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Abstract

The problem of deploying a team of flying robots to perform surveillance
coverage mission over anunknownterrain of complex and non-convex mor-
phology is presented. In such a mission, the robots attempt to maximize the
part of the terrain that is visible while keeping the distance between each
point in the terrain and the closest team member as small as possible. A
trade-off between these two objectives should be fulfilled given the physical
constraints and limitations imposed at the particular application. As the ter-
rain’s morphology is unknown and it can be quite complex and non-convex,
standard algorithms are not applicable to the particular problem treated in
this paper. To overcome this, a new approach based on the Cognitive-based
Adaptive Optimization (CAO) algorithm is proposed and evaluated. A fun-
damental property of this approach is that it shares the same convergence
characteristics as those of constrained gradient-descent algorithms (which
require perfect knowledge of the terrain’s morphology and optimize surveil-
lance coverage subject to the constraints the team has to satisfy). Rigorous
mathematical arguments and extensive simulations establish that the pro-
posed approach provides a scalable and efficient methodology that incorpo-
rates any particular physical constraints and limitations able to navigate the
robots to an arrangement that (locally) optimizes surveillance coverage.

I Introduction

The use of multi-robot teams has gained a lot of attention in recent years. This
is due to the extended capabilities that the teams have to offer comparing to the
use of a single robot for the same task. Robot teams can be used in a variety
of missions including: surveillance in hostile environments (i.e., areas contami-
nated with biological, chemical or even nuclear wastes), environmental monitor-
ing (i.e., air quality monitoring, forest monitoring) and law enforcement missions
(i.e., border patrol), etc. In all the aforementioned tasksthe deployment of lim-
ited resources (robots) to optimize the monitoring of the area is the key issue. In
order to achieve this purpose, the trajectories of the robots should be designed, in
real-time, so that:

(O1) the part of the terrain that is monitored (i.e., is visible) by the robots is
maximized;

(O2) for every point in the terrain, the closest robot is as close as possible to that
point.

The second objective is necessary for two practical reasons: (a) firstly, the closer
is the robot to a point in the terrain the better is, in general, its sensing ability to
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monitor this point and (b) secondly, in many multi-robot coverage applications
there is the necessity of being able to intervene as fast as possible in any of the
points of the terrain with at least one robot.

The majority of existing approaches for multi-robot surveillance coverage,
which concentrate mostly on the 2D case of ground robots, deal only with one of
the objectives (O1) or (O2) and in most of them the terrain morphology is consid-
ered convex and/or known. In such cases the problem of multi-robot surveillance
coverage can be seen to be equivalent to a standard optimization problem where
the robot trajectories are generated according to a gradient-descent or gradient-
descent-like methodology. However, in the case where it is required that both of
the objectives (O1) and (O2) are addressed and the terrain’smorphology is non-
convex and unknown, standard optimization tools are not applicable anymore as
these tools require full knowledge of an objective functionthat depends on the
unknown terrain’s morphology.

To approach this problem, we propose a new solution that is based on the re-
cently introduced Cognitive-based Adaptive Optimization (CAO) algorithm (Kos-
matopoulos, 2009), (Kosmatopoulos and Kouvelas, 2009). The main advantage
of CAO as compared to standard optimization tools is that it does not require that
the objective function to be optimized is explicitly known;CAO instead requires
that at each-time instant a value (measurement) of this objective function is avail-
able. Then, if it is possible to define an objective function which is available for
measurement for every given team configuration, the CAO methodology will be
directly applicable to the problem of surveillance coverage treated in this paper.
Rigorous arguments establish that, despite the fact that theterrain’s morphology
is unknown, the CAO methodology shares the same convergence characteristics
as those of constrained gradient-descent algorithms (whichrequire perfect knowl-
edge of the terrain’s morphology and optimize surveillancecoverage subject to the
constraints the robot team has to satisfy). As a result, CAO navigates the robots
to an arrangement that locally optimizes the surveillance coverage criterion while
satisfying physically-imposed constraints such as that the robots should not leave
a prespecified area or they should not hit the terrain.

Both objectives (O1) and (O2) can be characterized by two distinct objective
functions. In general, one cannot simultaneously optimizeboth functions, unless
the functions share common optima. Hence, the idea is to optimize a combined
objective function that strikes a compromise between maximizing visible area and
minimizing the distance of the robots to points in the environment. By introducing
such objective function, we achieve to render the CAO algorithm applicable to the
particular problem of 3D multi-robot surveillance coverage treated in this paper.
This objective function depends on the unknown terrain’s characteristics and thus
its explicit form is not known. However, for any given team configuration the
value of this objective function can be directly computed from the robots’ sensor
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measurements, and thus the CAO algorithm can be applied to theproblem at hand
by using such an objective function.

It has to be emphasized that apart from rendering the optimization problem
solvable, the CAO-based approach preserves additional attributes that make it par-
ticularly tractable: it can handle in a easily fashion a variety of physical constraints
and limitations and it is fast and scalable.

We finally mention that the CAO approach extends the popular Simultane-
ous Perturbation Stochastic Approximation (SPSA) algorithm (Spall, 1992). The
difference between the SPSA and the CAO approach is that SPSA employs an
approximation of the gradient of an appropriate cost function using only the most
recent experiments, while the CAO approach employs linear-in-the-parameters
approximators that incorporate information of a user specified time window of
the past experiments together with the concept of candidateperturbations for effi-
ciently optimizing the unknown function. Comparative evaluations that were per-
formed on complicated optimization problems have shown that CAO exhibits sig-
nificantly better convergence properties than SPSA (Kosmatopoulos et al., 2007,
Kosmatopoulos, 2009, Kosmatopoulos and Kouvelas, 2009). Moreover, CAO
was shown to exhibit satisfactory (local) convergence characteristics in particu-
lar problems where SPSA failed to provide convergent solutions for any choice of
its design parameters, (Kosmatopoulos et al., 2007, Kosmatopoulos and Kouvelas,
2009).

It is mentioned that the CAO or the SPSA do not create an approximation or
estimation of the obstacles location and geometry; instead, they on-line produce
a local approximation of the unknown cost function the robots are called to op-
timize. For this reason, they require simple – and thus scalable – approximation
schemes to be employed.

I.1 Related Work

The majority of approaches for multi-robot surveillance coverage concentrate on
objective (O2) described in the previous section. In (Cortés et al., 2004), the au-
thors present a controller for the coverage with a team of mobile robots of a convex
environment, i.e., without obstacles, based on the Voronoipartition. A similar ap-
proach, for a convex environment, is proposed in (Schwager et al., 2006), where
additionally the robots estimate a function indicating therelative importance of
different areas in the environment, using information fromthe sensors. A pos-
sible approach for non-convex regions is proposed in (Pimenta et al., 2008). In
this work the Voronoi partition is obtained by using the geodesic distance instead
of the Euclidean one taking into account the particular topology of the problem.
In (Howard et al., 2002b), the same problem is approached by using the artificial
potential field method. Another possible solution for environments which include
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obstacles is proposed in (Breitenmoser et al., 2010b): the main idea is to combine
the classical Voronoi coverage with the Lloyd algorithm andthe local path plan-
ning algorithm TangentBug. In all the aforementioned works the regions to cover
are in 2D. In (Breitenmoser et al., 2010a) the authors approach also the problem
of deploying a team of robots on a non-planar surface in 3D space.

As far as it concerns objective (O1) described in the previous section, differ-
ent solutions have been proposed in the literature. In (Ganguli et al., 2005) the
authors propose a gradient-based algorithm for the case of asingle robot case and
they prove that the visible area is almost everywhere a locally Lipschitz function
of the observer location. In (Ganguli et al., 2007), an approach for the multi-robot
problem is presented based on the assumption that the environment is simply con-
nected. The visibility problem is also related with the Art Gallery Problem where
the goal is to find the optimum number of guards in a non-convexenvironment so
that each point of the environment is visible by at least one guard (Agarwal and
Sharir, 1998), (Shermer, 1992). All the aforementioned solutions are based on
the hypothesis that a given point can be monitored regardlessof its distance from
the robot. An incremental algorithm which takes into consideration also a max-
imum monitoring distance is presented in (Howard et al., 2002a). In (Schwager
et al., 2009), the authors consider the coverage of a 2D region by using a team of
hovering robots. In this case, information per pixel is proposed as optimization
criterion.

To the best of our knowledge, the problem of considering the two objectives si-
multaneously to cover a 3D region by using a team of flying robots has never been
investigated so far. To do that we propose to use a new stochastic optimization
method, the CAO algorithm. The many advantages of using stochastic gradient
descent algorithms, like the SPSA algorithm, to approach a sensor-based deploy-
ment problem have already been highlighted in (Ny and Pappas, 2010). In this
work, the authors proposed applications such as: coverage with heterogeneous
sensors and source seeking with stochastic wireless connectivity constraints.

The rest of the paper is organized as follows. In section 2 we describe in
detail the cognitive based adaptive optimization approach, while in section 3 we
formulate the problem for the 3D multi-robot coverage over unknown terrains.
In section 4 extensive experimental results are presented and finally in section 5
concluding remarks and future research are discussed.
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II The Cognitive-based Adaptive Optimization Ap-
proach

The Cognitive-based Adaptive Optimization (CAO) approach (Kosmatopoulos
et al., 2007, Kosmatopoulos, 2009, Kosmatopoulos and Kouvelas, 2009) was orig-
inally developed and analyzed for the optimization of functions for which an ex-
plicit form is unknown but their measurements are availableas well as for the
adaptive fine-tuning of large-scale nonlinear control systems. In this section, we
will describe how the CAO approach can be appropriately adapted and extended
so that it is applicable to the problem of multi-robot coverage. More explicitly, let
us consider the problem whereM robots are involved in a coverage task, attempt-
ing to optimize a givencoverage criterion. The coverage criterion is a function of
the robots’ positions or poses (positions and orientations), i.e.,

Jk = J
(

x
(1)
k , . . . , x

(M)
k

)

(2.1)

wherek = 0, 1, 2, . . . denotes the time-index,Jk denotes the value of the coverage
criterion at thek-th time-step,x(1)

k , . . . , x
(M)
k denote the position/pose vectors of

robots1, . . . ,M , respectively, andJ is a nonlinear function which depends –
apart from the robots’ positions/poses – on the particular environment where the
robots live; for instance, in the 2D case the functionJ depends on the location
of the various obstacles that are present, while in the 3D casewith flying robots
monitoring a terrain, the functionJ depends on the particular terrain morphology.

Due to the dependence of the functionJ on the particular environment char-
acteristics, theexplicit form of the functionJ is not knownin most practical situa-
tions; as a result, standard optimization algorithms (e.g., steepest descent) are not
applicable to the problem in hand. However, in most practical cases, like the one
treated in this paper, the current value of the coverage criterion can be estimated
from the robots’ sensor measurements. In other words, at eachtime-stepk, an
estimate ofJk is available through robots’ sensor measurements,

Jn
k = J

(

x
(1)
k , . . . , x

(M)
k

)

+ ξk (2.2)

whereJn
k denotes the estimate ofJk andξk denotes the noise introduced in the

estimation ofJk due to the presence of noise in the robots’ sensors. Please note
that, although it is natural to assume that the noise sequenceξk is a stochasticzero-
meansignal, it is not realistic to assume that it satisfies the typical Additive White
Noise Gaussian (AWNG) property even if the robots’ sensor noise is AWNG: as
J is a nonlinear function of the robots’ positions/poses (andthus of the robots’
sensor measurements), the AWNG property is typically lost.
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Apart from the problem of dealing with a criterion for which an explicit form
is not known but only its noisy measurements are available ateach time, effi-
cient robot coverage algorithms have additionally to deal with the problem of
restricting the robots’ positions so that obstacle avoidance as well as robot for-
mation constraints are met. In other words, at each time-instant k, the vectors
x
(i)
k , i = 1, . . . ,M should satisfy a set of constraints which, in general, can be

represented as follows:

C
(

x
(1)
k , . . . , x

(M)
k

)

≤ 0 (2.3)

whereC is a set of nonlinear functions of the robots’ positions/poses. As in the
case ofJ , the functionC depends on the particular environment characteristics
(e.g., location of obstacles, terrain morphology) and an explicit form of this func-
tion may be not known in many practical situations; however,it is natural to as-
sume that the coverage algorithm is provided with information whether a partic-
ular selection of robots’ positions/poses satisfies or violates the set of constraints
(2.3).

Given the mathematical description presented above, the multi-robot coverage
problem can be mathematically described as the problem of movingx

(1)
k , . . . , x

(M)
k

to a set of positions/poses that solves the following constrained optimization prob-
lem:

minimize (2.1)
subject to (2.3).

(2.4)

As already noticed, the difficulty in solving, in real-time and in real-life situa-
tions, the constrained optimization problem (2.4) lies in the fact that explicit forms
for the functionsJ andC are not available. To circumvent this difficulty, the
CAO approach, appropriately modified to be applicable to the problem in hand, is
adopted. Indeed this algorithm is capable of efficiently dealing with optimization
problems for which the explicit forms of the objective function and constraints are
not known, but noisy measurements/estimates of these functions are available at
each time-step. In the following, we describe the CAO approach as applied to the
multi-robot coverage problem described above.

It has to be emphasized that the CAO algorithm presented here is an exten-
sion of the CAO versions presented and analyzed in (Kosmatopoulos, 2009, Kos-
matopoulos and Kouvelas, 2009). The main difference is thatwhile (Kosmatopou-
los, 2009, Kosmatopoulos and Kouvelas, 2009) address the unconstrained version
of the problem (2.4), in the present paper the CAO approach of (Kosmatopoulos,
2009, Kosmatopoulos and Kouvelas, 2009) has to be extended so that it efficiently
takes care of the constraint (2.3). In order to do so, the CAO approach of (Kos-
matopoulos, 2009, Kosmatopoulos and Kouvelas, 2009) is augmented by a special
– yet simple – projection mechanism. Theorem 1 establishes that the introduction
of such a projection mechanism does not destroy the nice properties of the CAO
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approach of (Kosmatopoulos, 2009, Kosmatopoulos and Kouvelas, 2009); as a
matter of fact, according to Theorem 1 presented below, the CAO algorithm used
in this paper is proven to be approximately aprojected gradient-descentalgo-
rithm, while the ones of (Kosmatopoulos, 2009, Kosmatopoulos and Kouvelas,
2009) have been established to be approximate unconstrained gradient-descent
algorithms.

As a first step, the CAO approach makes use of function approximators for the
estimation of the unknown objective functionJ at each time-instantk according
to

Ĵk

(

x
(1)
k , . . . , x

(M)
k

)

= ϑτ
kφ

(

x
(1)
k , . . . , x

(M)
k

)

. (2.5)

Here Ĵk
(

x
(1)
k , . . . , x

(M)
k

)

denotes the approximation/estimation ofJ generated

at thek-th time-step,φ denotes the nonlinear vector ofL regressor terms, ϑk

denotes the vector ofparameter estimatescalculated at thek-th time-instant and
L is a positive user-defined integer denoting thesizeof the function approximator
(2.5). The vectorφ of regressor terms must be chosen so that it satisfies the so-
calledUniversal Approximation Property(Polycarpou and Ioannou, 1991), i.e. it
must be chosen so that the approximation accuracy of the approximator (2.5) is
an increasing function of the approximator’s sizeL. Polynomial approximators,
radial basis functions, kernel-based approximators, etc,are known to satisfy such
a property, see (Polycarpou and Ioannou, 1991) and the references therein.

The parameter estimation vectorϑk is calculated according to

ϑk = argmin
ϑ

1

2

k−1
∑

ℓ=ℓk

(

Jn
ℓ − ϑτφ

(

x
(1)
ℓ , . . . , x

(M)
ℓ

))2

(2.6)

whereℓk = max{0, k−L−Th} with Th being a user-defined nonnegative integer.
Standard least-squares optimization algorithms can be used for the solution of
(2.6).

Remark 1 In order for the proposed methodology to guarantee with efficient per-
formance, special attention has to be paid in the selection of the regressor vector
φ. Polynomial or polynomial-like regressor vectors as well assigmoidal regres-
sor vectors can be employed for the construction ofφ. The particular choice
adopted for the application treated in this paper is described in section III. See
(Kosmatopoulos et al., 2007, Kosmatopoulos, 2009, Kosmatopoulos and Kouve-
las, 2009) for more details on the design considerations forthe regressor vector.
⋄

As soon as the estimator̂Jk is constructed according to (2.5), (2.6), the set of
new robots’ positions/poses is selected as follows: firstly, a set ofN candidate
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robots’ positions/poses is constructed according to1

xi,j
k = x

(i)
k + αkζ

i,j
k , i ∈ {1, . . . ,M}, j ∈ {1, . . . , N} , (2.7)

whereζ i,jk is a zero-mean, unity-variance random vector with dimension equal
to the dimension ofx(i)

k andαk is a positive real sequence which satisfies the
conditions:

lim
k→∞

αk = 0,
∞
∑

k=1

αk = ∞,

∞
∑

k=1

α2
k < ∞ . (2.8)

Among allN candidate new positionsx1,j
k , . . . , xM,j

k , the ones that correspond to
non-feasible positions/poses – i.e., the ones that violatethe constraints (2.3) –are
neglectedand then the new robots’ positions/poses are calculated as follows:

[

x
(1)
k+1, . . . , x

(M)
k+1

]

= argmin
j ∈ {1, . . . , N}

xi,j
k not neglected

Ĵk

(

x1,j
k , . . . , xM,j

k

)

The idea behind the above logic is simple: at each time-instant a set of many
candidate new robots’ positions/poses is generated. The candidate, among the
ones that provide with a feasible solution, that provides the best estimated value
Ĵk of the coverage criterion is selected as the new set of robots’ positions/poses.
The random choice for the candidates is essential and crucial for the efficiency
of the algorithm, as such a choice guarantees thatĴk is a reliable and accurate
estimate for the unknown functionJ ; see (Kosmatopoulos, 2009, Kosmatopoulos
and Kouvelas, 2009) for more details. On the other hand, the choice of a slowly
decaying sequenceαk, a typical choice of adaptive gains in stochastic optimiza-
tion algorithms (see e.g., (Bertsekas and Tsitsiklis, 2000)) is essential for filtering
out the effects of the noise termξk [cf. (2.2)]. The next theorem summarizes the
properties of the CAO algorithm described above; as the proofof this theorem is
among the same lines as the main results of (Kosmatopoulos, 2009, Kosmatopou-
los and Kouvelas, 2009), only a sketch of the proof is provided.

Theorem 1 Letx(1∗), . . . , x(M∗) denote any – local – minimum of the constrained

optimization problem (2.4). LetN ≥ 2M × dim
(

x
(i)
k

)

and, moreover, the vector

φ satisfy the Universal Approximation Property. Assume alsothat the functions

1According to (Kosmatopoulos, 2009, Kosmatopoulos and Kouvelas, 2009) it suffices to
chooseN to be any positive integer larger or equal to2×[the number of variables being opti-
mized by CAO]. In our case the variables optimized are the robot positions/posesx(1)

k
, . . . , x

(M)
k

and thus it suffices forN to satisfyN ≥ 2M × dim

(

x
(i)
k

)

.
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J , C are either continuous or discontinuous with a finite number of2 discontinu-
ities. Then, the CAO-based multi-robot coverage algorithm as described above
guarantees that the robots’ positions/posesx

(1)
k , . . . , x

(M)
k will converge to one of

the local minimax(1∗), . . . , x(M∗) almost surely, provided that the sizeL of the
regressor vectorφ is larger than a lower bound̄L.

Sketch of the Proof:Let Xk denotes the augmented vector of all robots’ posi-
tions/poses at time-instantk, i.e., the entries ofXk are the entries of all vectors
x
(1)
k , . . . , x

(M)
k . Using similar arguments as those of the main results of (Kos-

matopoulos, 2009, Kosmatopoulos and Kouvelas, 2009) it canbe seen that at each
iteration of the CAO-based algorithm described above, the new vectorXk+1 sat-
isfies

Xk+1 = ΠC {Xk − αk (c∇J(Xk) + ek + bk)}

wherec is a positive constant;ΠC{·} denotes the projection operator onto the set
G = {X : C (X) ≤ 0} defined as follows: for anyX not satisfying the constraint
C (X) ≤ 0, the pointX̃ = ΠC{X} is the nearest point toX on G, where the
norm is defined in the usual Euclidean norm; andek, bk are two terms that are
defined similarly to the respective terms in section III of (Spall, 1992). By using
the same arguments as those in the proof of Proposition 1 of (Sadegh, 1997), it
can be established that the above equation converges almostsurely to one of the
local minima of the constraint minimization problem (2.4).

Remark 2 Strictly speaking, Theorem 1 is valid as long as the zero-mean, unity
variance vectorsζ i,jk satisfy some extra technical conditions (which are satisfied
if e.g.,ζ i,jk are Bernoulli random vectors). However, extensive simulation investi-
gations have shown that, in practice, Theorem 1 is still valideven if the random
vectorsζ i,jk are Gaussian random vectors, despite the fact that such a choice does
not satisfy the aforementioned technical conditions. ⋄

Remark 3 As already noticed in section I, the CAO algorithm requires only a
local approximation of the unknown functionJ and as a result the lower bound
L̄ has not to be large (as opposed to methods that construct a global approxi-
mation of the unknown functionJ ). Although, there exist no theoretical results
for providing the lower bound̄L for the size of the regressor vectorφ, practical
investigations on many different problems indicate that for the choice of the re-
gressor vectors according to Remark 1 such a bound is2×[number of variables
being optimized by CAO]; see (Kosmatopoulos et al., 2007, Kosmatopoulos, 2009,
Kosmatopoulos and Kouvelas, 2009) for more details. ⋄

2Please note that the family of “discontinuous functions with a finite number discontinuities”
corresponds to the family of functions that can be approximated with arbitrary accuracy by con-
tinuous ones (Jin et al., 1995). For instance, terrains withdiscontinuities along e.g., a closed or
open curve belong to this family of functions and so do the corresponding functionsJ andC.
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Remark 4 As an alternative to the CAO approach, the SPSA approach (Spall,
1992) may be employed in multi-robot coverage applications. According to the
SPSA approach, the robot positions/poses are updated according to

{

x
(i)
k+1 = x

(i)
k + βkζ

i
k , if k is even

x
(i)
k+1 = x

(i)
k + γk

Jn

k
−Jn

k−1

ζ
(i)
k−1

, if k is odd (2.9)

whereζ(i)k are zero-mean, unity-variance random vectors andβk, γk are slowly
decaying sequences (similar as the sequenceαk). The SPSA algorithm is com-
putationally simpler than the CAO one, but it does not performas efficient as
the CAO approach as have been demonstrated in a variety of approaches, see
(Kosmatopoulos et al., 2007, Kosmatopoulos, 2009, Kosmatopoulos and Kouve-
las, 2009). However, extensive simulation experiments havedemonstrated that a
hybrid scheme which uses SPSA at the first 10-20 time-steps andthen switches to
the CAO algorithm can have significant improvements over schemes that employ
only the CAO algorithm. This is due to the fact that CAO, at its initial steps, may
preserve a poor performance because it takes some iterations for the CAO estima-
tor (2.5) in order to come up with a reliable estimatêJk of the unknown coverage
functionJ . ⋄

Remark 5 We close this section by mentioning that similarly to the proposed ap-
proach, global optimization methods such as simulated annealing and genetic
algorithms do not require that the explicit form of the functionJ is known. How-
ever, simulated annealing, genetic algorithms and other similar global optimiza-
tion methods require that a large amount of different combinations of robots’ po-
sitions is being evaluated all over the robots’ applicationarea. Such a require-
ment renders these methods practically infeasible as a hugeamount of time and
energy would have to be spent in order for the robots to visit many different loca-
tions all over their application area. Nevertheless, attempting to globally optimize
surveillance coverage is practically infeasible as it is anNP-hard problem whose
solution requires dense discretization over the space of all possible team configu-
rations and evaluation of all points of the discretized space. ⋄

III CAO for 3D Multi - Robot Coverage over Un-
known Terrains

III.1 Problem Definition

In our previous work (Renzaglia et al., 2010, 2011) we have extensively described
the case of using the CAO approach for maximizing the monitored area in a given
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region by using a team of mobile robots in the 2D plane, without any assumption
on the topology of the environment. In this section we will extend our approach
to the case of robots living in a 3D environment and having fixed orientation.

Consider a team ofM flying robots that is deployed to monitor an unknown
terrainT . Let z denote the unknown height of the terrain at the point(x, y) and
assume for simplicity that the terrainT is rectangular along the(x, y)-axes, i.e.,
xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax. LetP = {x(i)}Mi=1 denote the configuration
of the robot team, wherex(i) denotes the position of thei-th robot. We will say
that a pointq = (x, y, z) of the terrain is visibleif there exists at least one robot
so that

• the robot and the pointq are connected by a line-of-sight;

• the robot and the pointq are at a distance smaller than a given threshold
value (defined as the maximum distance the robot’s sensor can”see“).

Given a particular team configurationP, we letV denote thevisible areaof
the terrain, i.e.,V consists of all pointsq ∈ T that are visible from the robots. We
will assume that the robots are equipped with visual sensorstogether with inertial
sensors and/or range sensors; in other words, for each visible point we will assume
that the team is able to estimate the terrain’s height at thispoint. A possible way
to deploy a robot team satisfying the above, is by using the down-looking-camera-
equipped flying robots of (Bloesch et al., 2010, Weiss et al., 2010) which employ
the monocular SLAM algorithm of (Klein and Murray, 2007).

The main objective for the robot team is to maximize the visible areaV. How-
ever, this cannot be the only objective for a robot team in a coverage task: trying
to maximize the visible area will simply force the robots to climb as high as3 their
visibility threshold allows for. For this reason, while maximizing the visible area
is the primary goal of the mission, the team members should bedeployed so that
for every point in the terrain, the closest robot is as close as possible to that point.
In other words,among all possible configurations that maximize the visiblearea
V, the robot team should converge to the one that keeps as smallas possible the
average distance between each of the robots and the terrain subarea the particular
robot is responsible for,where the subarea of the terrain thei-th robot is respon-
sible for is defined as the part of the terrain that (a) is visible by thei-th robot and
(b) each point in this subarea is closer to thei-th robot than any other robot of the
team. Attempting to keep the robots as close as possible to the subarea they are
responsible for is necessary for two practical reasons: (a)firstly, the closer is the
robot to a point in the terrain the better is, in general, its sensing ability to monitor

3Note also that in the ideal case where there are no limits for the robot’s maximum height and
the robot has unlimited sensing capabilities, it suffices tohave a single robot at a very high position
to monitor the whole terrain.
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this point and (b) secondly, in many multi-robot coverage applications there is the
necessity of being able to intervene as fast as possible in any of the points of the
terrain with at least one robot.

Having the above reasoning in mind, we define the following combined ob-
jective function the robot team has to minimize:

J(P) =

∫

q∈V

min
i∈{1,...,M}

‖x(i) − q‖2dq +K

∫

q∈T −V

dq (3.10)

whereK is a user-defined positive constant and‖ · ‖ denote the Euclidean norm.
The first of the terms in above equation is the usual cost function considered in
many coverage problem for known 2D environment related to the second objec-
tive (minimize the average distance between the robots and the subarea they are
responsible for, see (Cortés et al., 2004)). The second term is related to the invis-
ible area in the terrain (

∫

q∈T −V
dq is the total part of the terrain that is not visible

by any of the robots).
The positive constantK serves as a weight for giving less or more priority to

one of the objectives. For instance, in the case whereK = 0, we will have that
the robots, in their attempt to minimize their average distance to the subarea they
are responsible for, may also seek to minimize the total visible area. It has to be
emphasized that the positive constantK should be chosen sufficiently large so that
the second term in (3.10) dominates the first term unless no ora negligible part of
the terrain remains invisible. In this way, minimization of(3.10) is equivalent to
firstly making sure that all, or almost all, of the terrain is visible and then to locate
the robots so that their average distance to the subarea theyare responsible for is
minimized. However, choosing a value forK so that the second term in (3.10)
dominates the first term is not straightforward unless the terrain is known. Later
in this section we will comment further on how to choose the parameterK for the
particular setup considered in this paper. Please also notethat whether the CAO-
based algorithm employing a largeK converges to negligible or non-negligible
invisible areas depends on the number, the sensing capabilities and maximum
height constraints of the robots as well as the terrain’s complexity.

The second term
∫

q∈T −V
dq in (3.10) cannot be, in general, computed in prac-

tice; as this term involves the part of the terrain that is notcurrently visible, its
computation requires that the geometry of this part is knownor equivalently – as
the invisible part changes with the evolution of the team’s configuration – that the
whole terrain is known. To overcome this problem, instead ofminimizing (3.10)
the following performance index is actually minimized by the CAO approach:

J̄(P) =

∫

q∈V

min
i∈{1,...,M}

‖x(i) − q‖2dq −K

∫

q∈V

dq (3.11)
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To see that minimization of (3.11) and (3.10) is equivalent,please note that
∫

q∈T −V
dq =

∫

q∈T
dq −

∫

q∈V
dq and the integral

∫

q∈T
dq is constant.

Throughout the above analysis, the assumption thatK is “sufficiently large”
was made. If such an assumption does not hold, the arguments presented above do
not hold either. Therefore, the question that naturally arises is what is a value for
K that is sufficiently large so that these arguments hold. As a very large choice
for K (e.g.,K = 1010) can lead to numerical instability problems [switching-
like performance for the algorithm when the numerically-computed invisible area
switches from small values to zero], a guide on how to chooseK so that such in-
stability problems do not occur should be provided. Extensive simulations with all
set-ups considered in the next section (IV. Simulation Results) and with different
values forK indicate that it suffices to chooseK to be3− 50 times the parameter
~max in order to get an efficient performance, where the parameter~max can be
calculated as follows: let

f(P) =

∫

q∈V

min
i∈{1,...,M}

‖x(i) − q‖2dq,

ḡ(P) =

∫

q∈T −V

I(x, y)dxdy

whereI(x, y) denotes the indicator function that is equal to1 if the pointq belongs
to the invisible area of the terrain and is zero, otherwise. In other words, the term
ḡ(P) would correspond to the total invisible area, if the unknownterrain points
(x, y, z) were replaced by(x, y, 1), i.e., if the whole invisible area were flat. Then
the parameter~max is calculated according to

~max ≈
sup f(P)

sup ḡ(P)

i.e.,~max corresponds to the maximum possible value forf(P) (over all possible
feasible team configurations) divided by the maximum value the invisible-area-
term ḡ(P) can take. Thesup ḡ(P) is equal to the terrain’s area along the(x, y)-
axes, i.e.sup ḡ(P) = (xmax−xmin)(ymax− ymin). On the other hand an estimate
of the termsup f(P) can be produced by running extensive simulations with ran-
domly generated terrains and randomly generated team’s configurations. Figure
1 shows the time-histories of the termsf(P) and ḡ(P) for different choices for
K and for one of the scenarios described in the simulations section (more pre-
cisely, for the scenario described in section IV.2.2). For this particular scenario,
we have thatsup f(P) ≈ 1000 and sup ḡ(P) = 100 and thus the parameter
~max can be estimated to be around10. As exhibited in Figure 1, the CAO-based
algorithm converges to negligible invisible areas for all values ofK satisfying
K ∈ [3~max, 50~max] ≡ [30, 500].
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Figure 1: Time-histories for the termsf(P) =
∫

q∈V
mini∈{1,...,M} ‖x

(i) − q‖2dq

(upper plot) and̄g(P) =
∫

q∈T −V
I(x, y)dxdy (lower plot) for different values of

the parameterK: K = 5 (red),K = 30 (black),K = 100 (blue) andK = 500
(green).

III.2 Algorithm Implementation

An efficient trajectory generation algorithm for optimal coverage must make sure
that the physical constraints are also met throughout the whole multi-robot cov-
erage application. Such physical constraints include, butare not limited to, the
following ones:

• The robots remain within the terrain’s limits, i.e., within[xmin, xmax] and
[ymin, ymax] in thex− andy-axes, respectively.

• The robots satisfy a maximum height requirement while they do not hit
the terrain, i.e., they remain within[z + d, zmax] along thez-axis, whered
denotes the minimum safety distance (along thez-axis) the robots’ should
be from the terrain andzmax denotes the maximum allowable height for the
robots.

• The robots do not come closer to the other ones than a minimum allowable
safety distancedr.

It is not difficult for someone to see that all the above constraints can be easily
cast in the form (2.3) and thus can be handled by the CAO algorithm.

Having defined the optimization problem, a fundamental point for a good be-
havior of the CAO algorithm is an appropriate choice of the form of the regressor
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vectorφ, introduced in equation (2.5). As mentioned in remark 1, several different
choices for its explicit expression are admissible. However, in all different tests
for the particular application treated in this paper, it wasfound that it suffices to
choose the regressor vector as follows:

1. choose the size of the function approximatorL to be an odd number;

2. select the first term of the regressor vectorφ to be the constant term;

3. select randomly the next(L − 1)/2 terms ofφ to be any 2nd-order terms
of the formx

(i)
a · x

(j)
b [with a, b ∈ {1, . . . , dim(x(i))}, i, j ∈ {1, . . . ,M}

randomly-selected positive integers];

4. select the last(L−1)/2 terms ofφ to be any 3rd-order terms of the formx(i)
a ·

x
(k)
b ·x

(j)
c [with a, b, c ∈ {1, . . . , dim(x(i))}, i, k, j ∈ {1, . . . ,M} randomly-

selected positive integers].

Once the regressor vectorφ has been set and once the values of the cost func-
tion (3.11) are available for measurement at each time step,it is possible to find
at each time step the vector of parameter estimatesθk and thus the approximation
of the cost functionĴk. The other important choice in order to assure the conver-
gence of the algorithm is the expression of the sequenceαk, defined in equation
(2.7). A typical choice for such a sequence is given by

αk =
α

(k + 1)η
, (3.12)

whereα is a positive user-defined constant andη ∈ (0, 0.5).

Remark 6 Please note that the CAO algorithm’s computational requirements are
dominated by the requirement for solving the least-squaresproblem (2.6). As the
number of free parameters in this optimization problem isL, most popular algo-
rithms for solving least-squares problems have, in the worstcase,O(L3) com-
plexity (polynomial complexity with respect toL). Furthermore, as it suffices to

chooseL around2M×dim
(

x
(i)
k

)

(see Remark 3) we have that the computational

requirements of the proposed algorithm are, at most,O(M3). ⋄

IV Simulation Results

To evaluate the efficiency of the proposed approach, severalscenarios were con-
sidered with the use of a simulated robot team which was able to move freely at the
3D plane. In all cases studied, the team was homogeneous withexactly the same
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monitoring capabilities. This assumption has been made forsimplification pur-
poses and easier comprehension of the results. The main constraints imposed to
the robots are that they remain within the terrain’s limits,i.e., within [xmin, xmax]
and[ymin, ymax] in thex− andy-axes, respectively. At the same time they have to
satisfy a maximum height requirement while they do not hit the terrain, i.e., they
remain within[z+d, zmax] along thez-axis. The scenarios considered are terrains
with obstacles with same or uneven heights, while for each scenario different val-
ues of the parameterα which is responsible for the convergence of the algorithm
were tested. Apart from the simulated terrains, a realisticscenario was considered
by using a map of a real area (Weiss et al., 2010), extracted with the methodology
described in detail in (Bloesch et al., 2010).

In all experiments reported next, the following choices were made for the al-
gorithm’s implementation:

• The CAO parametersN (number of next candidate robots’ positions) and
L (size of approximatorφ) were set equal to6M and6M + 1, respectively,
whereM denotes the robot team’s size, while the approximatorφ was calcu-
lated as described in the previous section. Please note thatthe above choices
for N,L andφ are in accordance to Theorem 1 and Remark 3; moreover,L
was set equal to6M + 1 as it has to be an odd number.

• The parameterK in the cost criterion (3.11) was set equal to30 which
satisfiesK ∈ [10~max, 50~max] for all terrains and team sizes considered in
the simulations (see section III.1 for more details on the parameter~max).

• The parameterd (minimum allowable distance from the terrain) was set
equal to0.1, while the robot’s were assumed to have unlimited visibility.

• Different choices for the parameterszmax (maximum allowable height) and
α (magnitude of next candidate robots’ positions) were made asthese pa-
rameters are the most crucial for the algorithm’s performance.

• Finally, with the exception of the experiments reported in IV.4 that involve
teams of10 and20 robots, in all other cases the team comprised 4 robots.

IV.1 Areas with same height obstacles

The first case considered, studies an area sizes 10 by 10 meters, which includes a
surface with seven same height randomly placed obstacles. For this area, several
scenarios were tested with the robot team starting from different initial positions
and heights. In all cases considered the robots had to satisfy a maximum flight
height requirement while they did not hit the terrain.
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IV.1.1 Scenario 1

In the first scenario studied, all the team members were placed at starting points
adjunct to each other, with initial height 0.6 meters. The maximum allowed flight
height was 1 meter for all robots. Different values of the expressionα were tested
for the case ofα = 0.3, 0.5, 1 and the respective cost functions are presented
in Fig. 2. The initial position forRobot 1was (0.18, 0.2, 0.6), of Robot 2was
(0.19, 0.2, 0.6), of Robot 3was(0.2, 0.2, 0.6) and ofRobot 4was(0.21, 0.2, 0.6).
In Fig. 3 successive snapshots of different positions of therobot team for the case
of α = 0.3 are presented (different color corresponds to different team member).
The final configuration in all three test cases is presented inFig. 4. In Table 1 the
percentage of the initial and final coverage of the area monitored in all three cases,
is presented. It’s worth mentioning that the coverage percentage is depended on
several factors apart the optimization algorithm i.e. the sensors that might be used
in a real implementation. It should be noted that CAO does not converge always to
the same swarm configuration, but it converges always to a swarm configuration
with similar coverage characteristics which corresponds to similar finalJ value.

Table 1: Coverage percentage in the case described in IV.1.1.
(% of Coverage)

α 0.3 0.5 1
Initial Configuration 34.58
Final Configuration 97.06 97.49 98.59

IV.1.2 Scenario 2

In the second scenario studied, the initial positions of therobots were forRobot 1
(9.18, 0.2, 0.4), for Robot 2(9.19, 0.2, 0.4), for Robot 3was(0.2, 0.2, 0.4) and for
Robot 4was(0.21, 0.2, 0.4), while the maximum allowed flight height remained
the same (1 meter). Different values of the expressionα were tested for the case
of α = 0.3, 0.5 and the respective cost functions are presented in Fig. 6. Intable 2
the percentage of the initial and final coverage of the area monitored in both cases
is presented.

Table 2: Coverage percentage in the case described in IV.1.2.
(% of Coverage)

α 0.3 0.5
Initial Configuration 48.71
Final Configuration 98.56 97.04
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Figure 2: Cost Functions forα = 0.3, 0.5, 1, in the case described in IV.1.1.

IV.2 Areas with uneven obstacle height

The second case considered, studies an area sizes10 by 10 meters, which includes
a surface with seven randomly placed obstacles with uneven height, with maxi-
mum value2 meters. In this test case we have tested several scenarios with the
robot team starting from different initial positions and heights. In all cases con-
sidered the robots had to satisfy a maximum flight height requirement while they
did not hit the terrain.

IV.2.1 Scenario 1

In the first scenario studied for the case of areas with unevenobstacle heights,
all the team members were placed at starting points adjunct to each other, with
initial height 0.2 meters. The maximum allowed flight heightwas 1 meter for
all robots. The initial positions ofRobot 1was(0.18, 0.2, 0.2), of Robot 2was
(0.19, 0.2, 0.2), of Robot 3was(0.2, 0.2, 0.2) and ofRobot 4was(0.21, 0.2, 0.2).
Different values of the expressionα were tested for the case ofα = 0.3, 0.5, 1 and
the respective cost functions are presented in Fig. 7. The final configuration in all
three test cases is presented in Fig. 8, while in Table 3 the percentage of the initial
and final coverage of the area monitored in all cases, is presented.
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Figure 3: Successive snapshots of different positions of the robot team forα =
0.3, in the case described in IV.1.1.
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Figure 4: Final positions of the robotic teams forα = 0.3 (blue markers),α = 0.5
(red markers),α = 1 (green markers), in the case described in IV.1.1.
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Figure 5: Coverage percentage forα = 0.3, 0.5, 1, in the case described in IV.1.1.
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Figure 6: Cost Functions forα = 0.3, 0.5, in the case described in IV.1.2.
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Figure 7: Cost Functions forα = 0.3, 0.5, 1, in the case described in IV.2.1.
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Table 3: Coverage percentage in the case described in IV.2.1.
(% of Coverage)

α 0.3 0.5 1
Initial Configuration 29.78
Final Configuration 98.29 97.76 96.35
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Figure 8: Final positions of the robotic teams forα = 0.3 (blue markers),α = 0.5
(red markers),α = 1 (green markers), in the case described in IV.2.1.

IV.2.2 Scenario 2

In the second scenario studied for uneven surfaces, the maximum allowed flight
height was 5 meters for all robots. Different values of the expressionα were tested
for the case ofα = 0.3, 0.5, 1 and the respective cost functions are presented in
Fig. 9. In Fig. 10 successive snapshots of different positions of the robot team for
the case ofα = 0.3 are presented (different color corresponds to different team
member). The initial position ofRobot 1was (0.18, 0.2, 0.4), of Robot 2was
(0.19, 0.2, 0.4), of Robot 3was(0.2, 0.2, 0.4) and ofRobot 4was(0.21, 0.2, 0.4).
In table 4 the percentage of the initial and final coverage of the area monitored in
all cases, is presented.
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Table 4: Coverage percentage in the case described in IV.2.2.
(% of Coverage)

α 0.3 0.5 1
Initial Configuration 29.78
Final Configuration 99.14 98.69 98.36

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time (Iterations x10)

C
os

t F
un

ct
io

n

 

 

α =0.3
α =0.5
α =1

Figure 9: Cost Functions forα = 0.3, 0.5, 1, in the case described in IV.2.2.

IV.3 Cave-like Surface

In the above described set-up and proposed simulations, forsimplicity’s sake we
assumed that the unknown terrain is defined as a set of unique triplets(x, y, z), that
is, for each(x, y) the terrain is defined by a uniquez-point, i.e. z = f(x, y). In
realistic applications there exist cases where there may bemore than onez-points
(e.g., cases of terrains with buildings, overhangs, ledges, caves, etc). Here we
present a similar scenario to show how our method can be applied also for these
cases. The simulated environment is a gaussian with a cave (fig. 11). The robots
start their mission on the other side with respect to the cave,so at the beginning
the it is not visible. Start and final robots’ positions are shown in fig. 12. In fig.
13(a) the behavior of the cost function is presented and in fig. 13(b) it is shown
also the percentage of the invisible surface during the task. It is possible to see
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Figure 10: Successive snapshots of different positions of the robot team forα =
0.5, in the case described in IV.2.2.
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Figure 11: A different scenario: the environment is a gaussian with a cave.

that it is minimized until everything is visible.

IV.4 Scalability Issues

To validate the efficiency of our approach in the case of bigger robot teams, we
have performed experiments with teams consisting of 10 and 20 members. Our
experiments were performed in an area sizes 20 by 20 meters, which includes
a surface with fifteen uneven height randomly placed obstacles. The maximum
flight height was set to be 2. The basic difference as far as it concerns the compu-
tational requirements in the experiments conducted with the teams of 10 and 20
robots, was that the parametersL andN increase linearly according to Theorem
1 and Remark 3; thereforeL = 61 andN = 60 in the case of the team with 10
members andL = 121 andN = 120 in the case of the team with 20 members.
In the case of4 robots the best values ofJ are around 15 which is significantly
larger than the values obtained with the bigger teams. In Fig. 14 the cost functions
for the case of10 and20 robots are presented, while in Fig. 15 we present their
final configuration. In table 5 the percentage of the initial and final coverage of
the area monitored for a team with 10 & 20 members is presented.

IV.5 Birmensdorf area

To validate our approach in a realistic environment, we usedthe data which were
collected with the use of a miniature quadrotor helicopter specially designed for
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Figure 12: The team is composed by four robots. Red squares andblack circles
represent initial and final positions respectively.
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Figure 13: Fig. (a) shows the behavior of the cost function during the task, fig.
(b) the percentage of invisible surface. At the end everything is visible.
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Figure 14: Comparative cost functions for the case of a robot team with 10 and 20
members.

Figure 15: Final configuration of the team with 10 robots (blue circle markers)
and the team with 20 robots (red triangle markers).
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Table 5: Coverage percentage with teams of 10 & 20 members.
(% of Coverage)

Team size 10 Members 20 Members
Initial Configuration 39.62 42.93
Final Configuration 86.33 90.78

the needs of the European project sFLY (www.sfly.org). Thesedata correspond to
the Birmensdorf area presented in Fig. 16. The area was mappedusing a state-
of-the-art visual-SLAM algorithm which tracks the pose of the camera while, si-
multaneously, autonomously, building an incremental map of the surrounding en-
vironment. The area mapped using the aforementioned methodology corresponds
to the bounded part of Fig. 16. More details about the data andthe methodology
used, are presented in (Bloesch et al., 2010) and (Weiss et al., 2010). The main
constraints imposed to the robots are that they remain within the terrain’s limits,
i.e., within[xmin, xmax] and[ymin, ymax] in thex− andy-axes, respectively. At the
same time they have to satisfy a maximum height requirement while they do not
hit the terrain, i.e., they remain within[z+ d, zmax] along thez-axis. The value of
α was equal to0.3. Several initial configurations for the robot team were tested.
In Fig. 17 the cost function of an illustrative scenario is presented, while the final
configuration of the team (for the same scenario) is displayedin Fig. 18 (3D view)
and in Fig. 19 (2D side view). The initial coverage was44.49% while the final
coverage was98.55%. In table 6 the final coverage percentage for different initial
configuration in the Birmensdorf area, is presented.

Table 6: Coverage percentage for different initial configuration in the Birmensdorf
area.

(% of Coverage)
Test Case 1 2 3 4 5

Initial Configuration 44.49 40.49 21.41 57.88 56.81
Final Configuration 98.55 99.52 98.53 98.94 99.56

V Discussion and Conclusions

A new method for dealing with the problem of performing surveillance coverage
in unknownterrain of complex and non-convex morphology has been proposed.
The proposed approach has the following key advantages:

• it does not require any a priori knowledge on the environment;
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Figure 16: Outdoor flight path through the Birmensdorf area.

• it works in any given environment, without the necessity to make any kind
of assumption about its topology;

• it can incorporate any kind of constraints;

• it does not require a knowledge about these constraints since they are learnt
during the task execution;

• its complexity is low allowing real time implementations.

The advantages of the proposed methodology make it suitablefor real im-
plementations and the results obtained through numerical simulations give us the
motivation to adopt the CAO also in other frameworks. We are interested into
formulating the same problem in a distributed manner by using different cost
functions for the robots in the team. This approach is closerto real world ap-
plications since it will not depend into a centralized scheme with all the known
disadvantages. Apart from that a decentralized approach will allow us to include
communications constraints. We are also interested in incorporating more realis-
tic constraints including sensor limitations. Our aim is todevelop a strategy for
the surveillance of an unknown urban-like environment witha real MAV swarm.
Furthermore, we are interested in enhancing the proposed methodology in order
to be able to deal with cases where the team converges to a configuration that fails
to cover the entire terrain. It is worth noticing, that although in the3D case treated
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Figure 17: Cost function for a robotic team performing surveillance coverage in
Birmensdorf area.

here we have never encountered such cases there is always thepossibility (due to
the local convergence properties of the algorithm) for the methodology to fail to
cover the overall area. As a matter of fact, such cases have been encountered in
the 2D version of the algorithm reported in (Renzaglia et al., 2010,2011) and
an extension/enhancement of the proposed methodology is required to efficiently
deal with such cases.

Furthermore, we expect that many important tasks in mobile robotics can be
approached by CAO-based algorithms: for example coordinated exploration, op-
timal target tracking, multi-robot localization, and so on. This is basically due to
the fact that the CAO approach does not require an a priori knowledge of the envi-
ronment and it has low complexity. Both these issues are fundamental in mobile
robotics.
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