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A New Algorithm for Discrete Area of Convex

Polygons with Rational Vertices

ESBELIN, Henri-Alex

Clermont Universités, CNRS UMR 6158, LIMOS

Abstract. A new algorithm is presented, which computes the number
of lattice points lying inside a convex plane polygon from the sequence
of the rational coordinates of its vertices. It reduces the general case in
a natural way to a fondamental one, namely a triangle with vertices of
coordinates {(0; 0), (n; 0), (n;na

b
)}, where n, a and b are positive natural

integers. Then it evaluates the discrete area of such a triangle using the
Klein polyhedron of slope a

b
and the Ostrowski representation of n with

the numeration scale of denominators of the convergents of the continued
fraction expansion of a

b
.
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Introduction

A wide variety of topics involve the problem of counting the number of lattice
points (i.e. points with integer coordinates) inside a convex bounded polygon:
number theory, toric Hilbert functions, Kostant’s partition function in represen-
tation theory, cryptography, integer programming,... (for details, see [?]).

In 1993 A. Barvinok [?] found an algorithm to count integer points inside
polyhedra for each fixed dimension in polynomial time on the size of the input
(the size is given by the binary encoding of the data).

The key ideas are using rational functions and the unimodular signed decom-
position of polyhedra. Given a convex polyhedron P in a d dimensional space,
it computes the multivariate generating function

f(P ;x) =
∑

α∈P∩Zd

xα

where xα = xα1

1 ...xαd

d .
The number of lattice point of a polytope will be the value of its generating

function at (1, ..., 1). It turns out that it is easy to compute the generating func-
tion of a unimodular cone (i.e. a cone with the vectors of a basis of the lattice
as generating vectors). But now a theorem of M. Brion [?] says that to compute
the rational function representation of f(P ; z), it is enough to do it for tangent
cones at each vertex of P . Let P be a convex polytope and let V (P ) be the
vertex set of P . Let Kv be the tangent cone at v ∈ V (P ), which is the (possibly
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translated) cone defined by the facets touching vertex v. Then the following for-
mula holds: f(P ; z) =

∑

v∈V (P ) f(Kv; z). Lastly Barvinok’s algorithm provides
a signed decomposition of the Kv as disjoint unions of unimodular cones.

In [?], M. Beck and S. Robins give explicit polytime-computable formulae for
the number of lattice points in two-dimensional rational polytope. This method
uses Dedekind-Rademacher sums.

Building on ideas of J.-P. Réveillès in [?], we propose here a new algorithm
working in two-dimensional space. Its input is the sequence of rational coor-
dinates of the vertices of the convex polygon. It reduces the general case in
a natural way to a fondamental one, namely a triangle with vertices of coor-
dinates {(0; 0), (n; 0), (n;na

b
)}, where n, a and b are positive natural integers.

Dealing with this fundamental case involves classical properties of the geometry
of numbers, such as geometrical interpretation of the continued fractions, Klein’s
theorem, Ostrowski’s reprentation of natural numbers. We need also the classical
Pick’s formula, which is in some sense generalized. The first part is devoted to
mathematical tools. In the second part, the algorithm is described.

1 Mathematical tools

We first need classical notions from continued fractions theory (see for example
the classical textbook [?]).

Let a and b be coprime positive integers. Then we denote αi and ri the
ith term of the sequence of quotients and remainders of the classical Euclidean
algorithm:

r0 = a, r1 = b, and while ri+1 6= 0,

{

ri = αiri+1 + ri+2

0 ≤ ri+2 < ri+1

The length l of the algorithm is the number of steps l = Sup{i; ri 6= 0}. Let

us define the sequence of continued fraction expansion of
a

b
in the following way:

αkpk−1 + pk−2 = pk αkqk−1 + qk−2 = qk

p−2 = 0, p−1 = 1 q−2 = 1, q−1 = 0
(

pi

qi

)

0≤i≤λ
is the sequence of the convergents of

a

b
. We have b = ql−1 and

a = pl−1 and p2k

q2k
< a

b
<

p2k+1

q2k+1
for 2k + 1 ≤ l − 2.

The number of lattice points lying in a polygon is called its discrete area.
The well known Pick’s formula ([?]) is the following:

Lemma 1. The discrete area of a polygon with lattice points as vertices is equal

to its continuous area plus half of the number of the lattice points lying on its

boundary minus 1.

Notice that vertices must be lattice points. Our problem is to generalize this
formula to polygons with rational vertices. One of the ideas we largely use is to
substitute to such a lattice polygon a larger or smaller polygon (for the order of
inclusion) having the same discrete area and lattice points as vertices. The two
following lemmas provide opportunities to do so.
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Lemma 2. There is no lattice points such that γ < αx+βy < gcd(α, β)⌈ γ
gcd(α,β)⌉

where α, β, γ are integers and gcd(α, β) is the greatest common divisor of α and

β.

Proof. Let r be such that 0 ≤ r < gcd(αx, β) and γ = gcd(α, β)⌈ γ
gcd(α,β)⌉ − r .

Then the given condition implies r > gcd(α, β)⌈ γ
gcd(α,β)⌉− (αx+βy) > 0, which

is impossible since the middle term is a multiple of gcd(α, β).

The following is an old theorm of Klein (see [?])

Lemma 3. There is no lattice points in the polygon of vertices of coordinates

(qi;
a
b
qi), (qi+2;

a
b
qi+2), (qi+2; pi+2) and (qi; pi) but the points of coordinates (qi+

tqi+1; pi + tpi+1) where 0 ≤ t ≤ αi+2.

Fig. 1. Left: i = 2k is even Right: i = 2k + 1 is odd

Let us denote by A(n; a, b) the discrete area of the triangle
{

(x; y) ∈ N
2; (0 ≤ x ≤ n) ∧

(

0 ≤ y ≤ a
b
x
)}

. Formulas will differ, depending on

the parity of the indices of the convergents of
a

b
. Let us denote by i%2 the

remainder of the integer i in the euclidean division by 2.

Lemma 4. Let us denote by T (i, t; a, b) = A(qi+tqi+1−1; a, b)−A(qi−1; a, b) the

discrete area of
{

(x; y) ∈ Z
2; (qi ≤ x ≤ qi + tqi+1 − 1) ∧

(

0 ≤ y ≤
a

b
x
)}

. Then

T (i, t; a, b) =
t

2
((2pi + tpi+1)qi+1 + qi+1 − pi+1 + 1− 2(i%2))

for 0 ≤ t ≤ αi+2 and i+ 2 ≤ l.

Proof. From Klein’s theorem, there is no lattice points in the parallelogram of
vertices of coordinates (q2k;

a
b
q2k), (q2k+2;

a
b
q2k+2), (q2k+2; p2k+2) and (q2k; p2k)

but the points of coordinates (q2k + tq2k+1; p2k + tp2k+1) where 0 ≤ t ≤ α2k+2

(see 1, Left). Applying now Pick’s formula, T (2k, t; a, b) turns out to be equal to

t

2
((2p2k + tp2k+1)q2k+1 + q2k+1 − p2k+1 + 1)

which is the announced result for even i.
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A similar proof (see figure 1, Right) shows that T (2k + 1, t; a, b) is equal to

t

2
((2p2k+1 + tp2k+2)q2k+2 + q2k+2 − p2k+2 − 1)

for 0 ≤ t ≤ α2k+3 and 2k + 3 ≤ b.

Next lemma is devoted to
{

(x; y) ∈ Z
2; (qi + tqi+1 ≤ x ≤ n) ∧

(

0 ≤ y ≤ a
b
x
)}

.

Lemma 5. Suppose qi + tqi+1 + 1 ≤ n ≤ qi + (t+ 1)qi+1 − 1 for 0 ≤ t ≤ αi+2 ;

then A(n; a, b)−A(qi + tqi+1 − 1; a, b) is equal to

A(n− qi − tqi+1; pi+1, qi+1) + (n− qi − tqi+1 + 1)(pi + tpi+1)− (i%2)

Proof. (1) let us first consider the even case i = 2k; as a consequence of Klein’s
theorem, the set of the lattice points satisfying (q2k + tq2k+1 ≤ x ≤ n)∧

(

0 ≤ y ≤ a
b
x
)

is the same than the set of the lattice points satisfying

(q2k + tq2k+1 ≤ x ≤ n)∧
(

0 ≤ y ≤ p2k + tp2k+1 +
p2k+1

q2k+1
(x− q2k − tq2k+1)

)

which

is the disjoint union of the rectangle defined by (q2k + tq2k+1 ≤ x ≤ n)∧
(0 ≤ y ≤ p2k + tp2k+1 − 1) and the triangle defined by (q2k + tq2k+1 ≤ x ≤ n)∧
(

p2k + tp2k+1 ≤ y ≤ p2k + tp2k+1 +
p2k+1

q2k+1
(x− q2k − tq2k+1)

)

. But the discrete

area of first one is (n − q2k − tq2k+1 + 1) × (p2k + tp2k+1). And the second
one have the same discrete area than the triangle (0 ≤ x ≤ n− q2k − tq2k+1) ∧
(

0 ≤ y ≤ p2k+1

q2k+1
x
)

.

(2) in the odd case i = 2k + 1, the proof is similar, just taking care to the
point of coordinates (q2k+1 + tq2k+2; p2k+1 + tp2k+2).

Fig. 2. Left i = 2k Right i = 2k + 1

In order to initialize an induction, we need values of A(n; a, b) for small n.

Lemma 6. For 0 ≤ n ≤ q1 we have A(n; a, b) = (n+ 1) + p0
n(n+ 1)

2
.

Proof. A(n; a, b) = 1 + (p0 + 1) + ...+ ((n− 1)p0 + 1)
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Let us introduce now the usual Ostrowski representations of integers [?], [?],
[?]. With the previous notations, for 1 ≤ n ≤ b−1, there exist a finite sequence of

non negative integers (ni)0≤i≤λ−1 such that n =
∑i=λ−1

i=0 niqi and 0 ≤ n0 ≤ α1

and 0 ≤ ni ≤ αi and ni = αi+1 implies ni−1 = 0 and nλ−1 6= 0. For our purpose,
we need a slightly different form:

Lemma 7. For 1 ≤ n ≤ b−1, there exist finite sequences of integers (νi)0≤i≤λ−1

and (φi)0≤i≤λ−1, the second one being increasing, such that

n =

i=λ−1
∑

i=0

νiqφi
(1)

and 0 < νi ≤ αi and φi−1 ≤ φi − 2 implies νi = 1 and νλ−1 6= 0.

Proof. From the canonical representation, do inductively from the digit of max-
imal weight nλ−1:
if ni = 0 and ni+1 ≥ 2 , replace ni+1qi+1 + 0qi + ni−1qi−1 by (ni+1 − 1)qi+1 +
αi+1qi + (ni−1 + 1)qi−1.
if ni−1 ≤ αi − 1, stop;
if ni−1 = αi, then ni−2 is equal to 0; hence it is possible to iterate.
In fine, just consider an increasing enumeration φ of the index of non zero digits
ni.

We are able now to give the main theorem.

Theorem 1. Suppose 1 ≤ n ≤ b− 1.
If φλ−2 = φλ−1 − 1, then A(n; a, b) is equal to

A(qφλ−2
+nλ−1qφλ−1

− 1; a, b)+ (n− qφλ−2
− νλ−1qφλ−1

+1)(pφλ−2
+ νλ−1pφλ−1

)

−(φλ−1%2) +A(n− qφλ−2
− νλ−1qφλ−1

; pφλ−1
, qφλ−1

)

If φλ−2 ≤ φλ−1 − 2, then A(n; a, b) is equal to

A(qφλ−1
− 1; a, b)+ (n− qφλ−1

+1)pφλ−1
− (φλ−1%2)+A(n− qφλ−1

; pφλ−1
, qφλ−1

)

Lastly, we generalize easily to any positive integers n

Lemma 8. Suppose b ≤ n, then A(n; a, b) is equal to

A(n− b⌊
n

b
⌋; a, b)− ⌊

n

b
⌋2

ab

2
+

1

2
⌊
n

b
⌋(b− a+ 1 + 2an)

6

-
������������������

nb⌊n
b
⌋
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Proof. A(n; a, b) is equal to A(n − b⌊n
b
⌋; a, b) plus the discrete area of the rect-

angle (b⌊n
b
⌋ ≤ x < n) ∧ (0 ≤ y < a⌊n

b
⌋) which is

1

2
b⌊
n

b
⌋a⌊

n

b
⌋+

1

2
(⌊
n

b
⌋+ a⌊

n

b
⌋+ b⌊

n

b
⌋) + 1− (1 + b⌊

n

b
⌋) + (n− b⌊

n

b
⌋)a⌊

n

b
⌋

which is equal to − 1
2b⌊

n
b
⌋a⌊n

b
⌋+ 1

2 (⌊
n
b
⌋+ a⌊n

b
⌋ − b⌊n

b
⌋) + na⌊n

b
⌋ . QED

2 Algorithm

In this section, we first present the algorithm in the case of a triangle with ver-
tices of coordinates {(0; 0), (n; 0), (n;na

b
)}, where n, a and b are positive natural

integers. This algorithm follows from the mathematical tools. The second sub-
section reduces the general case to this fundamental case. The third deals with
complexity.

2.1 Fundamental triangle

The function T(i,t) computinges T (i, t; a, b). The function AA(i,t) computes
A(qi + tqi+1 − 1; a, b). The complete algorithm corresponds to the function
algo(n). At each step, it realizes the induction described in Theorem 8. However
it does not compute all the digits of the Ostrowski representation of n before the
induction: each digit is computed at the corresponding step of the induction.

Input: a, b, n

Using Extended Euclidean algorithm, compute

l ♯ the length of the continued fraction

♯ expansion of a
b

listea ♯ the list of the coefficients of the continued

♯ fraction expansion of a
b

listep ♯ the list of the numerators of the

♯ convergents of a
b

listeq ♯ the list of the denominators of the

♯ convergents of a
b

def T(i,t):

T=t*(listeq[i+1]*(2*listep[i]+t*listep[i+1])

-listep[i+1]+listeq[i+1]+1-2*(i%2)))//2

return (T)

def AA(i,t):

Sum=0

Sum=1+(i%2)*((listep[0]*(listeq[1]*(listeq[1]-1)))//2+listeq[1]-1)

j=i%2

while j < i-1:

Sum = Sum + T(j,listea[j+2])
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j=j+2

Sum = Sum + T(i,t)

return Sum

def algo(n):

Sum=0

while n>= listeq[1]:

j=0

while listeq[j]<=n:

j=j+1

c=n//listeq[j-1]

d=n-c * listeq[j-1]

k=0

while listeq[k]<=d:

k=k+1

if k==j-1:

s=AA(j-2,c)+(n-listeq[j-2]-c*listeq[j-1]+1)*

(listep[j-2]+c*listep[j-1])-((j-2)%2)

Sum = Sum + s

n=n-listeq[j-2]-c*listeq[j-1]

else:

s=AA(j-2,c-1)+(n-listeq[j-2]-(c-1)*listeq[j-1]+1)

*(listep[j-2]+(c-1)*listep[j-1])-((j-2)%2)

Sum = Sum + s

n=n-listeq[j-2]-(c-1)*listeq[j-1]

Sum = Sum + n+1+listep[0]*(n*(n+1))//2

return Sum

2.2 Reduction of convex polygons to fundamental triangles

This part of the algorithm is straightforward, so we just sketch the outline. Let a
rational convex polygon P be defined by a sequence of its vertices (vi)0≤i≤imax

.
Each rational vertex vi will be defined by its coordinates, and each rational
coordinates will be defined by an irreducible fraction given as a couple of coprime
integers (Nx;Dx), the first one beeing its numerator and the second one its
denominator. The first step consits in providing a counterclock wise ordering of
the vertices and indices of vertices of extremal abscissae and ordinates.

Hence the output will be a sequence (xi, yi)0≤i≤imax
and four indices 0, i1,

i2 and i3 such that for 0 ≤ i ≤ i1 − 1 we have xi ≥ xi+1 and yi ≥ yi+1, for
i1 ≤ i ≤ i2 − 1 we have xi ≤ xi+1 and yi ≥ yi+1, and so on.

We introduce now the rectangle R defined by (xi1 ≤ x ≤ xi3)∧(yi2 ≤ y ≤ y0).
The idea is to substract to the number of lattice points of R the number of lattice
points outside P . The second step provides a decomposition of R−P as a union of
open triangles and rectangles and their boudaries: the rectangles will be defined
for 0 ≤ i ≤ i1 − 1 by (xi1 < x < xi+1) ∧ (yi+1 < y < yi), for i1 ≤ i ≤ i2 − 1
defined by (xi < x < xi+1) ∧ (yi1 < y < yi+1), and so on; the triangles will



VIII

be defined by vertices vi, vi+1, and wi where wi is of coordinates (xi+1, yi) for
0 ≤ i ≤ i1 − 1, and of coordinates (xi, yi+1) for i1 ≤ i ≤ i2 − 1 , and so on.

Counting the lattice points in the rectangles and on their boundaries is easy.
We focuse now on the triangles. Each is easily reduced to a more simple triangle
with vertices of type (0; 0), (r1; 0), (0; r2), where r1 and r2 are positive rational
numbers. Now we reduce such triangles to fundamental ones. Suppose that αx+
βy = γ is an equation of the line defined by (r1; 0) and (0; r2), with α , β and γ

positive integers. More precisely, α = Nx2Dx1, β = Nx1Dx2, γ = Nx1Nx2. So
the triangle is defined by (0 < x) ∧ (0 < y) ∧ (αx+ βy < γ).

The easy case is whenever there is a lattice point on the straightline defined
by αx + βy ≤ γ. It happens iff gcd(α, β) divides γ. Let us introduce α′ =

α
gcd(α,β) and β′ = β

gcd(α,β) . Let (x0; y0) be an integer solution. One can get it

using Extended Euclidean algorithm and choose it such as r1 ≤ x0 < r1 + β

and y0 ≤ 0. In this case the number of lattice points inside the open triangle
(0 < x) ∧ (0 < y) ∧ (αx + βy < γ) is A(x0;α

′, β′) − A(x0 − ⌊r1⌋ − 1;α′, β′) −
(⌊r1⌋+ 1)y0 − ⌊r2⌋ − ⌊x0γ

β
⌋ − ⌊y0γ

α
⌋ − 1

We have thus to consider the more difficult case where the gcd of α and β

does not divide γ. In this case, the considered triangle has the same number of
lattice points than the triangle defined by

(0 < x) ∧ (0 < y) ∧

(

α′x+ β′y < ⌈
γ

gcd(α, β)
⌉

)

2.3 Complexity

The algorithm presented in this paper is of restricted application, just counting
lattice points in convex plane polygonals. The main step is the so-called funda-
mental case. Its complexity is O(d2 × τ(d)), where d is the maximal size of the
input a and b and τ(d) the time required for multiplying or dividing integers of
same size.

This algorithm have been implemented in Python on a P.C. equipped with
a Intel Cetrino at 2.53 GHz. Average time computation for input with 7 decimal
digits is almost 10−4 s and for input with 17 decimal digits almost 5× 10−4 s

3 Conclusion

Barvinok’s algorithm is implemented in two packages: LattE (described in [?])
and Barvinok (described in [?]). Both are dealing with polytopes in arbitrary
fixed dimension and not only compute the number of lattice points, but compute
the Ehrhard polynomials, optimize functions on the lattice points of the poly-
topes, ... Moreover they are implemented with gmp integers. Nevertheless our
algorithm is of theoretical interest because of its simplcity, which could leads
to a LOGSPACE complexity. Moreover, it is of significant efficiency in the
two-dimensional case.
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