N

N

Space Carving MVD Sequences for Modeling Natural
3D Scenes
Youssef Alj, Guillaume Boisson, Philippe Bordes, Muriel Pressigout, Luce

Morin

» To cite this version:

Youssef Alj, Guillaume Boisson, Philippe Bordes, Muriel Pressigout, Luce Morin. Space Carving
MVD Sequences for Modeling Natural 3D Scenes. Three-Dimensional Image Processing (3DIP) and
Applications II, Jan 2012, United States. pp.1-8. hal-00751443

HAL Id: hal-00751443
https://hal.science/hal-00751443

Submitted on 13 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00751443
https://hal.archives-ouvertes.fr

Space Carving MVD Sequences for Modeling
Natural 3D Scenes

Youssef Alj%? Guillaume Boisson®, Philippe Bordes®, Muriel Pressigout?, Luce Morin?

®Technicolor, Cesson-Sévigné, France
bInstitut d’Electronique et des Télécommunications de Rennes (IETR), Rennes, France

ABSTRACT

This paper presents a 3D modeling system designed for Multi-view Video plus Depth (MVD) sequences. The
aim is to remove redundancy in both texture and depth information present in the MVD data. To this end,
a volumetric framework is employed in order to merge the input depth maps. Hereby a variant of the Space
Carving algorithm is proposed. Voxels are iteratively carved by ray-casting from each view, until the 3D model
be geometrically consistent with every input depth map. A surface mesh is then extracted from this volumetric
representation thanks to the Marching Cubes algorithm. Subsequently, to address the issue of texture modeling,
a new algorithm for multi-texturing the resulting surface is presented. This algorithm selects from the set of
input images the best texture candidate to map a given mesh triangle. The best texture is chosen according to
a photoconsistency metric. Tests and results are provided using still images from usual MVD test-sequences.

Keywords: Multi-view Video plus Depth (MVD), 3DTV, FTV, depth map fusion, Space Carving, multi-view
texture mapping.

1. INTRODUCTION

Multi-View Imaging (MVI) has gained an unceasingly growing interest in the last few years. Used with
stereoscopic displays, MVI provides a realistic depth perception to the user and allows a virtual navigation
around the scene. It also offers the possibility to synthesize virtual views, opening therefore a broad spectrum
of research topics and applications such as 3DTV and Free-viewpoint TV (FTV). To this end, depth estimation
from stereoscopic matching has been widely investigated. Nevertheless, several technical deficiencies hampered
a successful introduction of these applications to the mass market. Actually an end-to-end MVI chain presents
many challenges due to the inherent problems related to scene capture, data representation and transmission.
Indeed, during scene acquisition, multiple cameras are used, hence several photometric errors may occur due to
the changing illumination across different views, which increases the signal ambiguity during depth estimation.
Scene representation is also a challenging task. One should strive to build a dense yet non-redundant scene model
from the set of overlapping views. The compromise between model simplicity and easy rendering is usually hard
to satisfy. The representation is then to be transmitted through a communication channel. Determining the
proper rate-distortion trade-off is another key point. At decoder side, high fidelity to original views is required.
Finally to assess the quality of virtual views, conventional image-based objective metrics such as Peak of Signal
to Noise Ratio (PSNR) or Structural Similarity (SSIM) are not applicable since the reference images for such
views are not available.

In the context of scene representation, research activities have been strengthened worldwide in order to
overcome the issues discussed above. Scene representation methods can be classified into three categories :
image-based representations, geometry-based representations and intermediate representations.

Image-based representations : Earlier attempts tried to extend image processing tools to 3D scene re-
presentation. A scene is simply represented using the set of captured images. This is the case in Multi View
Video (MVV) representation. The 2D-+7% scheme uses a single view in addition to a depth image, also known as
depth map, representing the depth information of each object of the scene. In this paper we consider Multi-view
Video plus Depth representation (MVD) as input, each view being composed of the captured image and the
corresponding depth map.

Geometry-based representations : In the computer vision community, one of the core tasks is to extract
3D information from images. Thus many algorithms have been developed to extract a 3D model from multi-view
data. On the other hand, the computer graphics community is developing IBR (Image Based Rendering) that is
modeling of 3D scenes partly using real images as (one of the) input data. A 3D model extracted from the images
may also be used for multi-view representation and compression. The extracted 3D model may be mesh-based &
voxel-based ¥ or point-based

Intermediate representations : Layered Depth Images® (LDI) were introduced in order to reduce redun-
dancy in MVD material, by selecting a reference view and adding occluded information contained in adjacent
views to the representation. 3D video billboards approach? extends the work developed in® and uses a hybrid
approach combining depth maps and textured mapped rectangles intended to represent detailed geometry of
the scene. Polygon soup representation was developed in? and uses a set of disconnecting and overlapping 3D
polygons as a compact representation of the scene.

Scene representation has become an active research area with a wide variety of applications. Hence the
choice of scene representation depends on the aimed application. For 3D video applications™® image-based
representation are more popular since high fidelity with respect to original data is often required at the rendering
stage. For mixed/augmented reality applications, geometric-based modeling methods are the most ubiquitous
approaches. Typically, the purpose in such applications™ is to recover an object of interest from a set of captured
images. Foreground objects are extracted from input images, and it’s not necessary to model the whole scene.
High fidelity with respect to original views is therefore not necessarily satisfied, but they can achieve real time
rendering with interactive user-experience.

In this paper, we take advantage of image-based representations, thanks to the use of MVD data, to en-
sure high fidelity to original data, and geometric-based representation to enforce the compactness of our scene
representation.

The contributions of this paper are twofold. First, a new volumetric framework is proposed in order to merge
the input depth maps into a single and compact surface mesh. This is the subject of section Bl Second, a new
multi-view texture mapping using photoconsistency is introduced to texture the resulting surface mesh. This
is presented in section @l Last results are presented in section [Bl But first in section 2] we will present a short
state-of-the-art.

2. RELATED WORK

In this section, a short review of volumetric methods for scene representation is presented (seéIZI and®® for
more detailed surveys).

Scene representation from a set of images has been an active research area for several decades. The aim is
to build a 3D model given 2D views of the scene. Volumetric methods have known a successful introduction in
computer vision community. Indeed they provide a robust and compact representation of the scene. Typically,
these methods assume the existence of a bounding volume on which the scene of interest lies. This bounding
volume is subdivided into cubical elements called wvozels. During the process of Space Carving each voxel is
labelled as transparent or opaque, depending on a consistency measure extracted from the input images. The
volumetric representation of the scene is the set of opaque voxels. A surface mesh is then extracted from this
volume using Marching Cubes algorithm. The consistency measure is based either on the silhouette information
extracted from input images, which is referred to as shape-from-silhouette method, or according to the photo-
metric information contained in the input images, which is referred to as shape-from-photoconsistency method.
Alternative approaches use range images as input data and fuse them into a single surface.

Shape-from-silhouette : These methods require that foreground objects in the input images can be extracted
from the background. Each object of interest is reconstructed from the set of silhouette images. Therefore the
scene can be recovered by integrating each reconstructed objects with the background images. A silhouette image
is a binary image where each pixel’s value indicates whether the ray from the camera center to the input image

intersects an object of interest or not. The set of rays defines a silhouette cone. The intersection of the silhouette
cones associated to all cameras is called the visual hull™® . The visual hull of an object can also be defined as the
maximal shape that gives the same silhouette as the actual object’s silhouette for all views. A voxel is determined
to be in the visual hull by projecting it into the set of all images and testing if it is inside the silhouette. To
optimize scene space traversal, Potmesil'¥ extends the regular-grid-based visual hull to octrees. Rather than using
a voxel description, the authors in™ use Delaunay tetrahedrization as a discretization of the scene space. The
final surface is obtained by removing tetrahedrons lying outside the visual hull using the silhouette information.
The major drawback of the shape-from-silhouette approach is that not all concavities present in the silhouette
images can be represented.

Shape-from-photoconsistency : In such schemes, voxel consistency is measured directly using the captured
images. This is the idea behind the Space Carving algorithm™® . More precisely, a voxel is said to be photo-
consistent with the set of input images if its projections onto the cameras in which this voxel is visible are all
the same. In practice, a user-defined threshold is used in order to control the correlation between the projected
voxels and the input data. This limitation has been overcome within the probabilistic framework developed byl?
. However, Space Carving suffers from another severe limitation. Indeed the surface to recover is assumed to be
Lambertian. However natural scenes may contain areas with changing illumination effects due to image capturing
conditions. Therefore, this assumption is usually not satisfied and this may significantly damage the relevance of
the output volume by carving away wrong voxels. An approach combining the visual hull and photoconsistency
constraints was developped by@ . They formulated the problem of finding an optimal photoconsistent surface
as an energy minimization problem. This cost function is discretized on a graph and the solution is obtained as
the minimum cut solution of this graph.

Volumetric fusion of range images : Curless and Levoy proposed™ a method for merging range images
that relies on computing a weighted signed distance function cumulated respectively for each range image. The
signed distance function takes 0-value for voxels containing points from acquired data. The distance function is
computed from each voxel to the sensor and its value is stored for each voxel. For a given voxel, the so-called
distance function is cumulated over each range image. Zero-crossing voxels correspond to the merged surface.

The proposed approach in this article is closer to range images fusion approaches since depth maps can
be considered as range images. However as in the photo-consistency approach, the aim is to build a 3D model
photoconsistent with the set of input images. The photoconsistency constraint is thus enforced using the proposed
texture-mapping method.

3. GEOMETRY MODELING : A VOLUMETRIC FRAMEWORK FOR DEPTH MAPS
FUSION

In this section, our volumetric framework intended to merge the input depth maps is presented. Considering
a generic framework, the input sequences are calibrated but not necessarily registered. Epipolar lines may not be
parallel to pictures lines. Consequently 3D reprojection operations may be more complex than horizontal shifts
depending on objects’ depth. The issue of the inter-view disparity estimation is not addressed in this paper, and
the provided depth maps are assumed to be reliable. The purpose is to merge the input depth maps into a single
surface mesh consistent with the original views.

An overview of our merging scheme is sketched in figure [[I First, for each provided depth map, a high
resolution mesh is built. Second, the bounding volume enclosing the set of the built meshes is defined then
discretized into voxels. A voxel may be either opaque or transparent. For each available camera, the set of voxels
lying in its viewing cone are determined and labelled as opaque. The next step is dedicated to the Volumetric
Mesh Hull (VMH) determination. Given a mesh corresponding to a viewpoint, the VMH defines the set of voxels
that lie on this surface mesh. Our formulation of the Space Carving algorithm relies on the computed VMH.
Indeed, for each available view, rays are cast from the camera center to each voxel of the corresponding VMH.
The status of each voxel lying on this ray is then set to transparent and dedicated to be carved. Finally, a surface
mesh is extracted from this binary-labelled volume using the Marching Cubes algorithm.

Image coordinate
system

Bounding grid
computation

v
Viewing cones

World determination
coordinate v

system Volumetric Mesh Hull

computation
v

Space carving
algorithm
v
Marching cubes
algorithm

Merged
v mesh

FiGure 1. Our volumetric framework for depth maps fusion.

3.1 From depth maps to meshes

N 2/

FIGURE 2. Example of two surfaces to be merged (one in green and the other in red). The expected surface as output of
the algorithm is in black dotted line. Cameras viewing each mesh are also represented with their viewing cones.

The first step of our algorithm is the generation of one mesh for each of the provided depth maps. From each
of the available views, a high resolution uniform mesh is built in the image domain. Each mesh vertex represents a
pixel in the depth image. Registration is performed by converting each triangular mesh back to world coordinate
system using equation ().

X fz Suww cu O su

Y| R T 0 fy ¢ O s

z |~ “lo o 1 o0 s (1)
1 0 0 0 1 0 0 0 1 1

Where, X, Y and Z are the coordinates of a 3D point in the world reference Coordinate System. v and v are the
coordinates of the projected 3D point in image coordinate system, and $ = 2.4, is the depth of the pixel (u,v)
with respect to the camera Coordinate System.

R and T respectively denote the rotation matrix and the translation vector of the considered camera’s Coordinate
System in the world Coordinate System. f5, fy, Suv, ¢y and ¢, are the camera’s parameters.

3.2 Bounding grid computation

The set of meshes are now available for our volumetric representation. The basic data structure on which our
volumetric framework operates is a volumetric grid. This grid is built by a regular subdivision of the bounding
box enclosing the set of meshes into parallelepipedic elements called voxels. A binary labelling strategy is used
to label the voxels. Each voxel can be either opaque or transparent. The label of each voxel grid is initialized to
transparent. Voxels labels are modified throughout the algorithm according to their relevance to represent the
scene.

3.3 Viewing cones determination

In this step, the purpose is to find the set of voxels lying in each camera’s viewing cone. Voxels outside this
viewing cone are labelled as transparent. The viewing cone of each camera is modeled by a frustum defined
by four planes bounding the range of visible points according to each axis (see Figure). The task is then to
compute for each camera the set of voxels that lie in its corresponding frustum. To this end, frustum planes
equations are determined for each camera, these equations allow to perform the inside/outside test for each voxel
center against the considered frustum.

Frustum planes equations : Equation () represents the conversion from image to world coordinates system.
This conversion is invertible, and image coordinates can be expressed using the following equation :

planel

plane2

nbcol-1,nbrow-1) plane3

Projection
center

FiGure 3. Frustum planes computation.

X
su oo Suww a0 R! “R'T| |V
sv| =10 fy ¢ O AR
5 00 10/ s o o 1 1

This equation can be reformulated by computing the product of the two central matrices :

X
su P11 P12 P13 Pi4 Yy
SU | = | P21 P22 P23 P24 AE
S P31 P32 P33 P34 1

The last equation leads to the two following parametric plane equations :
X (p11 — ups1) + Y (p12 — ups2) + Z(p1s — upss) + p1a — upzs =0 (2)
X (p21 —vp31) + Y (p22 — vps2) + Z(p23 — vp33) + p2a — vp3a =0 (3)
Equation) with v = 0 (resp. u = nbcol — 1) is the equation F;(X,Y, Z) of the vertical left-hand plane 1

(resp. the equation F»(X,Y, Z) of the right-hand plane 2) see figure 3

Equation @) with v = 0 (resp. v = nbrow — 1) determines the equation F5(X,Y,Z) of the upper plane 0
(resp. the equation F4(X,Y,Z) of the bottom plane 3).

Once planes equations are computed, inside/outside points with respect to each camera can be determined
as the following : Given a point in the frustum I(X;, Y7, Zy)

Inside condition test : Vi, 1 <i <4 compute sign(E;(X;,Yr, Zr)) where,

sgn(ey = { L =0
& T -1 otherwise

Given a voxel defined by its center V(Xv, Yy, Zy), if Vi, 1 <i <4,
sign(FE;(X1,Yr, Z1)) = sign(E; (Xv, Yy, Zy)) then this voxel is inside the frustum, otherwise this voxel is outside.

At the end of this step, all voxels belonging to the union of cameras viewing cones are labelled as opaque.
All the remaining voxels within the bounding grid are still labelled transparent.

3.4 Building the Volumetric Mesh Hull (VMH)

This section describes the computation of the Volumetric Mesh Hull (VMH) which will be used during the
space carving process. For each input mesh, the set of voxels intersecting the surface mesh defines the VMH
associated with this mesh.

As an output each voxel has an additional information defining which VMH(s) this voxel belongs to.

For each mesh, each triangle is visited and scanned with respect to the voxel grid, i.e. this scan defines the
voxels lying on this triangle. All these voxels are then marked to belong to the current VMH by updating the
additional information associated with the voxel. In order to scan the 3D triangle surface, the classical 2D scan
line algorithm is extended to the 3D case.

The 3D scan line algorithm is presented in algorithm [II

// Triangles traversal
for each triangle T' do
for each axis X, Y and Z do
Compute the integer bounds b,,;, and b,,., of T along the axis considered.

for m < b,,in t0 by do
Compute the intersection line of triangle 7" with the plane at coordinate m.

Find voxels along this intersection line using 3D Bresenham line algorithm.

Add these voxels to VMH.
end

end

end
Algorithm 1: Volumetric Mesh Hull (VMH) determination.

3.5 Space carving

Until now, an opaque voxel is a voxel lying in at least one camera’s viewing cone. A VMH voxel is a voxel
lying on one of the surface mesh. In this step, space carving is performed by updating voxels labels from opaque
to transparent for all voxels "in front of each VMH". More precisely, each VMH is considered and a geometric
consistency criterion is employed in order to update voxels labels. This criterion is based on the relative position
of the voxel according to the considered surface mesh and the corresponding viewpoint. A voxel is said to be
geometrically consistent with a surface mesh if it lies behind it with respect to the viewing camera. Voxels detected
as geometrically inconsistent are labelled as transparent. The carving process is performed by iteratively updating
the carved volume with respect to each camera. The volume to be carved is initialized to the union of voxels
inside the set of viewing cones computed in section (see figure). This volume is then refined iteratively with
geometrical information lying in each view (see figures @ and [, carving occluding areas relative to each camera.
For each of the available views, rays are cast from the viewpoint to each voxel of the camera’s corresponding
VMH. For each ray, voxels lying on the current ray are scanned using 3D Bresenham line retracing algorithm.
Since they are geometrically inconsistent, these voxels are dedicated to be carved (i.e. updated to transparent).

Eay

Fi1cURE 4. Space carving according to the left camera. Rays are cast from the camera center to the corresponding VMH
(left). Green areas are carved. The result of this carving operation according to the green camera is shown on the right.

FIGURE 5. Space carving according to the right camera. For the carved volume to be updated, rays are cast from the
right camera to its corresponding VMH (left). Red areas are carved. The result of this carving step is shown in the right
image.

// Views traversal
for each camera do
Get the camera position.
Get the corresponding VMH.
for each voxel in the VMH do
Find the 3D Bresenham line between camera’s position and voxel’s center.
Update each of these voxels’ labels to transparent.
end
end
Algorithm 2: Space carving algorithm.

At the end of the space carving step, the set of opaque voxels defines the volumetric model for our MVD data.

3.6 Marching Cubes

Finally, the merged surface mesh is then extracted from our binary-labelled volumetric representation using
the Marching Cubes algorithm. Marching Cubes algorithm was originally introduced in?? . It takes as input a
regular volumetric data set. Such a data set has a scalar value assigned to each voxel vertex. During processing,
each cube vertex that has a value less or equal than a predefined isovalue, is marked. All other vertices are
left unmarked. Consequently the Marching Cubes algorithm outputs the triangular mesh connecting the marked
vertices.

4. MULTI-VIEW TEXTURE MAPPING

The photoconsistency constraint is enforced by texturing the merged surface mesh extracted from Marching
Cubes algorithm. Input texture images of the MVD data are used in order to texture the merged mesh. To
this end, a new texture mapping algorithm is proposed based on a photoconsistency metric. The main steps of
this algorithm are summarized in figure [0l First, visibility is determined for each triangle in the merged mesh.
Second, each available texture is mapped on visible triangles of this merged mesh. Photometric projection error
is computed for each triangle and for each input view and stored in error images. The best texture for each
triangle is chosen as the one that minimizes a photoconsistency metric. Triangles not visible by any camera are
textured with intermediate view. Synthesized views are produced by rendering the textured mesh, each triangle
being textured with the best texture according to the photo consistency metric.

mesh
Visibility

determination
; Cerure 1

Distortion images
determination

; Coture N
Best texture

computation

Hole
Filling
v
Texture

mapping

Synthesized . Synthesized
View 1 View N

FI1GURE 6. The overall framework of our texture mapping based on photoconsistency metric.

Given a set of texture images Z = {I1,...,I,} and a triangular mesh M, the aim is to find for each mesh
triangle T € M the best texture image Ir e Texturing the triangle 7" is formulated as an energy minimization
problem. The best texture for T' is found by minimizing a cost function formulated in terms of how much the
triangle T is photoconsistent with the set of input images in which the triangle T is visible. Photo-consistency
is estimated by projecting the textured mesh onto the views V = {Vj,...,V,,} corresponding to input images Z.

s
\\ Y

N r Trianglet /
7/

Camera 5

Camera 1

21 =

Camera 3 arme 2

FI1GURE 7. Texture mapping using the photoconsistency metric. For sake of simplicity, the surface mesh is shown with the
black dotted line representing the mesh triangles. The triangle ¢ is visible in cameras 3, 4, 5. For each texture I; € Z, the
triangle ¢ is textured with texture I; (red arrow for texture mapping operation) and projected (green arrow for projection
operation) onto the cameras 3, 4, and 5 - i.e. the set of cameras in which ¢ is visible. The quadratic errors between the
textured triangle and each of its projection on images Is, I4 and Is are computed. The error (i.e. the photoconsistency
metric) of texturing the triangle ¢ with the texture I; is the sum of all these quadratic errors. The best texture is the one
that minimizes the photoconsistency metric.

4.1 Visibility determination

From the merged mesh, visibility for each triangle is determined in order to perform texture mapping. The
status of each mesh triangle is initialized to visible. Triangle visibility with respect to each camera is determined
using OpenGL z-buffer. In the first pass, the input mesh is projected onto the current view, and the z-buffer
is extracted. The second pass is dedicated to visibility determination using the computed z-buffer. Each mesh
vertex is projected onto the current view and the depth component, denoted as zprojected, is checked against the
pixel depth zpuger- If the projected vertex is behind the pixel in the z-buffer, then this vertex is hidden, and thus
the set of mesh triangles lying on this vertex are marked hidden. The pseudo-code is provided in algorithm [3]

// Views traversal

for each view V; do

Initialize all triangles to wvisible.

Project M onto V;.

Read zpuger-

// Mesh vertices traversal

for each verter v do
Determine (g, !, Zprojected) the projection of the vertex v(X,Y, Z) onto Vj.
if Zbuffer [q7 l] > Zprojected then

| v is a hidden vertex. Mark all the triangles lying on v as hidden.

end

end
end
Algorithm 3: Visibility determination

4.2 Distortion image computation

In order to determine the error of texturing a triangle with an input texture I;, each available texture in then
mapped on the merged mesh and projected onto each camera. Let M, .y, be the projection onto the view V; of
the mesh M textured with the image I;. For each available texture the following distortion image is computed :

Dij = IMr—v;, — L2

// Textures traversal
for each texture I; do
// Views traversal

for each view V; do
Compute My, .y, : projection of the mesh textured with texture I; onto view V;.

Dij = [Mr,ov, =12
end
end
Algorithm 4: Compute distortion images.

4.3 Best texture determination

Among all the available textures the best texture image is chosen for each mesh triangle, using the distortion
images. Let My, be the projection of the triangle T" onto the view V.

The photoconsistency metric measures the error of texturing the triangle 7" with the texture image I;.
Vi e {1,...,n} we compute :

n

Error r 1, = Z Z D;jlq,1] | (4)

Jj=1 (¢,)EMr,v;
T visible in V;

The best texture for a triangle 7" is then given by :

Iy = argmin Error 77, . (5)
I,eT

// Triangles traversal
for each triangle T do
// Views traversal
for each view V; do
| Determine Mr y, the projection of the triangle T onto V; where T is visible.
end
// Textures traversal
for each texture I; do
| Compute Error 7 z,.
end

Determine fT.
end
Algorithm 5: Compute the best texture for each triangle.

4.4 Texture mapping

Finally, pictures are rendered. The 3D model is projected according to the virtual camera parameters supplied
by the user. Then each triangle is textured using the texture coordinates determined during the above-mentioned
texture mapping step.

4.5 Hole filling

Actually there are some triangles remaining whose all vertices are not visible simultaneously in the same view.
These triangles can therefore obviously not be textured the usual way. In the current status of the modeling
chain, these triangles are textured with texture coordinates from the central view, though it is not satisfying.
Perspectives regarding this issue are twofold. First the final mesh could be warped for the number of such triangles
be reduced. Second the remaining ones shall be inpainted in a 2D sense.

5. RESULTS

Results are presented for two sequences. The sequence Breakdancers, provided by Microsoft and shared in
MPEG’s former FTV group, presents 8 cameras arranged in the shape of an arc, with high-quality depth maps.
The sequence Balloons was shot with a parallel setup. Rectified views and corresponding disparity maps were
provided by Nagoya University and shared in MPEG’s current standardization activities for 3DV technologies
as a three-view test-sequence. The quality of Balloons depth maps is a bit lower than those of Breakdancers, but
might be more realistic for practical applications. Both sequences present XGA resolution (1024x768).

5.1 Geometric modeling

The following figure illustrates the output surface of our geometric modeling scheme with a medium voxel
resolution.

Geometric artifacts around sharp depth transitions are noticeable. At such resolution depth quantization
artifacts also occur on plane surfaces. Both are expected to be lessened thanks to our texture mapping algorithm.

FI1GURE 8. Results of our volumetric merging scheme using a volumetric resolution 250x250x250. Left : Balloons 3D mesh
model. Right, Breakdancers 3D mesh model.

5.2 Texture mapping

Distortion computation : Distortion is computed between the rendered image and the original views using
the PSNR metric. Note that distortion is computed only on triangles visible from at least one camera.

Camera 1 3 5
PSNR (dB) || 28.9477 | 31.8392 | 30.9251

TABLE 1. Distortion of synthesized images for balloons sequences.

Camera 0 1 2 3 4 5 6 7
PSNR (dB) || 28.6302 | 29.7552 | 31.2625 | 31.2188 | 31.7577 | 30.8564 | 29.863 | 29.2547

TABLE 2. Distortion of synthesized images for breakdancers sequences.

Though the distortion in terms of quadratic error is quite large, results are rather satisfying in terms of visual
quality. Thanks to our texture mapping algorithm, our 3D modeling scheme is rather robust to input depth
maps quality. Yet it is obvious that accurate registration and estimation helps in restoring ground truth in the
geometric step.

6. CONCLUSION

In this paper we addressed the issue of 3D modeling natural video sequences from Multi-view Video plus
Depth (MVD) material, without any assumption on the camera setup arrangement. A new geometrical modeling
scheme was presented that merges the input depth maps into a single triangular mesh. To this end we designed a
volumetric framework relying on an iterative Space Carving algorithm. Initial data are turned into voxels whose
status (empty or non-empty) are updated according to their geometric consistency with the input depth maps.
The frontier of the final volumetric model is turned back in a 3D mesh surface with Marching Cubes algorithm. A
multi-view texturing scheme is also presented. This triangle-based algorithm assigns optimal textures coordinates
to vertices of the final mesh. This is achieved by minimising color distortions between rendered pictures and the
original views available at modeler side. Our 3D model consisting of both geometry and texture enables to
synthesize any view around the initial cameras with few visual artifacts. As a perspective we plan to investigate
the transmission issue, by reducing the coding cost of the geometrical model and formalizing the final texture
signal to be delivered along.

FIGURE 9. Results of the proposed photoconsistency-based texture mapping on balloons sequences. Top left, reference
texture image corresponding to camera 1. Top right, reference texture image corresponding to camera 5. Bottom left,
synthesized image corresponding to camera 1. Bottom right, synthesized image corresponding to camera 5.

REFERENCES

[1] Fehn, C., Kauff, P., De Beeck, M., Ernst, F., Tjsselsteijn, W., Pollefeys, M., Van Gool, L., Ofek, E., and
Sexton, I., “An evolutionary and optimised approach on 3d-tv,” in [Proc. of IBC|, 2, 357-365 (2002).

[2] Merkle, P., Smolic, A., Muller, K., and Wiegand, T., “Multi-view video plus depth representation and
coding,” in [Image Processing, 2007. ICIP 2007. IEEFE International Conference on], 1, 1-201, IEEE (2007).

[3] Balter, R., Gioia, P., and Morin, L., “Scalable and efficient video coding using 3-d modeling,” Multimedia,
IEEFE Transactions on 8(6), 1147-1155 (2006).

[4] Mueller, K., Smolic, A., Merkle, P., Kaspar, B., Eisert, P., and Wiegand, T., “3d reconstruction of natural
scenes with view-adaptive multi-texturing,” in [3D Data Processing, Visualization and Transmission, 2004.
3DPVT 2004. Proceedings. 2nd International Symposium on], 116-123, IEEE (2004).

[5] Waschbiisch, M., Wiirmlin, S., Cotting, D., Sadlo, F., and Gross, M., “Scalable 3d video of dynamic scenes,”
The Visual Computer 21(8), 629-638 (2005).

[6] He, L., Shade, J., Gortler, S., and Szeliski, R., “Layered depth images,” in [Proceedings of the 25th annual
conference on computer graphics and interactive techniques (SIGGRAPH 1998), July|, 19-24 (1998).

[7] Waschbiisch, M., Wiirmlin, S., and Gross, M., “3d video billboard clouds,” in [Computer Graphics Forum],
26(3), 561-569, Wiley Online Library (2007).

[8] Décoret, X., Durand, F., Sillion, F., and Dorsey, J., “Billboard clouds for extreme model simplification,” in
[ACM Transactions on Graphics (TOG)], 22(3), 689-696, ACM (2003).

[9] Colleu, T., Pateux, S., Morin, L., and Labit, C., “A polygon soup representation for multiview coding,”
Journal of Visual Communication and Image Representation 21(5-6), 561-576 (2010).

Ficure 10. Results of the proposed photoconsistency-based texture mapping on Microsoft breakdancers sequences. Top
left, reference texture image corresponding to camera 0. Top right, reference texture image corresponding to camera 7.
Bottom left, synthesized image corresponding to camera 0. Bottom right, synthesized image corresponding to camera 7.

[10] McMillan, L. and Bishop, G., “Plenoptic modeling : An image-based rendering system,” in [Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques|, 39-46, ACM (1995).

[11] Franco, J. and Boyer, E., “Efficient polyhedral modeling from silhouettes,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on 31(3), 414-427 (2009).

[12] Dyer, C., “Volumetric scene reconstruction from multiple views,” Foundations of Image Understanding ,
469-489 (2001).

[13] Slabaugh, G., Culbertson, B., Malzbender, T., and Schafer, R., “A survey of methods for volumetric scene
reconstruction from photographs,” in [International Workshop on Volume Graphics|, 2(7), Citeseer (2001).

[14] Martin, W. and Aggarwal, J., “Volumetric descriptions of objects from multiple views,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on (2), 150-158 (1983).

[15] Potmesil, M., “Generating octree models of 3d objects from their silhouettes in a sequence of images,”
Computer Vision, Graphics, and Image Processing 40(1), 1-29 (1987).

[16] Kutulakos, K. and Seitz, S., “A theory of shape by space carving,” International Journal of Computer
Vision 38(3), 199-218 (2000).

[17] Broadhurst, A., Drummond, T., and Cipolla, R., “A probabilistic framework for space carving,” in [Computer
Vision, 2001. ICC'V 2001. Proceedings. Eighth IEEE International Conference on], 1, 388-393, IEEE (2001).

[18] Vogiatzis, G., Torr, P., and Cipolla, R., “Multi-view stereo via volumetric graph-cuts,” in [Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on], 2, 391-398, IEEE
(2005).

[19] Curless, B. and Levoy, M., “A volumetric method for building complex models from range images,” in
[Proceedings of the 23rd annual conference on Computer graphics and interactive techniques|, 303-312,
ACM (1996).

[20] Lorensen, W. and Cline, H., “Marching cubes : A high resolution 3d surface construction algorithm,” ACM
Siggraph Computer Graphics 21(4), 163-169 (1987).

	INTRODUCTION
	RELATED WORK
	GEOMETRY MODELING: A VOLUMETRIC FRAMEWORK FOR DEPTH MAPS FUSION
	From depth maps to meshes
	Bounding grid computation
	Viewing cones determination
	Building the Volumetric Mesh Hull (VMH)
	Space carving
	Marching Cubes

	MULTI-VIEW TEXTURE MAPPING
	Visibility determination
	Distortion image computation
	Best texture determination
	Texture mapping
	Hole filling

	RESULTS
	Geometric modeling
	Texture mapping

	CONCLUSION

