A new algorithm is presented, which computes the number of lattice points lying inside a convex plane polygon from the sequence of the rational coordinates of its vertices. It reduces the general case in a natural way to a fondamental one, namely a triangle with vertices of coordinates {(0; 0), (n; 0), (n; n a b )}, where n, a and b are positive natural integers. Then it evaluates the discrete area of such a triangle using the Klein polyhedron of slope a b and the Ostrowski representation of n with the numeration scale of denominators of the convergents of the continued fraction expansion of a b .

Introduction

A wide variety of topics involve the problem of counting the number of lattice points (i.e. points with integer coordinates) inside a convex bounded polygon: number theory, toric Hilbert functions, Kostant's partition function in representation theory, cryptography, integer programming,... (for details, see [?]).

In 1993 A. Barvinok [?] found an algorithm to count integer points inside polyhedra for each fixed dimension in polynomial time on the size of the input (the size is given by the binary encoding of the data).

The key ideas are using rational functions and the unimodular signed decomposition of polyhedra. Given a convex polyhedron P in a d dimensional space, it computes the multivariate generating function

f (P ; x) = α∈P ∩Z d x α where x α = x α1 1 ...x α d d .
The number of lattice point of a polytope will be the value of its generating function at (1, ..., 1). It turns out that it is easy to compute the generating function of a unimodular cone (i.e. a cone with the vectors of a basis of the lattice as generating vectors). But now a theorem of M. Brion [?] says that to compute the rational function representation of f (P ; z), it is enough to do it for tangent cones at each vertex of P . Let P be a convex polytope and let V (P ) be the vertex set of P . Let Kv be the tangent cone at v ∈ V (P ), which is the (possibly translated) cone defined by the facets touching vertex v. Then the following formula holds: f (P ; z) = v∈V (P ) f (K v ; z). Lastly Barvinok's algorithm provides a signed decomposition of the K v as disjoint unions of unimodular cones.

In [?], M. Beck and S. Robins give explicit polytime-computable formulae for the number of lattice points in two-dimensional rational polytope. This method uses Dedekind-Rademacher sums.

Building on ideas of J.-P. Réveillès in [?], we propose here a new algorithm working in two-dimensional space. Its input is the sequence of rational coordinates of the vertices of the convex polygon. It reduces the general case in a natural way to a fondamental one, namely a triangle with vertices of coordinates {(0; 0), (n; 0), (n; n a b )}, where n, a and b are positive natural integers. Dealing with this fundamental case involves classical properties of the geometry of numbers, such as geometrical interpretation of the continued fractions, Klein's theorem, Ostrowski's reprentation of natural numbers. We need also the classical Pick's formula, which is in some sense generalized. The first part is devoted to mathematical tools. In the second part, the algorithm is described.

Mathematical tools

We first need classical notions from continued fractions theory (see for example the classical textbook [?]).

Let a and b be coprime positive integers. Then we denote α i and r i the i th term of the sequence of quotients and remainders of the classical Euclidean algorithm:

r 0 = a, r 1 = b,
and while r i+1 = 0,

r i = α i r i+1 + r i+2 0 ≤ r i+2 < r i+1
The length l of the algorithm is the number of steps l = Sup{i; r i = 0}. Let us define the sequence of continued fraction expansion of a b in the following way:

α k p k-1 + p k-2 = p k α k q k-1 + q k-2 = q k p -2 = 0, p -1 = 1 q -2 = 1, q -1 = 0 pi qi 0≤i≤λ
is the sequence of the convergents of a b . We have b = q l-1 and a = p l-1 and p 2k q 2k < a b < p 2k+1 q 2k+1 for 2k + 1 ≤ l -2. The number of lattice points lying in a polygon is called its discrete area. The well known Pick's formula ([?]) is the following: Lemma 1. The discrete area of a polygon with lattice points as vertices is equal to its continuous area plus half of the number of the lattice points lying on its boundary minus 1.

Notice that vertices must be lattice points. Our problem is to generalize this formula to polygons with rational vertices. One of the ideas we largely use is to substitute to such a lattice polygon a larger or smaller polygon (for the order of inclusion) having the same discrete area and lattice points as vertices. The two following lemmas provide opportunities to do so. Lemma 2. There is no lattice points such that γ < αx+βy < gcd(α, β)⌈ γ gcd(α,β) ⌉ where α, β, γ are integers and gcd(α, β) is the greatest common divisor of α and β.

Proof. Let r be such that 0 ≤ r < gcd(αx, β) and γ = gcd(α, β)⌈ γ gcd(α,β) ⌉r . Then the given condition implies r > gcd(α, β)⌈ γ gcd(α,β) ⌉ -(αx + βy) > 0, which is impossible since the middle term is a multiple of gcd(α, β).

The following is an old theorm of Klein (see [?])

Lemma 3. There is no lattice points in the polygon of vertices of coordinates (q i ; a b q i ), (q i+2 ; a b q i+2 ), (q i+2 ; p i+2 ) and (q i ; p i ) but the points of coordinates (q i + tq i+1 ; p i + tp i+1 ) where 0 ≤ t ≤ α i+2 . 

(i, t; a, b) = A(q i +tq i+1 -1; a, b)-A(q i -1; a, b) the discrete area of (x; y) ∈ Z 2 ; (q i ≤ x ≤ q i + tq i+1 -1) ∧ 0 ≤ y ≤ a b x . Then T (i, t; a, b) = t 2 ((2p i + tp i+1 )q i+1 + q i+1 -p i+1 + 1 -2(i%2))
for 0 ≤ t ≤ α i+2 and i + 2 ≤ l.

Proof. From Klein's theorem, there is no lattice points in the parallelogram of vertices of coordinates (q 2k ; a b q 2k ), (q 2k+2 ; a b q 2k+2 ), (q 2k+2 ; p 2k+2 ) and (q 2k ; p 2k ) but the points of coordinates (q 2k + tq 2k+1 ; p 2k + tp 2k+1 ) where 0 ≤ t ≤ α 2k+2 (see 1, Left). Applying now Pick's formula, T (2k, t; a, b) turns out to be equal to

t 2 ((2p 2k + tp 2k+1 )q 2k+1 + q 2k+1 -p 2k+1 + 1)
which is the announced result for even i.

be defined by vertices v i , v i+1 , and w i where w i is of coordinates (x i+1 , y i ) for 0 ≤ i ≤ i 1 -1, and of coordinates (x i , y i+1 ) for i 1 ≤ i ≤ i 2 -1 , and so on.

Counting the lattice points in the rectangles and on their boundaries is easy. We focuse now on the triangles. Each is easily reduced to a more simple triangle with vertices of type (0; 0), (r 1 ; 0), (0; r 2 ), where r 1 and r 2 are positive rational numbers. Now we reduce such triangles to fundamental ones. Suppose that αx + βy = γ is an equation of the line defined by (r 1 ; 0) and (0; r 2 ), with α , β and γ positive integers. More precisely,

α = N x 2 Dx 1 , β = N x 1 Dx 2 , γ = N x 1 N x 2 .
So the triangle is defined by (0 < x) ∧ (0 < y) ∧ (αx + βy < γ).

The easy case is whenever there is a lattice point on the straightline defined by αx + βy ≤ γ. It happens iff gcd(α, β) divides γ. Let us introduce α ′ = α gcd(α,β) and β ′ = β gcd(α,β) . Let (x 0 ; y 0 ) be an integer solution. One can get it using Extended Euclidean algorithm and choose it such as r 1 ≤ x 0 < r 1 + β and y 0 ≤ 0. In this case the number of lattice points inside the open triangle

(0 < x) ∧ (0 < y) ∧ (αx + βy < γ) is A(x 0 ; α ′ , β ′ ) -A(x 0 -⌊r 1 ⌋ -1; α ′ , β ′ ) - (⌊r 1 ⌋ + 1)y 0 -⌊r 2 ⌋ -⌊ x0γ β ⌋ -⌊ y0γ α ⌋ -1
We have thus to consider the more difficult case where the gcd of α and β does not divide γ. In this case, the considered triangle has the same number of lattice points than the triangle defined by

(0 < x) ∧ (0 < y) ∧ α ′ x + β ′ y < ⌈ γ gcd(α, β) ⌉ 2.

Complexity

The algorithm presented in this paper is of restricted application, just counting lattice points in convex plane polygonals. The main step is the so-called fundamental case. Its complexity is O(d 2 × τ (d)), where d is the maximal size of the input a and b and τ (d) the time required for multiplying or dividing integers of same size. This algorithm have been implemented in Python on a P.C. equipped with a Intel Cetrino at 2.53 GHz. Average time computation for input with 7 decimal digits is almost 10 -4 s and for input with 17 decimal digits almost 5 × 10 -4 s

Conclusion

Barvinok's algorithm is implemented in two packages: LattE (described in [?]) and Barvinok (described in [?]). Both are dealing with polytopes in arbitrary fixed dimension and not only compute the number of lattice points, but compute the Ehrhard polynomials, optimize functions on the lattice points of the polytopes, ... Moreover they are implemented with gmp integers. Nevertheless our algorithm is of theoretical interest because of its simplcity, which could leads to a LOGSP ACE complexity. Moreover, it is of significant efficiency in the two-dimensional case.
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 14 Fig. 1. Left: i = 2k is even Right: i = 2k + 1 is odd

A similar proof (see figure 1, Right) shows that T (2k + 1, t; a, b) is equal to t 2 ((2p 2k+1 + tp 2k+2 )q 2k+2 + q 2k+2p 2k+2 -1)

for 0 ≤ t ≤ α 2k+3 and 2k + 3 ≤ b.

Next lemma is devoted to (x; y) ∈ Z 2 ; (q i + tq i+1 ≤ x ≤ n) ∧ 0 ≤ y ≤ a b x .

Lemma 5. Suppose q i + tq i+1 + 1 ≤ n ≤ q i + (t + 1)q i+1 -1 for 0 ≤ t ≤ α i+2 ; then A(n; a, b) -A(q i + tq i+1 -1; a, b) is equal to A(nq itq i+1 ; p i+1 , q i+1 ) + (nq itq i+1 + 1)(p i + tp i+1 ) -(i%2)

Proof.

(1) let us first consider the even case i = 2k; as a consequence of Klein's theorem, the set of the lattice points satisfying (q 2k + tq 2k+1 ≤ x ≤ n) ∧ 0 ≤ y ≤ a b x is the same than the set of the lattice points satisfying (q 2k + tq 2k+1 ≤ x ≤ n)∧ 0 ≤ y ≤ p 2k + tp 2k+1 + p 2k+1 q 2k+1 (xq 2ktq 2k+1 ) which is the disjoint union of the rectangle defined by (q 2k + tq 2k+1 ≤ x ≤ n) ∧ (0 ≤ y ≤ p 2k + tp 2k+1 -1) and the triangle defined by (

But the discrete area of first one is (nq 2ktq 2k+1 + 1) × (p 2k + tp 2k+1 ). And the second one have the same discrete area than the triangle (0 ≤ x ≤ nq 2ktq 2k+1 ) ∧ 0 ≤ y ≤ p 2k+1 q 2k+1 x . (2) in the odd case i = 2k + 1, the proof is similar, just taking care to the point of coordinates (q 2k+1 + tq 2k+2 ; p 2k+1 + tp 2k+2 ). In order to initialize an induction, we need values of A(n; a, b) for small n. n i q i and 0 ≤ n 0 ≤ α 1 and 0 ≤ n i ≤ α i and n i = α i+1 implies n i-1 = 0 and n λ-1 = 0. For our purpose, we need a slightly different form: Lemma 7. For 1 ≤ n ≤ b-1, there exist finite sequences of integers (ν i ) 0≤i≤λ-1 and (φ i ) 0≤i≤λ-1 , the second one being increasing, such that

Proof. From the canonical representation, do inductively from the digit of maximal weight n λ-1 :

if

In fine, just consider an increasing enumeration φ of the index of non zero digits n i .

We are able now to give the main theorem.

Lastly, we generalize easily to any positive integers n Lemma 8. Suppose b ≤ n, then A(n; a, b) is equal to

Algorithm

In this section, we first present the algorithm in the case of a triangle with vertices of coordinates {(0; 0), (n; 0), (n; n a b )}, where n, a and b are positive natural integers. This algorithm follows from the mathematical tools. The second subsection reduces the general case to this fundamental case. The third deals with complexity.

Fundamental triangle

The function T(i,t) computinges T (i, t; a, b). The function AA(i,t) computes A(q i + tq i+1 -1; a, b). The complete algorithm corresponds to the function algo(n). At each step, it realizes the induction described in Theorem 8. However it does not compute all the digits of the Ostrowski representation of n before the induction: each digit is computed at the corresponding step of the induction. 

Reduction of convex polygons to fundamental triangles

This part of the algorithm is straightforward, so we just sketch the outline. Let a rational convex polygon P be defined by a sequence of its vertices (v i ) 0≤i≤imax . Each rational vertex v i will be defined by its coordinates, and each rational coordinates will be defined by an irreducible fraction given as a couple of coprime integers (N x; Dx), the first one beeing its numerator and the second one its denominator. The first step consits in providing a counterclock wise ordering of the vertices and indices of vertices of extremal abscissae and ordinates.

Hence the output will be a sequence (x i , y i ) 0≤i≤imax and four indices 0, i 1 , i 2 and i 3 such that for 0 ≤ i ≤ i 1 -1 we have x i ≥ x i+1 and y i ≥ y i+1 , for i 1 ≤ i ≤ i 2 -1 we have x i ≤ x i+1 and y i ≥ y i+1 , and so on.

We introduce now the rectangle R defined by (x i1 ≤ x ≤ x i3 )∧(y i2 ≤ y ≤ y 0 ). The idea is to substract to the number of lattice points of R the number of lattice points outside P . The second step provides a decomposition of R-P as a union of open triangles and rectangles and their boudaries: the rectangles will be defined for 0 ≤ i ≤ i 1 -1 by (x i1 < x < x i+1 ) ∧ (y i+1 < y < y i ), for i 1 ≤ i ≤ i 2 -1 defined by (x i < x < x i+1 ) ∧ (y i1 < y < y i+1 ), and so on; the triangles will