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Abstract

The problem of deploying a team of flying robots to perform surveillance
coverage mission over amknownterrain of complex and non-convex mor-
phology is presented. In such a mission, the robots attempt to maximize the
part of the terrain that is visible while keeping the distance between each
point in the terrain and the closest team member as small as possible. A
trade-off between these two objectives should be fulfilled given theigdilys
constraints and limitations imposed at the particular application. As the ter-
rain’s morphology is unknown and it can be quite complex and non-convex,
standard algorithms are not applicable to the particular problem treated in
this paper. To overcome this, a new approach based on the Cognisgd-ba
Adaptive Optimization (CAO) algorithm is proposed and evaluated. A fun-
damental property of this approach is that it shares the same convergence
characteristics as those of constrained gradient-descent algorithms (whic
require perfect knowledge of the terrain’s morphology and optimize gurve
lance coverage subject to the constraints the team has to satisfy). Rigorou
mathematical arguments and extensive simulations establish that the pro-
posed approach provides a scalable and efficient methodology thgi@aco
rates any particular physical constraints and limitations able to navigate the
robots to an arrangement that (locally) optimizes surveillance coverage.

Introduction

The use of multi-robot teams has gained a lot of attentioreaemt years. This
is due to the extended capabilities that the teams have ¢o odimparing to the
use of a single robot for the same task. Robot teams can be nisedariety
of missions including: surveillance in hostile environrtse(i.e., areas contami-
nated with biological, chemical or even nuclear wastesjirenmental monitor-
ing (i.e., air quality monitoring, forest monitoring) ara\ enforcement missions
(i.e., border patrol), etc. In all the aforementioned ta$lesdeployment of lim-
ited resources (robots) to optimize the monitoring of themds the key issue. In
order to achieve this purpose, the trajectories of the soflabuld be designed, in
real-time, so that:

(O1) the part of the terrain that is monitored (i.e., is visiblg) the robots is

maximized;

(O2) for every point in the terrain, the closest robot is as claspassible to that

point.

The second objective is necessary for two practical reaganéirstly, the closer
is the robot to a point in the terrain the better is, in genetasensing ability to
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monitor this point and (b) secondly, in many multi-robot eage applications
there is the necessity of being able to intervene as fast ssilpje in any of the
points of the terrain with at least one robot.

The majority of existing approaches for multi-robot sullagice coverage,
which concentrate mostly on the 2D case of ground robotd,atawith one of
the objectives (O1) or (O2) and in most of them the terrainphology is consid-
ered convex and/or known. In such cases the problem of moidbt surveillance
coverage can be seen to be equivalent to a standard opiwnizatbblem where
the robot trajectories are generated according to a gradestent or gradient-
descent-like methodology. However, in the case where ggsiired that both of
the objectives (O1) and (O2) are addressed and the terraorphology is non-
convex and unknown, standard optimization tools are noliGgigge anymore as
these tools require full knowledge of an objective functibat depends on the
unknown terrain’s morphology.

To approach this problem, we propose a new solution thatssdan the re-
cently introduced Cognitive-based Adaptive OptimizatiGAQ) algorithm (Kos-
matopoulos, 2009), (Kosmatopoulos and Kouvelas, 2009¢ rmain advantage
of CAO as compared to standard optimization tools is thatésdwot require that
the objective function to be optimized is explicitly knowAO instead requires
that at each-time instant a value (measurement) of thictbgefunction is avail-
able. Then, if it is possible to define an objective functidmah is available for
measurement for every given team configuration, the CAO ndetlogy will be
directly applicable to the problem of surveillance coveragated in this paper.
Rigorous arguments establish that, despite the fact thaethemn’s morphology
is unknown, the CAO methodology shares the same convergéreaateristics
as those of constrained gradient-descent algorithms (whipre perfect knowl-
edge of the terrain’s morphology and optimize surveillacmeerage subject to the
constraints the robot team has to satisfy). As a result, CAQgates the robots
to an arrangement that locally optimizes the surveillarmerage criterion while
satisfying physically-imposed constraints such as thatadbots should not leave
a prespecified area or they should not hit the terrain.

Both objectives (O1) and (O2) can be characterized by twindisbbjective
functions. In general, one cannot simultaneously optirbizia functions, unless
the functions share common optima. Hence, the idea is tongg@ia combined
objective function that strikes a compromise between mexxng visible area and
minimizing the distance of the robots to points in the envinent. By introducing
such objective function, we achieve to render the CAO algoriapplicable to the
particular problem of 3D multi-robot surveillance covesdgeated in this paper.
This objective function depends on the unknown terrainaabteristics and thus
its explicit form is not known. However, for any given teamnéiguration the
value of this objective function can be directly computemhirthe robots’ sensor
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measurements, and thus the CAO algorithm can be applied pyabéem at hand
by using such an objective function.

It has to be emphasized that apart from rendering the optiiz problem
solvable, the CAO-based approach preserves additionigaés that make it par-
ticularly tractable: it can handle in a easily fashion aefyrof physical constraints
and limitations and it is fast and scalable.

We finally mention that the CAO approach extends the popularuBane-
ous Perturbation Stochastic Approximation (SPSA) alpari{Spall, 1992). The
difference between the SPSA and the CAO approach is that SRffogs an
approximation of the gradient of an appropriate cost fumctising only the most
recent experiments, while the CAO approach employs linedineé-parameters
approximators that incorporate information of a user dptitime window of
the past experiments together with the concept of candmaterbations for effi-
ciently optimizing the unknown function. Comparative eians that were per-
formed on complicated optimization problems have showh@#eD exhibits sig-
nificantly better convergence properties than SPSA (Kospmatlos et al., 2007,
Kosmatopoulos, 2009, Kosmatopoulos and Kouvelas, 2009)retder, CAO
was shown to exhibit satisfactory (local) convergence attaristics in particu-
lar problems where SPSA failed to provide convergent smhstior any choice of
its design parameters, (Kosmatopoulos et al., 2007, Kagmatos and Kouvelas,
2009).

It is mentioned that the CAO or the SPSA do not create an appation or
estimation of the obstacles location and geometry; instiesy on-line produce
a local approximation of the unknown cost function the rebate called to op-
timize. For this reason, they require simple — and thus btala approximation
schemes to be employed.

.1 Related Work

The majority of approaches for multi-robot surveillance@@ge concentrate on
objective (O2) described in the previous section. In (E®#t al., 2004), the au-
thors present a controller for the coverage with a team ofilmofibots of a convex
environment, i.e., without obstacles, based on the Vorpadition. A similar ap-
proach, for a convex environment, is proposed in (Schwalgal:,2006), where
additionally the robots estimate a function indicating thkative importance of
different areas in the environment, using information frira sensors. A pos-
sible approach for non-convex regions is proposed in (Pianenal., 2008). In
this work the Voronoi partition is obtained by using the gesid distance instead
of the Euclidean one taking into account the particular kogy of the problem.
In (Howard et al., 2002b), the same problem is approacheding uhe artificial
potential field method. Another possible solution for eomiments which include
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obstacles is proposed in (Breitenmoser et al., 2010b): the itk@a is to combine
the classical Voronoi coverage with the Lloyd algorithm ainel local path plan-
ning algorithm TangentBug. In all the aforementioned wohesregions to cover
are in 2D. In (Breitenmoser et al., 2010a) the authors appratso the problem
of deploying a team of robots on a non-planar surface in 3Despac

As far as it concerns objective (O1) described in the prev/gection, differ-
ent solutions have been proposed in the literature. In (Glaegal., 2005) the
authors propose a gradient-based algorithm for the caseingke robot case and
they prove that the visible area is almost everywhere allptgbschitz function
of the observer location. In (Ganguli et al., 2007), an apphdor the multi-robot
problem is presented based on the assumption that the emerd is simply con-
nected. The visibility problem is also related with the Adll@ry Problem where
the goal is to find the optimum number of guards in a non-coevexronment so
that each point of the environment is visible by at least amerd (Agarwal and
Sharir, 1998), (Shermer, 1992). All the aforementioneditsmhs are based on
the hypothesis that a given point can be monitored regardfatssdistance from
the robot. An incremental algorithm which takes into coesidion also a max-
imum monitoring distance is presented in (Howard et al.,2200 In (Schwager
et al., 2009), the authors consider the coverage of a 2Dmdgjiaising a team of
hovering robots. In this case, information per pixel is megd as optimization
criterion.

To the best of our knowledge, the problem of consideringuilwedbjectives si-
multaneously to cover a 3D region by using a team of flying tebas never been
investigated so far. To do that we propose to use a new stioclogimization
method, the CAO algorithm. The many advantages of using astichgradient
descent algorithms, like the SPSA algorithm, to approadnaa-based deploy-
ment problem have already been highlighted in (Ny and Pa@f¥d9). In this
work, the authors proposed applications such as: coverdfehaterogeneous
sensors and source seeking with stochastic wireless ctwvityeconstraints.

The rest of the paper is organized as follows. In section 2 esebe in
detail the cognitive based adaptive optimization apprpadtile in section 3 we
formulate the problem for the 3D multi-robot coverage oveknown terrains.
In section 4 extensive experimental results are presemédimally in section 5
concluding remarks and future research are discussed.



Il The Cognitive-based Adaptive Optimization Ap-
proach

The Cognitive-based Adaptive Optimization (CAO) approachgfidatopoulos
etal., 2007, Kosmatopoulos, 2009, Kosmatopoulos and Kasy2009) was orig-
inally developed and analyzed for the optimization of fumes$ for which an ex-
plicit form is unknown but their measurements are availasewvell as for the
adaptive fine-tuning of large-scale nonlinear controlays. In this section, we
will describe how the CAO approach can be appropriately atdhahd extended
so that it is applicable to the problem of multi-robot coveralgiore explicitly, let

us consider the problem whebé robots are involved in a coverage task, attempt-
ing to optimize a givercoverage criterion The coverage criterion is a function of
the robots’ positions or poses (positions and orientajjares,

Jk = j (x,(:), ce ,x,(€M)> (21)
wherek = 0, 1,2, ... denotes the time-index; denotes the value of the coverage
criterion at thek-th time-step,r,(j), o ,x,(cM) denote the position/pose vectors of
robots1, ..., M, respectively, anq7 is a nonlinear function which depends —

apart from the robots’ positions/poses — on the particul@irenment where the
robots live; for instance, in the 2D case the functigrdepends on the location
of the various obstacles that are present, while in the 3D wébkeflying robots
monitoring a terrain, the functior depends on the particular terrain morphology.

Due to the dependence of the functighon the particular environment char-
acteristics, thexplicit form of the functio/ is not knowrin most practical situa-
tions; as a result, standard optimization algorithms (stgepest descent) are not
applicable to the problem in hand. However, in most prattases, like the one
treated in this paper, the current value of the coveragermit can be estimated
from the robots’ sensor measurements. In other words, at t@aehstepk, an
estimate of/;, is available through robots’ sensor measurements,

=g (xﬁj), o ,x;}”) t & (2.2)

where J;! denotes the estimate df, and¢, denotes the noise introduced in the
estimation ofJ,, due to the presence of noise in the robots’ sensors. Ple&se no
that, although it is natural to assume that the noise segdgmea stochastizero-
meansignal, it is not realistic to assume that it satisfies thécgipAdditive White
Noise Gaussian (AWNG) property even if the robots’ sensosen@ AWNG: as

J is a nonlinear function of the robots’ positions/poses (dn of the robots’
sensor measurements), the AWNG property is typically lost.



Apart from the problem of dealing with a criterion for which explicit form
is not known but only its noisy measurements are availablkeaah time, effi-
cient robot coverage algorithms have additionally to deih wthe problem of
restricting the robots’ positions so that obstacle avasgaas well as robot for-
mation constraints are met. In other words, at each timemé, the vectors
x,(j),z' = 1,..., M should satisfy a set of constraints which, in general, can be
represented as follows:

c (xg), o ,x;””) <0 (2.3)

where(C is a set of nonlinear functions of the robots’ positionsgssAs in the
case of7, the functionC depends on the particular environment characteristics
(e.g., location of obstacles, terrain morphology) and giiex form of this func-

tion may be not known in many practical situations; howeitdas, natural to as-
sume that the coverage algorithm is provided with infororativhether a partic-
ular selection of robots’ positions/poses satisfies oratéd the set of constraints
(2.3).

Given the mathematical description presented above, tite robot coverage
problem can be mathematically described as the problemaimo!" . .. "
to a set of positions/poses that solves the following camstd optimization prob-
lem:

minimize (2.1)
subjectto (2.3)

As already noticed, the difficulty in solving, in real-timedain real-life situa-
tions, the constrained optimization problem (2.4) lieswflact that explicit forms
for the functions7 and(C are not available. To circumvent this difficulty, the
CAO approach, appropriately modified to be applicable to thélpm in hand, is
adopted. Indeed this algorithm is capable of efficiently idgalvith optimization
problems for which the explicit forms of the objective fuiectand constraints are
not known, but noisy measurements/estimates of theseidmscare available at
each time-step. In the following, we describe the CAO appdr@acapplied to the
multi-robot coverage problem described above.

It has to be emphasized that the CAO algorithm presented bexe exten-
sion of the CAQO versions presented and analyzed in (Kosmatopa2009, Kos-
matopoulos and Kouvelas, 2009). The main difference isthde (Kosmatopou-
los, 2009, Kosmatopoulos and Kouvelas, 2009) address tanstrained version
of the problem (2.4), in the present paper the CAO approacKasatopoulos,
2009, Kosmatopoulos and Kouvelas, 2009) has to be extendédist efficiently
takes care of the constraint (2.3). In order to do so, the CA@ageh of (Kos-
matopoulos, 2009, Kosmatopoulos and Kouvelas, 2009) ismanted by a special
— yet simple — projection mechanism. Theorem 1 establidtegghe introduction
of such a projection mechanism does not destroy the niceepiep of the CAO

(2.4)
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approach of (Kosmatopoulos, 2009, Kosmatopoulos and Kasy2009); as a
matter of fact, according to Theorem 1 presented below, th® &l§orithm used
in this paper is proven to be approximatelyp®jected gradient-desceatigo-
rithm, while the ones of (Kosmatopoulos, 2009, Kosmatopsw@nd Kouvelas,
2009) have been established to be approximate unconstrgradient-descent
algorithms.

As a first step, the CAO approach makes use of function appadris for the
estimation of the unknown objective functighat each time-instarit according

to
Ji <x,(€1), e ,xlgM)> =050 <x,(€1), e 7:1:](€M)> . (2.5)

Here J, (ac,(j), e ,x,(CM) denotes the approximation/estimation @fgenerated

at the k-th time-step,¢ denotes the nonlinear vector &f regressor termsdy,
denotes the vector gfarameter estimatesalculated at thé-th time-instant and
L is a positive user-defined integer denoting sieeof the function approximator
(2.5). The vector of regressor terms must be chosen so that it satisfies the so-
calledUniversal Approximation PropertgPolycarpou and loannou, 1991), i.e. it
must be chosen so that the approximation accuracy of theogipmator (2.5) is
an increasing function of the approximator’s size Polynomial approximators,
radial basis functions, kernel-based approximatorsaeécknown to satisfy such
a property, see (Polycarpou and loannou, 1991) and thesrefes therein.

The parameter estimation vecitfy is calculated according to

k-1

Uy = arg;nin% Z (JZ” —07¢ (xél), . ,IEM)>>2 (2.6)

=tk

where/;, = max{0, k — L — T} } with T}, being a user-defined nonnegative integer.
Standard least-squares optimization algorithms can be fmethe solution of
(2.6).

Remark 1 In order for the proposed methodology to guarantee with efficper-
formance, special attention has to be paid in the selectidh@regressor vector
¢. Polynomial or polynomial-like regressor vectors as wellsagmoidal regres-
sor vectors can be employed for the constructionpyofThe particular choice
adopted for the application treated in this paper is desedbn section Ill. See
(Kosmatopoulos et al., 2007, Kosmatopoulos, 2009, Kogmatos and Kouve-
las, 2009) for more details on the design considerationgtierregressor vector.
&

As soon as the estimatdy, is constructed according to (2.5), (2.6), the set of
new robots’ positions/poses is selected as follows: firgtlget of N candidate
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robots’ positions/poses is constructed accordifg to
wl =2\ fo( e {1,... M}, je{l,... N}, (2.7)

Whereg,i’j is a zero-mean, unity-variance random vector with dimengqual

to the dimension ofn,(f) and o, is a positive real sequence which satisfies the
conditions:

: _ _ 2
klg]goak—(), Zak—oo, Zak<oo. (2.8)
k=1 k=1
Among all N' candidate new positions,”’, ...,z ”, the ones that correspond to

non-feasible positions/poses —i.e., the ones that vith&teonstraints (2.3) are
neglectedand then the new robots’ positions/poses are calculateallaw/é:

[x,(clﬁl, . ,xl(f\ﬂ] = argmin Jk <95;1€’j, . axjkw’j>
je{l,...,N}
z;’not neglected

The idea behind the above logic is simple: at each time-ihstaset of many
candidate new robots’ positions/poses is generated. Tha#idste, among the
ones that provide with a feasible solution, that provideslist estimated value
J, of the coverage criterion is selected as the new set of ropositions/poses.
The random choice for the candidates is essential and tifocithe efficiency

of the algorithm, as such a choice guarantees fhas a reliable and accurate
estimate for the unknown functiqfi; see (Kosmatopoulos, 2009, Kosmatopoulos
and Kouvelas, 2009) for more details. On the other hand, tbeeelof a slowly
decaying sequence;, a typical choice of adaptive gains in stochastic optimiza-
tion algorithms (see e.g., (Bertsekas and Tsitsiklis, 20@®ssential for filtering
out the effects of the noise tergp [cf. (2.2)]. The next theorem summarizes the
properties of the CAO algorithm described above; as the pbtfis theorem is
among the same lines as the main results of (Kosmatopou69, Kosmatopou-
los and Kouvelas, 2009), only a sketch of the proof is provided

Theorem 1 Letz(*") ... (") denote any — local — minimum of the constrained
optimization problem (2.4). Le¥Y > 2M x dim (9;,9) and, moreover, the vector
¢ satisfy the Universal Approximation Property. Assume #hst the functions

!According to (Kosmatopoulos, 2009, Kosmatopoulos and l&tas; 2009) it suffices to
chooseN to be any positive integer larger or equal2g[the number of variables being opti-

mized by CAO]. In our case the variables optimized are thetrpbsitions/posesl(j), . ,ng>

and thus it suffices foN to satisfyN > 2M x dim (xi”)



J,C are either continuous or discontinuous with a finite numbérdigcontinu-
ities. Then, the CAO-based multi-robot coverage algorittemdascribed above

guarantees that the robots’ positions/posé@, o ,x,(CM) will converge to one of
the local minimaz'"), ..., ") almost surely, provided that the siZeof the

regressor vectop is larger than a lower bound..

Sketch of the ProoflLet X, denotes the augmented vector of all robots’ posi-
tions/poses at time-instaht i.e., the entries o, are the entries of all vectors
2V, 2™ Using similar arguments as those of the main results of {Kos
matopoulos, 2009, Kosmatopoulos and Kouvelas, 2009) ibeaseen that at each
iteration of the CAO-based algorithm described above, thevextor X, ; sat-
isfies

Xk+1 = HC {Xk — O (CVJ(Xk) + e + bk)}
wherec is a positive constant]{-} denotes the projection operator onto the set
G ={X :C(X) <0} defined as follows: for an) not satisfying the constraint
C(X) < 0, the pointX = TIo{X} is the nearest point t& on G, where the
norm is defined in the usual Euclidean norm; apdb, are two terms that are
defined similarly to the respective terms in section Il op&$, 1992). By using
the same arguments as those in the proof of Proposition laafe(gh, 1997), it
can be established that the above equation converges adore$y to one of the
local minima of the constraint minimization problem (2.4).

Remark 2 Strictly speaking, Theorem 1 is valid as long as the zerorneaity
variance vectorsj,i’j satisfy some extra technical conditions (which are satisfied
if e.g.,C,i’j are Bernoulli random vectors). However, extensive simoiatinvesti-
gations have shown that, in practice, Theorem 1 is still validn if the random
vectors(;’ are Gaussian random vectors, despite the fact that such eelines
not satisfy the aforementioned technical conditions. o

Remark 3 As already noticed in section |, the CAO algorithm require$yam
local approximation of the unknown functigh and as a result the lower bound
L has not to be large (as opposed to methods that construct latjpproxi-
mation of the unknown functiaf). Although, there exist no theoretical results
for providing the lower bound. for the size of the regressor vector practical
investigations on many different problems indicate thattfie choice of the re-
gressor vectors according to Remark 1 such a bouritkipiumber of variables
being optimized by CAQ]; see (Kosmatopoulos et al., 2007&bspoulos, 2009,
Kosmatopoulos and Kouvelas, 2009) for more details. o

2Please note that the family of “discontinuous functionshvatfinite number discontinuities”
corresponds to the family of functions that can be approtechavith arbitrary accuracy by con-
tinuous ones (Jin et al., 1995). For instance, terrains dighontinuities along e.g., a closed or
open curve belong to this family of functions and so do theesponding functiong’ andC.

10



Remark 4 As an alternative to the CAO approach, the SPSA approach I(Spal
1992) may be employed in multi-robot coverage applicatiohscording to the
SPSA approach, the robot positions/poses are updated @iogpto

e =20+ G, if k is even
o, =2l g if ks odd (2.:9)
k+1 = T Tk RO
k-1

whereg‘,j) are zero-mean, unity-variance random vectors ghdy, are slowly
decaying sequences (similar as the sequenge The SPSA algorithm is com-
putationally simpler than the CAO one, but it does not perfasnefficient as
the CAO approach as have been demonstrated in a variety obappes, see
(Kosmatopoulos et al., 2007, Kosmatopoulos, 2009, Kogmatos and Kouve-
las, 2009). However, extensive simulation experiments Hawenstrated that a
hybrid scheme which uses SPSA at the first 10-20 time-stegb@mgwitches to
the CAO algorithm can have significant improvements over sekéhat employ
only the CAO algorithm. This is due to the fact that CAO, at iisahsteps, may
preserve a poor performance because it takes some itestooithe CAO estima-
tor (2.5) in order to come up with a reliable estimatgof the unknown coverage
functionJ . o

Remark 5 We close this section by mentioning that similarly to theppsed ap-

proach, global optimization methods such as simulated alimge and genetic
algorithms do not require that the explicit form of the fuoot7 is known. How-

ever, simulated annealing, genetic algorithms and othemilar global optimiza-

tion methods require that a large amount of different corabaons of robots’ po-

sitions is being evaluated all over the robots’ applicatiea. Such a require-
ment renders these methods practically infeasible as a hugsunt of time and
energy would have to be spent in order for the robots to visityrdifferent loca-

tions all over their application area. Nevertheless, atténgpto globally optimize

surveillance coverage is practically infeasible as it isiR-hard problem whose
solution requires dense discretization over the spacelgcasible team configu-
rations and evaluation of all points of the discretized space o

Il CAO for 3D Multi - Robot Coverage over Un-
known Terrains

[11.1  Problem Definition

In our previous work (Renzaglia et al., 2010, 2011) we haverestvely described
the case of using the CAO approach for maximizing the mordtarea in a given
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region by using a team of mobile robots in the 2D plane, wittaoy assumption
on the topology of the environment. In this section we wiltezd our approach
to the case of robots living in a 3D environment and havingdfieentation.

Consider a team a#/ flying robots that is deployed to monitor an unknown
terrain7. Let z denote the unknown height of the terrain at the péint/) and
assume for simplicity that the terraih is rectangular along ther, y)-axes, i.e.,
Tomin < T < Tonazs Ymin < Y < Ymae- LELP = {20} denote the configuration
of the robot team, where” denotes the position of theth robot. We will say
that a pointy = (z,y, z) of the terrain is visiblef there exists at least one robot
so that

¢ the robot and the pointare connected by a line-of-sight;

¢ the robot and the poinf are at a distance smaller than a given threshold
value (defined as the maximum distance the robot’s sensdiseat)).

Given a particular team configuration, we let) denote thevisible areaof
the terrain, i.e.) consists of all pointg € 7 that are visible from the robots. We
will assume that the robots are equipped with visual sertsgether with inertial
sensors and/or range sensors; in other words, for eacthevmint we will assume
that the team is able to estimate the terrain’s height atpiist. A possible way
to deploy a robot team satisfying the above, is by using tendlooking-camera-
equipped flying robots of (Bloesch et al., 2010, Weiss et 8102 which employ
the monocular SLAM algorithm of (Klein and Murray, 2007).

The main objective for the robot team is to maximize the \es#drea)’. How-
ever, this cannot be the only objective for a robot team inve@ge task: trying
to maximize the visible area will simply force the robots lionb as high a$their
visibility threshold allows for. For this reason, while niamzing the visible area
is the primary goal of the mission, the team members shoutiEpéyed so that
for every point in the terrain, the closest robot is as claspassible to that point.
In other wordsamong all possible configurations that maximize the visioéa
V), the robot team should converge to the one that keeps as amptissible the
average distance between each of the robots and the terrbarsa the particular
robot is responsible fogvhere the subarea of the terrain thh robot is respon-
sible for is defined as the part of the terrain that (a) is \esldy the:-th robot and
(b) each point in this subarea is closer to thh robot than any other robot of the
team. Attempting to keep the robots as close as possibleeteubarea they are
responsible for is necessary for two practical reasondirgdly, the closer is the
robot to a point in the terrain the better is, in general,étssing ability to monitor

3Note also that in the ideal case where there are no limitdi®rabot’s maximum height and
the robot has unlimited sensing capabilities, it sufficdsaee a single robot at a very high position
to monitor the whole terrain.
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this point and (b) secondly, in many multi-robot coveragpliapations there is the
necessity of being able to intervene as fast as possibleyifaie points of the
terrain with at least one robot.

Having the above reasoning in mind, we define the followinglocmed ob-
jective function the robot team has to minimize:

J(P):/ min ||z® — ¢||?dg + K dq (3.10)
qevie{l ,,,,, M} qe€T—V

whereK is a user-defined positive constant dnd| denote the Euclidean norm.
The first of the terms in above equation is the usual cost fomaonsidered in
many coverage problem for known 2D environment related ¢osttond objec-
tive (minimize the average distance between the robotstandubarea they are
responsible for, see (Céd et al., 2004)). The second term is related to the invis-
ible area in the terrain/{ dq is the total part of the terrain that is not visible
by any of the robots).

The positive constank’” serves as a weight for giving less or more priority to
one of the objectives. For instance, in the case wliére 0, we will have that
the robots, in their attempt to minimize their average dis¢ato the subarea they
are responsible for, may also seek to minimize the totabld@sarea. It has to be
emphasized that the positive constanshould be chosen sufficiently large so that
the second term in (3.10) dominates the first term unless amegligible part of
the terrain remains invisible. In this way, minimization(8t10) is equivalent to
firstly making sure that all, or almost all, of the terrain isible and then to locate
the robots so that their average distance to the subareatbegsponsible for is
minimized. However, choosing a value far so that the second term in (3.10)
dominates the first term is not straightforward unless thaiteis known. Later
in this section we will comment further on how to choose thepeeterk for the
particular setup considered in this paper. Please alsotinatevhether the CAO-
based algorithm employing a large converges to negligible or non-negligible
invisible areas depends on the number, the sensing cdjgabdind maximum
height constraints of the robots as well as the terrain’spierity.

The second terr’gfqu_v dq in (3.10) cannot be, in general, computed in prac-
tice; as this term involves the part of the terrain that is cwtently visible, its
computation requires that the geometry of this part is knowaquivalently — as
the invisible part changes with the evolution of the teamisfiguration — that the
whole terrain is known. To overcome this problem, insteathfimizing (3.10)
the following performance index is actually minimized bg t6AO approach:

€TV

J(P) = / min |\:c<i>—q|y2dq—f(/ dq (3.11)
q ¥ qeV

ey i€{l,..M
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To see that minimization of (3.11) and (3.10) is equivalgriease note that
fqufv dg = fqu dq — fqev dg and the integrafqu dgq is constant.

Throughout the above analysis, the assumption had “sufficiently large”
was made. If such an assumption does not hold, the argunresesrpied above do
not hold either. Therefore, the question that naturallgesiis what is a value for
K that is sufficiently large so that these arguments hold. Asrg large choice
for K (e.g., K = 10') can lead to numerical instability problems [switching-
like performance for the algorithm when the numericallyaputed invisible area
switches from small values to zero], a guide on how to chdos® that such in-
stability problems do not occur should be provided. Extemsimulations with all
set-ups considered in the next section (IV. Simulation Resahd with different
values forK indicate that it suffices to choogé to be3 — 50 times the parameter
h..a IN Order to get an efficient performance, where the paranigtgr can be
calculated as follows: let

whereZ(z, y) denotes the indicator function that is equal ibthe pointq belongs
to the invisible area of the terrain and is zero, otherwiseother words, the term
g(P) would correspond to the total invisible area, if the unkndemain points
(x,y, z) were replaced byz, y, 1), i.e., if the whole invisible area were flat. Then
the parametet,,,,. is calculated according to

_sup f(P)

i.e., hnqe COrresponds to the maximum possible valueffoP) (over all possible
feasible team configurations) divided by the maximum vaheeibvisible-area-
term g(P) can take. Theup g(P) is equal to the terrain’s area along the y)-
axes, i.esup §(P) = (Tmaz — Tmin) Ymaz — Ymin)- ON the other hand an estimate
of the termsup f(P) can be produced by running extensive simulations with ran-
domly generated terrains and randomly generated teamfgyooations. Figure
1 shows the time-histories of the terrfiP) and g(P) for different choices for
K and for one of the scenarios described in the simulationsose@more pre-
cisely, for the scenario described in section 1V.2.2). Fis particular scenario,
we have thasup f(P) ~ 1000 andsup g(P) = 100 and thus the parameter
h.q CaN be estimated to be aroun@ As exhibited in Figure 1, the CAO-based
algorithm converges to negligible invisible areas for alues of K’ satisfying
K € [3hmaz, 50fmas] = [30,500].
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Figure 1: Time-histories for the term&P) = [ ., minieq oy [|2® — g[*dg
(upper plot) andj(P) = fqu_V Z(x,y)dxdy (lower plot) for different values of
the paramete: K = 5 (red), K = 30 (black), KX = 100 (blue) andK = 500

(green).

[11.2  Algorithm Implementation

An efficient trajectory generation algorithm for optimahvesage must make sure
that the physical constraints are also met throughout th@emmulti-robot cov-
erage application. Such physical constraints include abatnot limited to, the
following ones:

e The robots remain within the terrain’s limits, i.e., within,,;,,, ,,...] and
[Ymin, Ymaz) IN the x— andy-axes, respectively.

e The robots satisfy a maximum height requirement while theyndt hit
the terrain, i.e., they remain withi + d, z,,...] along thez-axis, whered
denotes the minimum safety distance (along4faxis) the robots’ should
be from the terrain and,,,, denotes the maximum allowable height for the
robots.

e The robots do not come closer to the other ones than a minimomaddle
safety distancé,..

It is not difficult for someone to see that all the above caists can be easily
cast in the form (2.3) and thus can be handled by the CAO algorit

Having defined the optimization problem, a fundamental {pmna good be-
havior of the CAO algorithm is an appropriate choice of thefaf the regressor
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vectorg, introduced in equation (2.5). As mentioned in remark lesshdifferent
choices for its explicit expression are admissible. Howeweall different tests
for the particular application treated in this paper, it i@snd that it suffices to
choose the regressor vector as follows:

1. choose the size of the function approximatdao be an odd number;
2. select the first term of the regressor veetdo be the constant term;

3. select randomly the nexi. — 1)/2 terms of¢ to be any 2nd-order terms
of the formz{ - 17 [with a,b € {1,... dim(z®)},i,j € {1,..., M}
randomly-selected positive integers];

4. selectthe lastL—1)/2 terms of¢ to be any 3rd-order terms of the forrff -
2 a9 [with a,b,c € {1,..., dim(z®)}, 4, k,j € {1,..., M} randomly-
selected positive integers].

Once the regressor vectpas been set and once the values of the cost func-
tion (3.11) are available for measurement at each time gteppossible to find
at each time step the vector of parameter estimatesd thus the approximation
of the cost functionfk. The other important choice in order to assure the conver-
gence of the algorithm is the expression of the sequenceefined in equation
(2.7). A typical choice for such a sequence is given by

«

. —

whereq is a positive user-defined constant and (0, 0.5).

Remark 6 Please note that the CAO algorithm’s computational requeets are
dominated by the requirement for solving the least-squareslem (2.6). As the
number of free parameters in this optimization probleny,isnost popular algo-
rithms for solving least-squares problems have, in the wease,O(L?) com-
plexity (polynomial complexity with respect £9. Furthermore, as it suffices to
choosel around2M x dim (x,(j)) (see Remark 3) we have that the computational

requirements of the proposed algorithm are, at méxt)/?). o

IV  Simulation Results

To evaluate the efficiency of the proposed approach, seseealarios were con-
sidered with the use of a simulated robot team which was alvtet/e freely at the
3D plane. In all cases studied, the team was homogeneougxdatily the same
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monitoring capabilities. This assumption has been madsifoplification pur-
poses and easier comprehension of the results. The mainraiotsimposed to
the robots are that they remain within the terrain’s limis,, within [z,,;,, ]
and[Yumin, Ymaz) IN thez— andy-axes, respectively. At the same time they have to
satisfy a maximum height requirement while they do not hettigrrain, i.e., they
remain within[z + d, z,,...] along thez-axis. The scenarios considered are terrains
with obstacles with same or uneven heights, while for eachascedifferent val-
ues of the parameter which is responsible for the convergence of the algorithm
were tested. Apart from the simulated terrains, a reakstamario was considered
by using a map of a real area (Weiss et al., 2010), extractédtiae methodology
described in detail in (Bloesch et al., 2010).

In all experiments reported next, the following choiceseverade for the al-
gorithm’s implementation:

e The CAO parameterd/ (number of next candidate robots’ positions) and
L (size of approximatop) were set equal t6M and6M + 1, respectively,
whereM denotes the robot team’s size, while the approximatwas calcu-
lated as described in the previous section. Please notththabove choices
for N, L and¢ are in accordance to Theorem 1 and Remark 3; moreaver,
was set equal t6M + 1 as it has to be an odd number.

e The parametefs in the cost criterion (3.11) was set equal3® which
satisfiesK” € [10A,42, 50l ] fOr all terrains and team sizes considered in
the simulations (see section Ill.1 for more details on thapeters,, .. ).

e The parameted (minimum allowable distance from the terrain) was set
equal to0.1, while the robot’s were assumed to have unlimited visipilit

¢ Different choices for the parameters,. (maximum allowable height) and
a (magnitude of next candidate robots’ positions) were madbese pa-
rameters are the most crucial for the algorithm’s perforcean

¢ Finally, with the exception of the experiments reportedvid ithat involve
teams oft0 and20 robots, in all other cases the team comprised 4 robots.

IV.1 Areas with same height obstacles

The first case considered, studies an area sizes 10 by 10smelech includes a
surface with seven same height randomly placed obstacteshis area, several
scenarios were tested with the robot team starting fronemfft initial positions

and heights. In all cases considered the robots had toysatigsfaximum flight

height requirement while they did not hit the terrain.
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IV.1.1 Scenariol

In the first scenario studied, all the team members were glatstarting points
adjunct to each other, with initial height 0.6 meters. Theimam allowed flight
height was 1 meter for all robots. Different values of theregpionn were tested
for the case olv = 0.3,0.5,1 and the respective cost functions are presented
in Fig. 2. The initial position folRobot 1was (0.18,0.2,0.6), of Robot 2was
(0.19,0.2,0.6), of Robot 3was(0.2, 0.2, 0.6) and ofRobot 4was(0.21,0.2,0.6).

In Fig. 3 successive snapshots of different positions ofdhet team for the case
of « = 0.3 are presented (different color corresponds to differesrntenember).
The final configuration in all three test cases is present&aynd. In Table 1 the
percentage of the initial and final coverage of the area ragttin all three cases,
is presented. It's worth mentioning that the coverage peacge is depended on
several factors apart the optimization algorithm i.e. #m@sers that might be used
in areal implementation. It should be noted that CAO does omterge always to
the same swarm configuration, but it converges always to aswanfiguration
with similar coverage characteristics which correspondsnilar final J value.

Table 1: Coverage percentage in the case described in IV.1.1.

(% of Coverage)
a 0.3 \ 0.5 \ 1

Initial Configuration 34.58

Final Configuration|| 97.06] 97.49| 98.59

IV.1.2 Scenario 2

In the second scenario studied, the initial positions ofrtmts were foRobot 1
(9.18,0.2,0.4), for Robot 2(9.19, 0.2, 0.4), for Robot 3was(0.2,0.2,0.4) and for
Robot 4was(0.21,0.2,0.4), while the maximum allowed flight height remained
the same (1 meter). Different values of the expressiavere tested for the case
of o = 0.3, 0.5 and the respective cost functions are presented in Fig.tébla 2
the percentage of the initial and final coverage of the areaitor@d in both cases
is presented.

Table 2. Coverage percentage in the case described in IV.1.2.
(% of Coverage
! 0.3 \ 0.5
Initial Configuration 48.71
Final Configuration|| 98.56] 97.04
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Figure 2: Cost Functions far = 0.3, 0.5, 1, in the case described in IV.1.1.

IV.2 Areas with uneven obstacle height

The second case considered, studies an arealsifgsl 0 meters, which includes
a surface with seven randomly placed obstacles with uneggyht)y with maxi-

mum value2 meters. In this test case we have tested several scenatloshei

robot team starting from different initial positions anddigs. In all cases con-
sidered the robots had to satisfy a maximum flight heightirequent while they
did not hit the terrain.

IV.2.1 Scenariol

In the first scenario studied for the case of areas with unebstacle heights,
all the team members were placed at starting points adjoneat¢h other, with
initial height 0.2 meters. The maximum allowed flight heigids 1 meter for
all robots. The initial positions oRobot 1was (0.18,0.2,0.2), of Robot 2was
(0.19,0.2,0.2), of Robot 3was(0.2, 0.2, 0.2) and ofRobot 4was(0.21,0.2,0.2).
Different values of the expressianwere tested for the case of= 0.3,0.5, 1 and
the respective cost functions are presented in Fig. 7. Thédonfiguration in all
three test cases is presented in Fig. 8, while in Table 3 treeptage of the initial
and final coverage of the area monitored in all cases, is prege
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Figure 3: Successive snapshots of different positions @frdivot team forr =
0.3, in the case described in IV.1.1.
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Figure 6: Cost Functions fer = 0.3, 0.5, in the case described in IV.1.2.
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Table 3: Coverage percentage in the case described in IV.2.1.

(% of Coverage)
! 0.3 \ 0.5 \ 1

Initial Configuration 29.78

Final Configuration|| 98.29] 97.76] 96.35
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Figure 8: Final positions of the robotic teams for= 0.3 (blue markers)y = 0.5
(red markers)q = 1 (green markers), in the case described in IV.2.1.

IV.2.2 Scenario 2

In the second scenario studied for uneven surfaces, thenmaxiallowed flight
height was 5 meters for all robots. Different values of theregsiony were tested

for the case ofr = 0.3,0.5, 1 and the respective cost functions are presented in
Fig. 9. In Fig. 10 successive snapshots of different passtiaf the robot team for
the case otv = 0.3 are presented (different color corresponds to differesmte
member). The initial position oRobot 1was (0.18,0.2,0.4), of Robot 2was
(0.19,0.2,0.4), of Robot 3was(0.2,0.2,0.4) and ofRobot 4was(0.21,0.2,0.4).

In table 4 the percentage of the initial and final coverag@efarea monitored in

all cases, is presented.
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Table 4: Coverage percentage in the case described in 1V.2.2.

(% of Coverage)
! 0.3 \ 0.5 \ 1

Initial Configuration 29.78

Final Configuration|| 99.14] 98.69| 98.36
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Figure 9: Cost Functions far = 0.3, 0.5, 1, in the case described in IV.2.2.

IV.3 Cave-like Surface

In the above described set-up and proposed simulationsjrfgalicity’s sake we
assumed that the unknown terrain is defined as a set of umiglezs(z, v, z), that
is, for each(x, y) the terrain is defined by a uniquepoint, i.e. z = f(z,y). In
realistic applications there exist cases where there maydre than one-points
(e.g., cases of terrains with buildings, overhangs, ledgages, etc). Here we
present a similar scenario to show how our method can beeapalso for these
cases. The simulated environment is a gaussian with a cgvel(f). The robots
start their mission on the other side with respect to the cswveat the beginning
the it is not visible. Start and final robots’ positions arewh in fig. 12. In fig.
13(a) the behavior of the cost function is presented and inlf&gb) it is shown
also the percentage of the invisible surface during the. tisiks possible to see
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Figure 11: A different scenario: the environment is a gaarssiith a cave.
that it is minimized until everything is visible.

IV.4 Scalability Issues

To validate the efficiency of our approach in the case of biggbot teams, we
have performed experiments with teams consisting of 10 @&h@mbers. Our
experiments were performed in an area sizes 20 by 20 metaishuncludes

a surface with fifteen uneven height randomly placed obssaclhe maximum
flight height was set to be 2. The basic difference as far amiterns the compu-
tational requirements in the experiments conducted wightélams of 10 and 20
robots, was that the parametdrand NV increase linearly according to Theorem
1 and Remark 3; therefore = 61 and N = 60 in the case of the team with 10
members and. = 121 and N = 120 in the case of the team with 20 members.
In the case oft robots the best values ¢f are around 15 which is significantly
larger than the values obtained with the bigger teams. InFdhe cost functions
for the case ofl0 and20 robots are presented, while in Fig. 15 we present their
final configuration. In table 5 the percentage of the initiad dinal coverage of
the area monitored for a team with 10 & 20 members is presented

IV.5 Birmensdorf area

To validate our approach in a realistic environment, we ukedlata which were
collected with the use of a miniature quadrotor helicoppercgally designed for

26



y (m)

X (m)

(@) (b)

Figure 12: The team is composed by four robots. Red squareblacki circles
represent initial and final positions respectively.
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Figure 13: Fig. (a) shows the behavior of the cost functionnduthe task, fig.
(b) the percentage of invisible surface. At the end evengtlis visible.
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Table 5: Coverage percentage with teams of 10 & 20 members.

(% of Coverage)
Team size 10 Members 20 Members
Initial Configuration 39.62 42.93
Final Configuration 86.33 90.78

the needs of the European project sFLY (www.sfly.org). Thieda correspond to
the Birmensdorf area presented in Fig. 16. The area was majgiegl a state-
of-the-art visual-SLAM algorithm which tracks the pose lo¢ tamera while, si-
multaneously, autonomously, building an incremental nfapesurrounding en-
vironment. The area mapped using the aforementioned mathgpdcorresponds
to the bounded part of Fig. 16. More details about the dataladethodology
used, are presented in (Bloesch et al., 2010) and (Weiss €040). The main
constraints imposed to the robots are that they remainmnvitie terrain’s limits,
i.e., Within [Z,,in, Tmaz] @NA[Ymin, Ymaz] IN thez— andy-axes, respectively. At the
same time they have to satisfy a maximum height requireméitehey do not
hit the terrain, i.e., they remain withia + d, z,,,..| along thez-axis. The value of
a was equal td).3. Several initial configurations for the robot team wereddst
In Fig. 17 the cost function of an illustrative scenario isggnted, while the final
configuration of the team (for the same scenario) is displayédy. 18 (3D view)
and in Fig. 19 (2D side view). The initial coverage wkis49% while the final
coverage was8.55%. In table 6 the final coverage percentage for differentahiti
configuration in the Birmensdorf area, is presented.

Table 6: Coverage percentage for different initial configorain the Birmensdorf
area.

(% of Coverage)
Test Case 1 2 3 4 5
Initial Configuration|| 44.49| 40.49| 21.41| 57.88| 56.81
Final Configuration|| 98.55| 99.52| 98.53| 98.94| 99.56

V Discussion and Conclusions

A new method for dealing with the problem of performing suitaace coverage
in unknownterrain of complex and non-convex morphology has been @@gho
The proposed approach has the following key advantages:

e it does not require any a priori knowledge on the environment
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Figure 16: Outdoor flight path through the Birmensdorf area.

¢ it works in any given environment, without the necessity @kmany kind
of assumption about its topology;

e it can incorporate any kind of constraints;

e it does not require a knowledge about these constraints ey are learnt
during the task execution;

e its complexity is low allowing real time implementations.

The advantages of the proposed methodology make it suifableal im-
plementations and the results obtained through numeiiailations give us the
motivation to adopt the CAO also in other frameworks. We aterested into
formulating the same problem in a distributed manner by qusiififerent cost
functions for the robots in the team. This approach is cléseeal world ap-
plications since it will not depend into a centralized sckenith all the known
disadvantages. Apart from that a decentralized approaktialew us to include
communications constraints. We are also interested irrfiozating more realis-
tic constraints including sensor limitations. Our aim id&velop a strategy for
the surveillance of an unknown urban-like environment waitteal MAV swarm.
Furthermore, we are interested in enhancing the proposétbawogy in order
to be able to deal with cases where the team converges to ga@iion that fails
to cover the entire terrain. It is worth noticing, that altigh in the3 D case treated
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Figure 17: Cost function for a robotic team performing sutaece coverage in
Birmensdorf area.

here we have never encountered such cases there is alwgyasibility (due to
the local convergence properties of the algorithm) for tleghmdology to fail to
cover the overall area. As a matter of fact, such cases havedm®untered in
the 2D version of the algorithm reported in (Renzaglia et al., 20@,1) and
an extension/enhancement of the proposed methodologyugeddo efficiently
deal with such cases.

Furthermore, we expect that many important tasks in mobietics can be
approached by CAO-based algorithms: for example coordinatploration, op-
timal target tracking, multi-robot localization, and sa drhis is basically due to
the fact that the CAO approach does not require an a priori lauye of the envi-
ronment and it has low complexity. Both these issues are fuad&hin mobile
robotics.
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