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Abstract

In this paper, a new kernel transformation procedure is described.
It aims at incorporating a degree of supervision directly in the original
pairwise similarities of a data set. The modified similarities can then
be projected using a 2D kernel PCA [13], so as to reflect the compro-
mise between genuine data and user knowledge, while being affordable for
visualization and interaction. Such semi-supervised projections are eval-
uated with synthetic and real data, in the context of a simulated visual
clustering task. Randomly selected subsets of elements are chosen to hold
a label, thus reproducing actual user interactions. The results show the
effectiveness of the method, with as few as one labelled element per class
inducing tangible effects.

1 Introduction

Clustering is a valuable task in the context of a visual analysis, e.g. allowing to
simplify the visualization of large data sets [8]. Visual objects such as clusters
are strong visual cues [16], and consequently natural candidates to become entry
points for a visual analysis. Yet, clusters need to be projected on a low dimen-
sional space (preferably 2D) to become affordable as visual objects. Setting up
a visual clustering system is thus not trivial, as real data sets are often high
dimensional.

In this paper, we propose a new kernel construction procedure, that com-
bines genuine pairwise similarities with prior labels. Performing a 2D kernel
PCA projection with this custom kernel then allows to combine smoothly intrin-
sic topology with user-specified contraints. The elements can then be clustered
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meaningfully in this transformed 2D space.

In real world application, unlabelled data is often plentiful, but learning
examples much less, as they often rely on some handcrafted ground truth (e.g.
data elements labelled by a domain expert). In this context, the semi-supervised
learning task can be understood in two loosely separated ways:

• as a supervised learning task (i.e. classification) with a very small train-
ing set (see figure 1). This setting usually prevents the usage of most
supervised learning algorithms. Yet, some authors proposed to exploit
the density of unlabelled (i.e. easily disposable) data to overcome this
limitation [5].

• as a clustering task with few labelled samples, with a view to incorporat-
ing some expert knowledge (see figure 2). This knowledge may not fully
conform to the criterion used by a given unsupervised procedure, and the
purpose of the semi-supervised method is to handle this conflict smoothly.
This can amount to using the labelled examples for model initialization,
and optionnally forcing their cluster memberships afterwards [2, 12]. In
the context of probabilistic models, some authors transformed a set of pre-
labelled elements to contraints (i.e. must-link and must-not-link) within a
classic maximum likelihood scheme, and derived an adapted optimization
algorithm [9].

The existing semi-supervised clustering approaches suffer from several limi-
tations :

• all the mentionned works rely on linear transforms, and mostly on Gaus-
sian shaped clusters, which may be too restrictive in a variety of real-life
situations (e.g. data lying on nonlinear manifolds, non-Gaussian data).

• some works tried to allow a wider range of class shapes, with the possible
association of multiple Gaussian components to a single class [11]. But
tuning the resulting algorithm appears to be rather tedious and data-
dependent.

In this work, we do not intend to explicitly enforce contraints as in the works
quoted above. We rather seek to embed a compromise between genuine simi-
larities and user-specified labels in a nonlinear transform. In other words, we
derive a 2D projection that follows the original topology as far as some prior
information permits it. Any clustering algorithm, such as k-means or Gaussian-
EM [3] may then operate on this low-dimensional continuous numeric data.

The visualization of high-dimensional data using 2D projections, and the
distortion artifacts that may occur have been extensively studied [1], and are
still an active research topic. Our contribution may be viewed as a complemen-
tary building block to this existing body of work : according to the terminology
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Figure 1: Top: decision boundary induced by a supervised learning algorithm
with a labelled training set.
Bottom: with only two labelled elements, the inferred boundary is very poor.
The density of unlabelled elements may then be useful to improve it.
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Figure 2: Top: potential result from a clustering algorithm.
Bottom: the adjunction of two labelled examples may suggest a different cluster
structure.
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stated in [1], it can be understood as a nonlinear continuous projection tech-
nique.

In section 2, for self-contency we briefly recall the theoretical foundations of
the kernel PCA technique, and emphasize its possible support to data visualiza-
tion with its well-behaved output nonlinear 2D projections. Then in section 3,
we propose a new semi-supervised kernel transformation procedure. It outputs
a compromise between genuine similarity information, and prior labelling.

This kernel may be included in the following visual clustering task:

1. perform a 2D kernel PCA projection using the semi-supervised kernel,

2. cluster the projected data.

The semi-supervision would be fed by user interactions (e.g. click-and-label
actions on the 2D visualization).

In this paper, the purely interactive aspect is set aside, to focus experimen-
tally on an objective evaluation of the behavior of the proposed kernel, when
confronted to a randomly selected prior subset of labelled elements. We intend
to highlight instrinsic properties of our proposition, and contrast it to an alter-
native approach. A baseline unsupervised kernel serves as a control setting for
this comparison. After a critical discussion of our results, we conclude with the
numerous perspectives that this work opens in the visual data mining domain.

2 Kernel PCA for 2D projection

Let us consider a set of elements X = {xi}i∈1...N , with values in some domain
X (referred to as original space hereafter), and a nonlinear transformation φ

that projects any element xi onto a point φ(xi) ∈ R
M (called feature space in

the remainder).

Assuming
∑N

i=1
φ(xi) = 0, the sample covariance matrix of the image of X

in the feature space is given as:

C =
1

N

N
∑

i=1

φ(xi)φ(xi)
T ,

with the associated eigenvector equation:

Cvm = λmvm, m = 1 . . .M.

Considering the kernel function k(x,x′) = φ(x)Tφ(x′), and following works
by [13] and [3], this eigenvector problem can be transformed to:

Kam = λmNam, m = 1 . . .M, (1)
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with K the N × N matrix such that Kij = k(xi,xj), and am a vector in
R

N . After solving (1) for its eigenvectors and eigenvalues, a set of M projection
functions can be defined as follows:

ym(x) =

N
∑

i=1

amik(x,xi). (2)

Assuming eigenvalues in decreasing order, the 2D projection that captures
the maximal variance in the feature space is then built with y1 and y2. The
assumption

∑N

i=1
φ(xi) = 0 can be released with the following modified kernel

expression [3]:

K̃ = K− 1NK−K1N + 1NK1N ,

with 1N the N×N matrix in which every cell has the value 1

N
. The mapping

φ does generally not have to be explicitly defined: indeed, any positive semi-
definite matrix K was proven to be the dot product in some feature space, may
it be infinite dimensional [3]. Thus, practitioners preferably design kernel func-
tions directly, only caring about the positive semi-definiteness of the induced
kernel matrices.

The Gaussian kernel function is adequate to this respect, and is defined as
follows:

k(x,x′) = exp

(

‖x− x
′‖2

σ2

)

.

Let us remark that this choice would imply the usage of the Euclidian norm,
thus implicitly setting X to R

d.

This kernel function has been extensively used in the literature, but was
experimentally found inadequate when considering high-dimensional data (d >

100). This fact has already been noticed by some authors [7]. Alternatively,
they propose the p-Gaussian function:

k(x,x′) = exp

(

dL2(x,x
′)p

σp

)

, (3)

with dL2(., .) the Euclidian distance. This function was adjoined by empirical
formulas for setting p and σ, designed to ensure that the kernel values match
the cumulative distribution of the distances in the original space, irrespective of
its dimensionality:

p =
ln( ln 0.05

ln 0.95
)

ln
d95%

L2

d5%

L2

, σ =
d95%L2

(− ln 0.05)
1

p

=
d5%L2

(− ln 0.95)
1

p

, (4)

6



with d5%L2
(resp. d95%L2

) the 5% (resp. 95%) percentile of the cumulative
distribution of dL2

1. In the remainder of this paper, the kernel expression (3)
will be used as a baseline.

In figure 3, we show how a data set originating from three loosely separated
2D Gaussian components is projected using equations (4), (3), and (2). In this
example, the data seems to be “inflated”: the pairwise distances distribution
remains similar after transformation, but the intrinsic topology (i.e. cluster
structure) is now emphasized.

3 Proposed semi-supervised kernel transforma-

tion

In this section, kernel values output by k are assumed to range in [0, 1]. This
assumption is rather conventional [7], and is respected by the p-Gaussian kernel.

A clustering task partly amounts to assigning labels (unknown a priori) to
a collection of elements. The goal is then to achieve the best labelling with
respect to (abbreviated w.r.t. in the remainder) some ground truth grouping.
Recalling the data set X defined in the previous section, let us define a labelling
function, that matches each element to one of R possible classes:

l : X → {1, . . . , R}

x → l(x).

In this paper we assume a semi-supervised context, i.e. a potentially in-
complete labelling: thus we will further refer to a finite set of labelled elements
XL ∈ X. This allows us to access l only through its restriction l′ = l|XL

.
Note that l′ can define every level of supervision, from completely unsuper-

vised (i.e. XL = ∅), to fully supervised (i.e. XL = X), and all intermediate
mappings.

Our intuition is to transform the kernel function according to the respective
nearest labelled neighbors of its arguments. The following function implements
part of this intuition, and gets the nearest labelled neighbor of any element in
X:

s : X → XL

x → s(x) =

{

∅ if XL = ∅
argmaxx′∈XL

k(x,x′) else.

l and s are then used to transform k as follows:

k′(x,x′) =

{ k(x,x′) if XL = ∅
k(x,x′)α if XL 6= ∅ ∧ l′

(

s(x)
)

6= l′
(

s(x′)
)

k(x,x′)
1

α if XL 6= ∅ ∧ l′
(

s(x)
)

= l′
(

s(x′)
)

,

(5)

1In the referenced paper, d5%
L2

and d
95%
L2

have been mistakenly swaped in the expressions

for σ. A corrected version is reported here.
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Figure 3: Top: Original 2D data set. The Gaussian component that originated
each element is identified by a distinct shade of grey.
Bottom: 2D kernel PCA projection with the p-Gaussian function.
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with α ∈ N
∗. Intuitively, with k outputs ranging in [0, 1] as required, and

α > 1, transforming k to k′ amounts to increasing (resp. decreasing) the sim-
ilarity of elements which have the same image value (resp. a different image
value) by l′ ◦ s, while remaining in the appropriate range.

Though the illustrations and experiments conducted in this paper use the
p-Gaussian kernel function (see equation (3)), the equation (5) may applied to
any positive semi-definite kernel function with values ranging in [0, 1] without
loss of generality.

The strict inspection of kernel contruction rules (see e.g. [14] or [3]) would
suggest that the function defined by eqn. (5) (and even the p-Gaussian function)
is not a valid kernel (i.e. is not positive semi-definite). However, some invalid
kernel functions have successfully been used in the literature [15]. Furthermore,
in this work we only use the 2 first eigendimensions (i.e. 2D projection), which
happen to be sufficiently well behaved with all but extremely ill-conditioned
kernel matrices.

4 Experimental protocol

4.1 Task Description

The kernel transformation procedure proposed in the previous section is included
in the following interactive visual clustering task:

1. an initial 2D projection (equation (2)) is computed with the p-Gaussian
kernel matrix (equation (3)),

2. labels (i.e. class values) are associated to each element by a clustering
algorithm,

3. a user updates the class semantics and the labels of some elements accord-
ing to her preferences,

4. the user labelling is used to transform the initial kernel matrix (equation
(5)),

5. this new kernel matrix is used to update the 2D kernel PCA projection,

6. go to step 2 unless the user is satisfied with the current projection and
labels.

In this paper, we leave the purely interactive aspect aside, and choose to
focus experimentally on a thorough evaluation of the behavior of the proposed
kernel, when confronted to randomly selected subsets of labelled elements.

For a better estimation of the effects of the proposed kernel transformation,
we contrast it with the two following alternatives:
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• the unsupervised p-Gaussian kernel matrix (which will act as our control
group),

• the translation of an existing semi-supervised clustering technique [2] to
the kernel context. In brief, this approach is originally equivalent to con-
strain the membership of the user-designated elements, and bias the clus-
tering algorithm using these static memberships. In the terms of the
present paper, it is turned into using equation (5) without the neighbor-
hood function, i.e. the kernel value k(x,x′) is transformed iif x and x

′

both belong to XL.

4.2 Quality Metrics

The performance of these methods are evaluated using the following metrics:

• the number of classes inferred by the clustering algorithm (identified as
nclass in table 2),

• the purity of the clusters.

Also, as evoked in the introduction, the present work relates to the visualiza-
tion and 2D projections literature. Thus, we also consider distortion metrics [1],
that measure the compression (compress id in table 1) and stretching (stretch
id) of the pairwise distances in the projection w.r.t. the respective distances in
the original space.

Both these measures are normalized in [0, 1], 1 indicating the highest dis-
tortion. The interested reader may consult [1] for details about their compu-
tation. Regarding this reference, we intentionally did not consider rank-based
measures: the curse of dimensionality was already handled through our kernel
function choice.

4.3 Chosen data sets, and their usage

One synthetic and two real UCI data sets are used for our experiments (imple-
mented with R):

• Gaussian: 3000 points generated from three loosely separated 2D Gaus-
sian components. 1000 points are sampled from each component. A sub-
sample of this data set has already been seen in figure 3.

• Pima: this data set was established from medical records of Pima Indian
patients. It is defined by 8 numerical variables, and a binary class variable
(i.e. presence or absence of diabetes). It contains 500 negative and 268
positive examples.

• Isolet: this data set was created from people recorded as they spoke
isolated letters. These recordings are described by 617 numerical variables.
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We extracted the vowel recordings: this amounts to 5 ground truth classes,
with 300 elements in each class.

Each experiment first consists in picking a random sample without replace-
ment from one of these data sets, with 100 elements sampled from each class
(with the exception of the Pima negative examples, where we sample 200 ele-
ments for a better balance w.r.t. the original data set). The ground truth labels
are ignored for all elements in the sample, but for a given number nlab of ele-
ments per class, thus simulating user interaction. An experiment is parametrized
by α (see equation (5)), and nlab. We choose to allow α ∈ {2, 3, 5, 10}, and
nlab ∈ {1, 2, 5, 10}. Let us note that the associated amount of semi-supervision
then ranges in [1%, 10%].

An experiment is also parametrized by a kernel transformation method, be-
ing either:

• unsupervised: when using the unsupervised p-Gaussian kernel function,

• simple: when using the reference semi-supervised approach [2],

• neighbors: when using the neighbor-sensitive semi-supervised kernel func-
tion from equation (5).

Compression and stretching distortion measures are computed for each ex-
periment. In order to produce a single measure per experiment, we retain the
median of the resulting compression (respectively stretching) distribution.

The projected data is then clustered, without any supervision, with a Gaus-
sian mixture estimated from the Bayesian EM algorithm proposed in the VBmix
R package [4]. Its posterior number of components serves as an estimate for our
class-related quality metric. The resulting Gaussian mixture is used to infer
class labels, and the cluster purity is computed by matching these labels to the
ground truth.

An experimental condition is thus characterized by a tuple (data set, method,
α, nlab). For each condition, we perform 20 experiments. The clustering algo-
rithm suffers from local minima issues. To alleviate this problem, for each
experiment, we perform 10 runs of the clustering algorithm, and select the best
model according to a BIC-like criterion.
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compress

• The experimental contrast is
marginally very significant (p <

10−10, yet p < 0.01 only for Iso-
let).

• α very significantly induces a lin-
ear trend (p < 10−10).

• nlab weakly induces a linear trend
(p ≃ 10−3).

• These trends seems to interact al-
most exclusively with the experi-
mental contrast.

stretch

• The experimental contrast is
marginally very significant (p <

10−10).

• α very significantly induces a lin-
ear trend (p < 10−10).

• nlab weakly induces a linear trend
(p ≃ 10−3), more strongly with
Gaussian (p < 10−10).

• These trends seems to interact al-
most exclusively with the experi-
mental contrast.

Table 1: ANOVA results for distortion measures, aggregated by quality metric
and data set.

5 Results and analysis

We performed a three-way independent ANOVA on our experimental results.
The three independent variables are ordered as follows: projection method (fur-
ther abbreviated as method), α, and nlab. For method, we defined a control
contrast between unsupervised and the grouped semi-supervised methods, and
an experimental contrast between simple and neighbors methods. The polyno-
mial contrast was applied to α and nlab.

Many experimental conditions were associated to non-normal sets of values,
or resulted in the failure of Levene’s test for the homogeneity of variance. Yet,
in the proposed experimental setup, all conditions are associated to the same
number of values (i.e. 20), which ensures the robustness of ANOVA [6,10].
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This analysis was run independently for each data set and quality measure.
The results are summarized in tables 1 and 2. Several conclusions can subse-
quently be drawn:

• The influence of the simple method on the projected topology is generally
very weak.

• The analysis of the compression and stretching distortions shows that the
proposed semi-supervised kernel function leads to drastic modifications of
the 2D projection. These modifications are significant with as few as one
labelled element per class, with mild effects to this respect when further
adding labelled elements (see figure 4). This is a desirable property, as a
user expects that her actions should have tangible effects.

• The distortions are highly influenced by the variation of α. Even with
low alpha values, projection artifacts inherent to the kernel function are
either alleviated (i.e. for stretching), or reinforced (i.e. for compression)
(see figures 4 and 5). This tendency follows an strong linear trend, which
emphasizes the sensitivity of α as a parameter.

• Augmenting α tends to diminish the number of classes, sometimes inci-
dentally harming the cluster purity (see figures 6 and 7). Indeed, cluster
purity is easier to achieve when using more clusters. More generally, semi-
supervision would be expected to improve cluster purity: yet, due to the
random selection of labelled elements, improvements are made at best
w.r.t. the inferred number of clusters. Labels provided by users in an
interactive context may help overcome this limitation.

• Adding more labelled elements seems visibly influential only on the neigh-
bors method. The random (yet influent, as seen on figure 4) choice of la-
belled elements is harmful at first, but this handicap is alleviated when in-
creasing |XL| (figure 8). This also means that with the neighbors method,
user action are tangible, which is a rather good property.

6 Conclusion

In this paper, a new semi-supervised, neighbor-sensitive, kernel transformation
method was derived and evaluated. As the experiments show, very few labelled
elements are sufficient to strongly influence a subsequent kernel PCA projection,
hence potentially providing a tangible feedback to a user in a visualization con-
text. The method was also shown to emphasize clusters in the 2D projection, a
useful path to an easy visual characterization of such visual objects.

The automated labelling function used in the experimental section demon-
strated the influence of α, the adjustable parameter of our method. Increasing
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purity

• Both control and experimental
contrasts (only experimental for
Isolet) are significant (p ≃ 10−2).

• α moderately induces a linear
trend (p < 10−3).

• nlab significantly induces a linear
trend (p < 10−5), more weakly for
Pima yet (p < 0.1).

• Depending on the data set, there
may be interaction effects be-
tween a linear trend w.r.t. α and
the control contrast (p < 0.1 for
all data sets), or the experimental
contrast (p < 10−5 for Gaussian
and Isolet).

• Except for Pima (weak interac-
tion, p < 0.1), there is a strong in-
teraction between the experimen-
tal contrast and a linear trend
w.r.t. nlab (p < 10−6).

nclass

• The experimental contrast is
marginally very significant (p <

10−10). The control contrast is
only weakly marginally significant
for Gaussian and Isolet (p < 0.1).

• α very significantly induces a lin-
ear trend (p < 10−10), yet only
moderately for Isolet.

• nlab has no marginal influence.

• There is a significant interaction
between the experimental con-
trast and a linear trend in α (p <

10−3).

Table 2: ANOVA results for clustering measures, aggregated by quality metric
and data set.
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Figure 4: Top: projection of a subsample from Isolet with the unsupervised
method. The shade of grey reveals the data density, and one element from each
class is highlighted with distinctive digits.
Bottom: projection of the same subsample with the neighbors method, using
the highlighted set as XL, and α = 3 (see equation (5)). The group structure
is emphasized, which results in higher compressive distortions.
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Figure 5: Top: influence of α on the compression measure, aggregated from our
experiments on Pima. Confidence intervals are reported as error bars.
Bottom: influence of α on the stretching measure, for the same set of experi-
ments.
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Figure 6: Top: influence of α on the cluster purity, aggregated from our exper-
iments on Isolet.
Bottom: influence of α on the inferred number of classes, for the same set of
experiments.
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Figure 7: Top: influence of α on the cluster purity, aggregated from our exper-
iments on Pima.
Bottom: influence of α on the inferred number of classes, for the same set of
experiments.
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Figure 8: Influence of nlab on the cluster purity, aggregated from our experi-
ments on Isolet.

it led to simpler clustering models, but with more distortion artifacts, and un-
clear advantages from a cluster purity perspective. In an interactive context,
its value may default to an intermediate value (e.g. 3), while providing the user
with means to adjust it to her convenience.

Our method was shown to be highly sensitive to the labelled elements. This
property suffers from a drawback: when as few as one element per ground truth
class is also inappropriately selected (e.g. outlier in its class), the proposed tech-
nique may harm more than improve cluster purity. Yet, increasing the number
of labelled elements quickly compensates this handicap.
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This work attempted to describe and evaluate a novel semi-supervised pro-
jection method thorougly. It is intended to become a building block in an
interactive visual clustering system, but we first strived to study its properties
independently of human interaction-related considerations. It would of course
be very instructive to include the proposed method in a fully interactive system,
as sketched at the beginning of section 4.1. The ground truth would then be
the user expert view of the data, and the performance of the method would
be rated according to its ability to help a user achieve quickly and efficiently a
clustering that conforms as much as possible to her contextual ground truth.

The general idea behind such a system would be to allow a user to label
elements interactively, directly through the 2D projection, adapting the latter
dynamically to these actions. Beyond defining the appropriates modes and tem-
poral sequences of interaction, it is important to notice that the present work
would not fit in such a scheme in its present state. Indeed, each interaction
transforms the kernel matrix. If we consider a naive approach, computing the
updated projection then requires, in practice, O(N3) operations. Some opti-
mizations are possible, especially as we only need the two first eigenvalues and
eigenvectors; but there should exist an algorithm (or at least, a heuristic) to
more cleverly “pipeline” the transformations induced by equation (5) to the
computation of the resulting projection using equation (2). This would allow to
take interactions into account online, and update the projection with minimal
computational overhead.
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