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1. Introduction 

The concept of precision agriculture consists to spatially manage crop management practices 

according to in-field variability. This concept is principally dedicated to variable-rate 

application of inputs such as nitrogen, seeds and phytosanitary products, allowing for a 

better yield management and reduction on the use of pesticides, herbicides … In this general 

context, the development of ICT techniques has allowed relevant progresses for Leaf Area 

Index (LAI) (Richardson et al., 2009), crop density (Saeys et al., 2009), stress (Zygielbaum et 

al., 2009) … Most of the tools used for Precision Farming utilizes optical and/or imaging 

sensors and dedicated treatments, in real time or not, and eventually combined to 3D plant 

growth modeling or disease development (Fournier et al., 2003 ; Robert et al., 2008). To 

evaluate yields or to better define the appropriated periods for the spraying or fertilizer 

input, to detect crop, weeds, diseases …, the remote sensing imaging devices are often used 

to complete or replace embedded sensors onboard the agricultural machinery (Aparicio et 

al., 2000). Even if these tools provide sufficient accurate information, they get some 

drawbacks compared to “proxy-detection” optical sensors: resolution, easy-to-use tools, 

accessibility, cost, temporality, precision of the measurement … The use of specific image 

acquisition systems coupled to reliable image processing should allow for a reduction of 

working time, a lower work hardness and a reduction of the bias of the measurement 

according to the operator, or a better spatial sampling due to the rapidity of the image 

acquisition (instead of the use of remote sensing). The early evaluation of yield could allow 

farmers, for example, to adjust cultivation practices (e.g., last nitrogen (N) input), to 

organize harvest and storage logistics. The optimization of late N application could lead to 

significant improvements for the environment, one of the most important concerns that 

precision agriculture aims to address.  
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We propose in this chapter to explore the proxy-detection domain by focusing first on the 
development of robust image acquisition systems, and secondly on the use of image 
processing for different applications tied on one hand to wheat crop characterization, such 
as the detection and counting of wheat ears per m² (in a context of yield prediction) and the weed 
detection, and on the other hand to the evolution of seed development/germination 
performance of chicory achenes. Results of the different processing are presented in the last 
part just before a conclusion. 

2. Image acquisition system 

Image acquisition is the most important step for robust image processing. Indeed, the use of 
natural images involves some difficulties tied to outdoor conditions (lighting variations) and 
object complexity (the leaf area presents several planes, high contrast and lighting 
variations, scale variations, wheat growth stages ….). Photographic slides were taken at 
different growing stages of the wheatears. 

Different solutions exist for image acquisition according to the vertical distance between the 
camera and the scene (1m, 2m or more), to the illumination used (natural or controlled 
light), to the kind of images (color, grey level, hyperspectral ...) 

Figure 1 shows one solution based on specific boxes with opaque protection and controlled 
illumination by power-leds, for wheat ear counting, allowing to obtain color or grey level 
images. 

 

Fig. 1. Example of image acquisition system (left) and its specific illumination by Led (right) 

Figure 2 shows some examples of color images of wheat crop at three different growth 
stages with controlled illumination. 
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Fig. 2. Example of image acquisition system (left) and its specific illumination by Led (right) 

Proxy-Hyperspectral images can also be used and are obtained with specific sensors. As an 
illustration, images of wheat crop have been acquired in march 2011 on the domain of 
Melgueil (INRA, 34-France) by means of dedicated apparatus developed by the Cemagref. 
This device is constituted by a motorized rod installed on a tractor which allows a 
longitudinal displacement of a push-broom hyperspectral camera located 1 meter above the 
vegetation (figure 3). 

 

Fig. 3. Hyperspectral acquisition device 

Other imaging system is based on chlorophyll fluorescence. A xenon light source 
(Hamamatsu Lightingcure L8222, model LC5, 150 W) is used to produce a white light which 
passes through an interference filter (03FIB002, Melles Griot, Carlsbad, USA) with a central 
wavelength 410 nm and width at half-maximum 80 nm to excite the chlorophyll-a. The light 
is conducted to the seeds by an optical fiber. The blue light issued from the filter is absorbed 
by the seeds chlorophylls, which resulted in fluorescence emission. A high-pass filter (665 
nm, 03FCG107, Melles Griot 03FCG107) ensured the selection of the fluorescent signal from 
the blue light reflected by the object. 

The images are acquired by a CCD monochrome camera (Hamamatsu C5405-70), with a 
resolution of 640 x 480 pixels and 256 gray levels. The system is enclosed within a black box 
to avoid interference from ambient light and is air-conditioned (Tectro TS27, PVG Int. B.V., 
Oss, The Netherlands) to maintain a temperature of 20°C. The lamp is optically isolated and 
white light did not escape inside the box. The blue filter transmitted an unexpected, small 
amount of infrared light between 770 and 900 nm (detected with spectrometer AVS-SD2000, 
Avantes, Eerbeek, The Netherlands). 
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3. Proxy-detection image processing for wheat ear counting 

Proxy-detection imagery for yield prediction needs the determination of the three components 
of the yield: number of ears / m², number of grains per ear and the weight per thousand seeds. 
Wheat ear shapes are very variable, especially due to the different inclinations of wheatears. 
However, wheatears show a very rough surface whereas leaf surfaces are smoother (figure 4).  

 
Leaf surface Wheatear surface 

Fig. 4. 3D surface of leaf and ear 

Considering this specific roughness (figure 4), texture analysis can be used in order to 
discriminate wheatears, leaves and ground. 

3.1 Texture feature extraction 

In order to extract the texture features, a variety of methods have already been proposed in 

the literature and tested in practice. In this context, three families of texture feature 

extraction exist: statistical, spectral and structural methods. A successful texture 

classification or segmentation requires an efficient feature extraction methodology. 

Two methods are discussed in this chapter. The first one is based on statistical analysis by 

cooccurrence matrices, and the second one is based on Fourier filtering. 

3.1.1 Cooccurrence matrices 

The principle of these matrices is to count how often pairs of grey levels occur in a digital 
image of texture. In fact, we take into account pairs of pixels that are located along a given 

direction defined by the angle  and separated by a fixed distance d. 

Let  1,2,...,I IL N  and  1,2,...,J JL N  be respectively the horizontal and vertical spatial 

domains and  0,1,..., 1   G    the grey levels. 

The digital image : I Jf L L G   assigns a grey level to each pixel. 

Furthermore, we consider four directions ( = 0°, 45°, 90° and 135°) along which a pair of 
pixels can lie. Thereafter, for the distance d, we are able to obtain the unnormalized 

frequencies P( , ', ,d)    . 

For instance, P( , ',0 , ) d   is defined as the cardinality of the set of pixel pairs having the 

following properties: 
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( , )   and  ( ', ') '

' =  , = ' 

f i j f i j

i i d j j

     (1) 

For the other angles, the corresponding frequencies are defined similarly. In this document, 

we consider the distance d = 1 (this means we consider neighboring pixels). Moreover, 

texture of the wheatears, and, more generally, of the pictures, are not oriented along a 

common direction. Thus, for each pair of grey levels we sum over the four frequencies 

(corresponding to the four angles) and we note: 

  ' ( , ', ,1)P P  
     (2) 

 '
 '

 '
, '

P
p

P

     
   is the element of the normalized cooccurrence matrix. 

Generally cooccurrence matrices are not used directly because of their size. The principle is 

to compute a set of measures from these matrices, such as those proposed by Haralick 

(1973). 

Figure 5 shows three samples of ear ,soil and leaf textures: wheatearstexture reveals many 

transitions between very different grey tones. For leaves and soil the transitions are more 

progressive. 

   
ears leaves soil 

Fig. 5. Examples of the three textural patterns 

Thus, we compute four Haralick's features which characterize the particular disposition of 
the cooccurrence matrix elements for the 3 texture classes: 

energy (angular second moment) :  

 2
'

, '

p    (3) 

inverse different moment :  

 
'2

, '

1

1 ( ')
p       (4) 
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contrast : 

 2
'

, '

( ') p  
   (5) 

entropy : 

  '  '
, '

logp p    
   (6) 

The four coefficients were calculated for windows of 17x17 pixels surrounding each pixel. 
This window size is smaller than the ears' size and allows for reducing noise effects. The 
computational cost, the cooccurrence matrices were calculated over posterised pictures (32 
grey levels), which avoids obtaining hollow matrices, considering the number of pixel in 
each window. 

Table 1 shows the values of the four features for the 3 samples of the figure 5. 

 

Texture contrast energy entropy inverse different moment 

ears 
leaves 

soil 

8.1 
2.5 
0.3 

0.04 
0.22 
0.94 

4.9 
3.6 
2.0 

0.3 
0.6 
0.8 

Table 1. Values of the four Haralick's parameters associated with the three textural patterns 

The features computed  from the cooccurrence matrices are used in a learning step in order 
to construct a discriminant function, called here textural function, which identifies 
efficiently the pixel belonging to the « ears » class. 

Considering a trial set of windows, the use of a stepwise selection leads us to selects a subset 
of parameters (from the four ones describe above) to produce a good discrimination model. 

At the first step, we compute the variance ratio F for each feature: 

 
between group variance

within group variance
F

  =
 

 
2

. ..

2
.

/( 1)

/( )

i i
i

ik i
i

n x x g

x x n g

  
 


  (7) 

g = 2 is the number of groups (one for ears, one for leaves and ground), ni is the number of 

windows for the group i ( in n ), .ix  is the mean of the group i, ..x  is the mean of the trial 

set, ikx  is the value of the window k belonging to the group i. 

The value of the variance ratio reflects the parameter’s contribution to the discrimination if it is 
included in the textural function. The parameter that has the largest ratio is selected at first. 
Afterwards, at each step, the order of insertion is computed using the partial F-ratio as a 
measure of the importance of parameters not yet in the equation. As soon as the partial F-ratio 
related to the most recently entered parameter becomes non-significant the process is stopped. 

In a second stage, a discriminant analysis with the selected parameters is computed. Because 
there are only two groups to discriminate, only one discriminant factor FD(textural function) 
is obtained. 
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3.1.2 Results from the cooccurrence matrices 

In order to illustrate the efficiency of this textural function, the values of FD obtained on the 
image may be rescaled in the form of a gray level scale. For example, figure 6 shows an 
original image and the corresponding result after the first stage. 

  

Fig. 6. Example of the textural functionFD (right) for a given wheatear image (left) 

3.1.3 Results and discussion 

In order to show its relevance, the Textural function is used in the energy function of a 

Maximum A Posteriori segmentation algorithm (Martinez de Guerenu et al. 1996). Figure 7 

shows separately the Wheatear and Non-wheatear regions resulting from this segmentation 

stage. Wheatear region pictures show false positive wheatear detecton (leaves or stems 

classified as wheatears). Non-wheatear region pictures show false negative detection 

(wheatears that have been forgotten). 

Both kind of erroneous classification are circled on the pictures. 

  

     
Wheatear regions Non wheatear regions

Fig. 7. Wheatear and Non-wheatear region results for MAP segmentation 
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For the whole set of sample images, 1 to 3 segmentation errors have been found for each 
image. As the images show an average of 20 wheatears, the error rate can be estimated around 
10%. Most of the errors encountered are identified as badly lightened wheatears. This kind of 
error could be easily overcome by using artificial light instead of natural light conditions, or 
using color images instead of grey level images, as it will be shown in the next section.  

3.2 Fourier filtering 

To improve the previous works, one of the first solution has been to represent each image in 
a colour-texture hybrid space, and to use mathematical morphology tools (Cointault et al., 
2008a) in order to extract and count the number of wheat ears. 

Although this previous method gives satisfying results (around 10% of well detection, 
compared to manual counting), the hybrid space construction method is a supervised one 
and is limited by the objectivity of the operator. Moreover the statistical methods are 
dependent on the choice of the direction for the process, need an important computing time 
and are lightning-dependent. 

The objective has been thus to propose new detection algorithms more rapids, robusts, and 
invariants according to image acquisition conditions, based on Fourier filtering and two 
dimensional discrete fast Fourier transform (FFT) (Cooley &Tukey, 1965). This approach 
includes three important steps: high-pass filtering, thresholding and cleaning of the image 
based on mathematical morphology operations (Serra, 1982). 

3.2.1 The three important steps 

For the high pass Fourier filtering, a two dimensional FFT is performed on the target image 
(eq. 8).  

 
11

0 0

1
( , ) ( , )

y y
x xyx

yx

x y

k nk nNN
NN

x y x y
n nx y

F k k f n n e e
N N



 
    (8) 

Based on the centered Fourier image, a high pass filter is applied in order to eliminate low 
frequencies in the FFT image (figure 8). The cut off frequency is empirically sized by a 10 
pixels width disk mask as it is shown in the figure 8. 

The thresholding of the resulting image is based on anInverse FFT and a predetermined 
threshold is applied in order to eliminate low pixel values which do not correspond to 
wheat objects (ground, leaf,…) (figure Fig. 9). 

The cleaning step aims at eliminate remaining “non wheat” pixel groups, which are small and 
scattered. It lies on mathematical morphology operation and is performed with three sub steps:  

 First, a dilatation, which aims at making bigger and closer pixel groups in the image.  Then a blurring convolution with a Gaussian smoothing operator, followed by a 
thresholding, which eliminate too small groups of pixels. These small groups are 
considered as miss. This step makes smaller the pixel groups that correspond to wheat 
and then justify a third step. 

 Finally, another dilatation is performed which aims at regenerate size of pixel groups 
corresponding to wheat ears (figure 10). 
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(a) (b) 

  
(c) (d) 

Fig. 8. Example of wheat image (a), (b) its associated FFT projection, (c) cut off disk, (d) 
zoom of cut off disk. 

  
(a) (b) 

Fig. 9. Image after inverse FFT(a) and threshold image (b). 

  
(a) (b) 

Fig. 10. Threshold image (a) and cleaned image of wheat detection (b). 
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3.2.2 Wheat ear counting estimation 

The first image processing by thresholding and high pass Fourier filtering gives a binary 
image, composed of several pixel groups. Each group represents one or more wheat ears to 
be counted. In order to estimate this number we analyze the shape of each group 
considering two possible configurations: 

 Pixel group presents a convex or nearly convex shape pattern: it is considered that only 
one ear is present in this kind of group (figure 11a).  

 Pixel group presents a concave shape pattern (figure 11b): it is consider that several ears 
are presents. 

   
(a) (b) (c) 

Fig. 11. Pixel groups with nearly convex (a) and concave shapes (b), convex hull of a concave 
shaped pixel group (c). 

In order to quantify the number of wheat ears, we estimate a shape index based on two 
features extracted from each pixel group: 

 1cS S
Q

S

   (9) 

With S the surface and SC the convex hull surface of the pixel group (Figure 6c). 

Coming from this index, a numberX of ears is attributed for the group, considering this 
interval:  

 ( 1) /10 /10X Q X    (10) 

Another approach, based on skeleton analysis can be found in (Germain et al, 1995). 

3.2.3 Results and discussion 

A fast visual observation (figure 12) shows that only a small amount of groups corresponds 
to non-wheat things in image. More precisely, the biggest wheat ears are well detected and 
well separated from surrounded leaves. 

Ears that lie the nearest of the ground, that are partially hidden or that are a little bit over 
exposed in the image are not well detected. Small amount of very big leaves also remain 
after cleaning step. 

In order to test our image processing we performed algorithm on 40 images and compare 
the results with the mean of manual counting done by several experts. For the example, five 
images sample have been randomly chosen (table 2). 
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Original images Fourier results 

Fig. 12. Results of wheat ear detection using high pass Fourier Filtering. 

 

Image Counting Difference (%) 

 Manual image processing  

1 139 142 2,11 

2 36 34 -5,88 

3 90,5 94 3,72 

4 116,5 122 4,51 

5 136,5 142 3,87 

Table 2. Specifications of five experimental drying runs used for validation. 

Within the image set, a high variability of ear’s number can be observed. With most of the 

images, high pass Fourier filtering method returns slightly higher counts. Based on the 

whole image sample, absolute difference between manual counting and image processing 

counting is contained under the value of 6%. The mean error obtained is 4,02% for this set of 

images. 

The development of a high pass Fourier filtering approach method aims at creating an 

easily usable and adaptable method while obtaining a best wheat ear detection. Therefore, 

it is essential to compare this approach with previously used methods such as hybrid 

space method (Cointault et al., 2008b). For a visual comparison, high pass Fourier filtering 

has been applied onto images that have been previously treated with hybrid approach 

(figure 13). 
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Fourier Hybrid 

Fig. 13. Visual comparison between Fourier and Hybrid approach for two different images. 

Visual comparisons with hybrid space results show that high pass Fourier filtering approach 
eliminate more non wheat objects within the images. Fourier approach separates more 
efficiently ear groups. Calculation time for Fourier approach is few sec per image while its 
few minutes for hybrid space, with the same operating system. 

High pass Fourier filtering gives global satisfying results. Although a close range of settings 
has been determined, inverse FFT remains a parameter that has to be adjusted according to 
input image. An empirical value has been found and gives good results for most of images 
but it could be optimized with an automatic threshold selection such as k-means methods 
(MacQueen, 1967). 

In the context of wheat detection, it has been observed that some ear objects are eliminated 
after cleaning step. These non-detections mainly correspond to near ground ears or ears 
massively hidden under leaves, hence, it should be relativized as too low ears may have 
development problems and may not be considerate within wheat yield. Ears that are located 
in over or under exposed part of image are not well detected but it is not due to the 
algorithm but to the quality of the acquisition, which is limited by the natural conditions. 
Small amount of very big leaves also remain after cleaning step and eliminate these artifacts 
constitute a further axis of development, including shape analysis in cleaning step. 

In the context of wheat ear counting, it is observed that counting error percentage decrease 
with number of ears in images, hence, best results may be obtained with images 
representing more area and yet, more ears. Actually, worst error, 5,56%, is obtained with 
only 36 wheat ears in the image. 

It is important to note that in most cases, Fourier approach returns slightly higher counts 
than manually counts. It should be due to missing detection, such as remaining leaves or 
over exposed part of images. Counts should be more precise with the including of shape 
analysis in cleaning step. In all cases, whatever the method used, the only way to obtain a 
right detection is to use 3-Dimensional information. 
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4. Proxy-detection image processing for weed-wheat crop discrimination by 
hyperspectral imagery 

In the domain of weed control, since the environmental and economical stakes are 
particularly great, the herbicides are largely spread in order to assure sufficient yields for 
the whole field whatever the infestation rate. 

The reason is essentially a technological one. Even if some low-cost devices are currently 
available to assure a localised spraying of herbicides on bare soil (vegetation detection by 
photoelectric cells), no commercial product allows a reliable and localised post-emergence 
treatment. Indeed, a such apparatus needs a sophisticated perception system, based on 
digital vision and allowing to distinguish between weeds and crops. The identification of 
varieties inside the vegetation is nowadays the principal lock to the development of 
localized weed control. 

The corresponding research are numerous and can be divided into two main approaches 
(Slaughter et al., 2008): 

 the spectral approach, in which the plant reflectance is the main parameter, using 
hyper- or multispectral images (Feyaerts & Van Gool, 2001; Vrindts, 2002; De 
Baerdemaeker et al., 2002). The difficulty is then to propose spectral differences 
sufficiently robusts to lightning conditions 

 the spatial approach, based on spatial criteria such as plant morphology (Chi et al., 
2003; Manh et al., 2001), plant texture (Burks et al., 2000) … The main difficulty is tied 
here to the complexity and the natural variability of the scenes. 

The study proposed in this chapter is tied to the previous approach: hyperspectral images of 
the wheat crop are acquired during the weed control period, and associated to specific pre-
processing to avoid illumination conditions. After, the possible spectral discrimination 
between wheat and dicotyledonous weeds by means of chimiometric tools has been evaluated. 

4.1 Spectral pre-processing 

The images acquired by the camera (after a first internal processing taking into account the 
spectral sensitivity of the sensor) are images of luminance, which by definition depend on 
both the reflectance of the scene and lighting conditions. This is why a reference surface 
(gray ceramic), for which the reflectance Rc was measured in the laboratory, was 
systematically placed in each scene (figure 14). The average luminance Lc observed in the 
image to the reference can then be corrected reflectance for each pixel of vegetation : 

 Rf = Rc * (Lf/Lc) (11) 

where Lf is the observed luminance for that pixel. 

It is important to note that the Rf value obtained is a "apparent" reflectance. Other 
phenomena are to be considered, namely: 

 The inclination of the observed leaf from the direction of the solar source, introducing a 
multiplicative factor of the light, and hence Rf 

 the possibility of specular reflection, adding a component to the spectrum colorless, and 
resulting in an additive constant of Rf. 
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These two phenomena are taken into account by applying a standard-centering 
operation (SNV, or "standard normal variate") on each spectrum of the image (Vigneau 
et al., 2011). 

4.2 Chemometric model 

Because hyperspectral images include hundreds of contiguous spectral bands, they have a 
very high potential for spectral discrimination, compared to classical colour or multispectral 
images. Unfortunately, in a classification context, these kinds of high-dimensional datasets 
are difficult to handle and tend to suffer from the problem of the “curse of dimensionality”, 
well known as “Hughes phenomenon” (Hughes, 1968) which causes inaccurate 
classification (figure 14).  

 

Fig. 14. Illustration of Hughes phenomenon 

In this context, it is important to note that some news techniques already exist to 
overcome this problem. Among all possible methods, many recent works have focused on 
the area of dimensionnality reduction approaches in order to reduce this high-
dimensional datasets while maintaining the relevance of the information contained in the 
signal.(Journaux et al., 2008). One of these approaches is the Partial Least Square 
Regression  (PLS-R) , which builds a low-dimension subspace by determining a set of 
spectral “latent variables”. Compared to other reduction methods such as Principal 
Component Analysis (PCA), the PLS  takes into account both inputs and outputs to build 
its subspace, leading to better performances. The PLS-DA (PLS Discriminant Analysis) is 
an adaptation of PLS-R to discrimination problems. 

In our case, a total of 335 spectra was increased step by step on a first reflectance image 
(figure 15)  in three categories, namely wheat (157 spectra), dicotyledons (60 spectra) and 
ground (118 spectra). 

A PLS-DA model was then determined on this data set by cross-validation using 
commercial software in chemometrics (The Unscrambler v9.7, CAMO Software AS, Oslo, 
Norway). 

The resulting discriminant model, which involves 8 latent variables, was then exported and 
applied to all pixels in an image test, using a dedicated software developed in C + +. 
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Fig. 15. Calibration image and sample positions  (the reference ceramic can be seen on the 

left) 

4.3 Results 

Figure 16 shows the image test and the classification results. We observe an excellent 

discrimination between wheat and weeds whatever the local conditions of illumination 

(shadow), with the exception of one type of weed (red circle) which was not present in the 

calibration image, and was therefore not included in the model. 

 

 

Fig. 16. Test image and classification results (light gray: ground, red: weed, green: wheat) 

These results show the very high potential of hyperspectral image processing to extract 

pertinent information for agronomic applications. 

5. Proxy-detection image processing for seed development and germination 
performance of chicory achenes by chlorophyll fluorescence 

Several aspects of seed quality are tested routinely to minimize the risk of sowing seedlots 

that do not have the capacity to produce the desired crop. Amongst these tests, seed 

germination is important since it represents the percentage of pure seeds that have the 

potential to produce established seedlings in the field. The rate of germination corresponds 

to the reciprocal of the time needed for a given germination percentage to be reached 

(Halmer, 2008). Accurate procedure of germination tests performed in laboratory is defined 

by the International Seed Testing Association (ISTA). 
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Besides these laboratory tests, seed processing lines includes cleaning machines that 

remove dust and waste material, and conditioning machines performing dimensional 

sizing, density sorting, and colour sorting. In conventional colour sorting, discoloured 

seeds are rejected, on basis of inspecting seeds individually to detect differences in 

reflected colour. 

However, even after several sorting operations, some seed batches can contain a large 

proportion of viable seeds but still not sufficient for commercial use. These batches are lost 

because the viable and non-viable seeds cannot be separated using the conventional 

processing methods. The proportion of immature seeds in these lost batches is unknown. It 

would therefore be useful to provide a new, non-destructive method of distinguishing 

immature seeds from mature seeds in order to improve sorting processes. 

In this context, the potential of fluorescence imaging (Chen et al., 2002; Nedbal & 

Whitmarsh, 2004) has been examined. The chlorophyll degrades during fruit ripening and 

the process of degradation was described by Barry (2009). The chlorophyll is also a highly 

fluorescent molecule. Fluorescence occurs when some of the light absorbed by the 

chlorophylls is re-emitted at longer wavelength, typically between 650 and 750 nm. The 

fluorescent properties of chlorophylls have been used to evaluate the maturity of cabbage 

seeds (Brassica oleracea L.) (Jalink et al., 1998; Jalink et al., 1999). The results showed that the 

magnitude of the chlorophyll fluorescence (CF) signal was inversely related to the quality of 

seeds. The relationship between the CF and germination performance was studied for 

tomato (Solanum lycopersicum L.) by Jalink et al. (1999) as in their previous study (Jalink et 

al., 1998). They concluded that seeds with an intermediate CF level were of the best quality, 

followed by seeds having a low CF signal. Seeds having a high CF signal were the worst. 

Konstantinova et al. (2002) measured the CF of barley grains (Hordeum vulgare L.) with a 

SeedScan I Laser Sorter (Satake, Stafford, TX. USA), using the principle developed by Jalink 

et al. (1998) but including a laser light source instead of a LED. They concluded that sorting 

a barley seed lot into six subsamples varying in CF values resulted in an optimal quality for 

the subsamples with low and intermediate CF signals. Suhartanto (2002) thoroughly 

described the relationships between the fruit CF, seeds CF and germination performance of 

tomato. 

5.1 Image analysis 

A specific image analysis code was developed with the GNU Octave language (Ooms & 

Destain, 2011). After applying background correction (the fluorescence values were divided 

by the reflectance signal of paper and multiplied by 60), the images were segmented and 

images of individual seeds were created, each of them being rotated along the main axis of 

the seed. The pappus side, which is brighter and larger than the radicle tip, was 

automatically detected on the basis of the mean width of the left half, its mean fluorescence 

intensity, the right half width and the right half fluorescence intensity. The accuracy of the 

detection was greater than 98%. The image was thereafter divided into the “pericarp zone” 

(Pe, 77% of the seed length) and the “pappus zone” (Pa, 23% of the length). The value of 

77% was a compromise based on the observation of 100 seed images. The mean fluorescence 

values of the two zones were recorded for data analysis. The measurement system and 

image analysis are summarised in figure 17. 
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Fig. 17. The components of the chlorophyll imaging device and the main steps of image 
analysis. (1) Xenon lamp with blue optical bandpass filter (370 - 450 nm), (2) optical fiber, (3) 
cone of blue light, (4) seeds from one capitulum, (5) blue light reflected by the seeds, (6) 
chlorophyll fluorescence (650 - 730 nm), (7) highpass optical filter (665 nm), (8) CCD camera 
with zoom objective, (9) connection to the computer, (10) raw image, (11) background 
correction, then creation of individual images, (12) automated detection of the pappus using 
dedicated software and estimation of the levels of fluorescence FPER and FPAP (Ooms & 
Destain, 2011). 

5.2 Results 

The observed period corresponds to the phase of reserve deposition in the seed described in 
Bewley & Black (1994). Figure 18 shows the evolution of CF during this phase on the stalk, 
the weight parameters (dry weight DW and water content WC) and the germination 
performance (GP and GR). The dry weight increased, while the water content was still high 
at the end of the observed period (> 45 % on the stalk at 44 DAF, while the WC of stored 
seeds is about 6 %). 
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Fig. 18. Evolution of chlorophyll fluorescence (FPER: pericarp, FPAP: pappus), dry weight, 

water content at harvest, germination percentage and germination rate of chicory seeds at 

each maturation duration on the stalk from 16 to 44 days after flowering. Means with 

confidence intervals of the means. 

The two following facts are in favour of the use of CF features for the differentiation of 

immature chicory seeds from mature ones, and as indicators of seed vigour: 

 the CF decreased during the filling phase; 

 the end of the filling phase corresponded to the physiological maturity, where 
themaximal germination percentage and vigour is attained (Black et al., 2008). 

On the other hand, the efficiency of CF features may be negatively affected by the large 

variability of individual measurements (random differences between individuals). 

Current work aims at estimating the correlations between the CF features, the weight 

parameters and the germination variables in outdoors and greenhouse environments, and to 

assess the added value of CF features in comparison to weight, size and density features to 

distinguish between viable and non-viable seeds using sorting simulations. 

6. Conclusion 

To predict wheat yield or to determine wheat growth stages, remote sensing is not the 
only solution. Proxy-detection systems allow to acquire high resolution images to be 
treated by robust algorithms such as high pass Fourier filtering. For example, to predict 
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yield, the number of wheat ears has to be determined and is the result of a detection and 
a counting step. Detection has been done by developing specific image acquisition 
system and by implementing algorithms like colour-texture hybrid space or more 
classical image processing based on Fourier filtering, according to the frequential 
information (redundant information) included in the images. In this chapter, we 
presented the high pass Fourier filtering technique which gives satisfying and robust 
wheat ear detection with lower computing time. Moreover, we have compared the 
detection results with those obtained by representation in a hybrid space. Even if 
satisfying results are obtained for this qualitative experiment, some improvements 
should be done such as including an automatic threshold determination after the inverse 
FFT and an efficient shape analysis in order to obtain a finer wheat ear detection and 
better artefacts elimination. 

This work has also revealed the possibility of extending the use of pattern recognition 
techniques and textural feature analysis to other applications, including the automatic 
determination of the wheat growth stage, aiming at creating a decision tool for farmers. At 
this stage, it seems that we should include an agronomic validation in order to propose 
more specific model to help farmers. In the same context one perspective could be to couple 
proxy-detection with satellite or aerial images. Moreover using multispectral data would 
probably improve even more the efficiency of such an approach. 

The study of hyperspectral imaging demonstrates the potential to separate weed-culture. 
A more comprehensive study must now be conducted to assess the robustness and the 
spectral and spatial minimum necessary resolutions in the context of an operational 
implementation. 

Most fruits and seeds have measurable levels of chlorophyll, respectively in their pericarp or 
testa, and this chlorophyll degrades with time. In the case of chicory, the commercial seed is 
a fruit which cannot be hulled and the seed is not observable directly. The low amount of 10 
chlorophyll implies the use of a highly sensitive device and because of the presence of a 
distinct pappus, the imaging of fluorescence is favourable. It would be profitable to identify 
the factors (variety, season, climate, hydric stress, etc.) influencing the evolution of CF to 
predict the characteristics of the decrease of CF and to predict if its decrease is always 
concomitant with the increase of the germination performance. 

Finally, combination of several image acquisition systems should give more interesting 
results and open the door of the detection of other important crop characteristics. 
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