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Asymptotic behavior of splitting schemes involving

time-subcycling techniques

Guillaume Dujardin∗ Pauline Lafitte†

Abstract

In order to integrate numerically a well-posed multiscale evolutionary problem such as a Cauchy problem for an ODE
system or a PDE system, using time-subcycling techniques consists in splitting the vector field in a fast part and
a slow part and taking advantage of this decomposition, for example by integrating the fast equation on a much
smaller time step than the slow equation (instead of having to integrate the whole system with a very small time
step to ensure stability for example). These techniques are designed to improve the computational efficiency and
have been very widely used for designing schemes, that may have (at least) one component that has to be computed
through an explicit scheme thus constrained by a limitation of the time step (CFL). In this paper, we study the
long time behavior of such schemes, that are primarily designed to be convergent in short-time to the solution of the
original problem. We develop our analysis on ODE and PDE toy-models and illustrate our results numerically on
more complex systems.

1 Introduction

Time-subcycling is a way to speed up computations for a multiscale problem by splitting the underlying
operator and treating the different steps of the resulting numerical scheme with adapted time-steps. Our
aim is to determine how appropriately the subcycling techniques capture the right asymptotic state for
continuous dynamical systems described by ODEs or PDEs, the solutions of which converge to a steady
state as time goes to infinity. In order to save computational time, the subcycling techniques have been very
widely used for schemes associated with multiscale systems, that may have (at least) one component that has
to be computed through an explicit scheme thus constrained by a limitation of the time step (CFL) [2, 10, 4].
Related local time-stepping techniques have been developed extensively for multiscale problems arising in
computational fluid and structural dynamics [17, 7, 8]. Simulating transport or diffusive phenomena in the
presence of complex geometries requires local mesh refinement, that imposes the use of finite element or
discontinuous Galerkin methods, and an ever larger number of steps if the chosen scheme is explicit, due to
the CFL condition, or the inversion of large matrices if an implicit scheme is preferred in order to alleviate
the time step restriction. The local convergence of these methods has been established in a variety of cases
(see [9, 11, 12] and references therein).
The applications we have specifically in mind are related to the recent development of the “asymptotic-
preserving” schemes in the sense of Jin [14, 15] for kinetic equations. Splitting systems with respect to
suitable timescales was indeed proved efficient for Boltzmann-type and Fokker-Planck equations by way of
micro-macro decompositions [10, 16, 5, 4]. However, if subcycling techniques have been used in several test-
cases, up to our knowledge, the asymptotic error to the long-time solution has never been precisely analyzed.
Note that the computation of the iterated numerical solutions of the fast equations required by subcycled
schemes could be computed using for example multi-revolution composition methods (see for example [3, 6]),
even if we will not use these techniques in this paper. We aim here at studying the convergence (error

∗INRIA Lille Nord Europe, EPI SIMPAF & Laboratoire Paul Painlevé, Université Lille Nord de France, CNRS UMR 8525
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estimates and rate of convergence) of subcycled schemes and comparing them to non-subcycled schemes in
simple situations. In particular, we exhibit the remarkable and unexpected asymptotic behavior of some
Strang splitting schemes, which approximate better the solution in long time than locally predicted, in the
spirit of the asymptotic high-order schemes developed by Aregba-Driollet, Briani and Natalini [1].

We develop our analysis on several examples which write as autonomous Cauchy problems of order one in
time with a fast and a slow component in the vector field. For every example, we introduce several schemes,
with and without splitting, we perform numerical experiments on the long-time behaviour of the proposed
schemes, and we provide the reader with a mathematical analysis of the numerical results. This paper is
organized as follows. Sections 2 and 3 are devoted to two different examples of differential systems with two
different time scales, in the spirit of the analysis of the Dahlquist equation when studying the asymptotic
stability of schemes for stiff ODEs [13] and of the analysis led by Temam [18]. Both systems have exact
and explicit solutions so one can do any computation and estimate involving the exact flows. The first one
(analyzed in Section 2) is linear and reads1

{
u′ = −Nc(u− v)

v′ = c(u− v),
(1)

where c ≥ 0 and N ∈ N, with N being large: it is the stiffness parameter in the problem. The second system
(analyzed in Section 3) is nonlinear and reads2

{
u′ = −Nc(u− v)−N(u− v)2

v′ = c(u− v) + (u− v)2.
(2)

For the numerical solutions of the linear system (1), we consider linear splitting schemes between the fast
(i.e. first) equation of the system and the slow (i.e. second) equation. Therefore the numerical schemes will
always lead to a product of matrices of the form

Mf (λf ) :=

(
λf 1− λf
0 1

)
and Ms(λs) :=

(
1 0

1− λs λs

)
. (3)

The expressions of the parameters λ will depend on the choice of integrator (exact flow or θ-scheme) and the
composition of the matrices will depend on the type of splitting one wants to use (Lie or Strang type). We
introduce the concepts of asymptotic error and asymptotic order (see Definition 2.3), and prove properties
about the asymptotic orders of the schemes (see Propositions 2.5 and 2.6) which are illustrated by several
numerical experiments. We comment on the differences between schemes with and without subcycling. In
Section 4, we perform the same kind of analysis in an infinite dimensional setting for a 1D linear coupled
reaction-diffusion system. For this problem, the boundary conditions play a crucial role in the existence of at-
tractive equilibrium states. We focus on two cases of boundary conditions (homogeneous and inhomogeneous
Dirichlet conditions). For a numerical point of view, we have to take into account the spatial discretization3

and the long-time behavior of the schemes is to be analyzed also with respect to the spatial discretization pa-
rameter. For homogeneous boundary conditions, we introduce a subcycled Lie-splitting scheme, we address
the question of the rate of convergence towards the equilibrium state (see Theorem 4.4) and we compare
this rate to that of the exact solution (see Theorem 4.2). For inhomogeneous Dirichlet boundary conditions,
we compare several linear splitting schemes with and without subcycling and we address the question of
the asymptotic error which depends on both the time and space discretization parameters. For the subcy-
cled Lie-splitting scheme, we prove that the asymptotic equilibrium state of the scheme is a uniform-in-δt
second order L2-approximation of the exact asymptotic equilibrium state under a CFL-like condition (see
Theorem 4.7).

1 From the dimensional point of view, c is homogeneous to the inverse of a characteristic time.
2 Any solution of system (1) or system (2) satisfies u′+Nv′ = 0. Hence the corresponding trajectory is included in a straight

line of slope −1/N in the phase space Ru × Rv .
3 In fact, the stiffness parameter depends on the mesh.
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2 Full analysis of the linear system

2.1 The exact solution

Let us compute the exact solution of (1). We consider the matrix

A =

(
−N N
1 −1

)
.

It is diagonalizable and its eigenvalues and associated spectral projectors are

(−(N + 1), P = −A/(N + 1)) and
(
0, Q = (1, 1)t (1, N)/(N + 1)

)
.

So the exact solution is, for all t ∈ R,

W (t) := (u(t), v(t))t =
(
e−(N+1)ctP +Q

)
(u0, v0)t

for the initial values u0 and v0 at time t = 0. In particular, we note that all the solutions converge to the
equilibrium state Q(u0, v0)t when t tends to infinity. In the following, we fix T > 0 and we define

FT = e−(N+1)cTP +Q, (4)

the eigenvalues of which are e−(N+1)cT and 1.

2.2 General properties of linear splitting schemes

Let Gδt be defined for δt ∈ IN as the 2-by-2 matrix of a numerical flow which is a product of matrices of
the form (3), where IN is the intersection, that may depend on N , of the stability intervals of the related
schemes (see examples in Section 2.3). In the following, for all n ∈ N, we will denote by

Wn := (un, vn)t = Gn
δtW

0,

the numerical solution at time nδt starting from the initial datum W 0 = (u0, v0)t.

Lemma 2.1: For all δt ∈ IN , the matrix Gδt is diagonalizable, with two distinct real eigenvalues. One of
these eigenvalues is 1 and the other one lies in (0, 1). The vector (1, 1)t is an eigenvector of Gδt associated
to the eigenvalue 1. Hence the matrix Gδt reads

Gδt =

(
1− α(δt) α(δt)
β(δt) 1− β(δt)

)
, (5)

for two real-valued functions α and β. Moreover, the spectral decomposition of the matrix Gδt reads

Gδt = µ(δt)P (δt) +Q(δt), (6)

where P (δt) is the matrix of the spectral projector of Gδt associated to the eigenvalue µ(δt) = 1−α(δt)−β(δt)
and Q(δt) is that associated to the eigenvalue 1. In particular,

Q = (1, 1)t (β, α)/(α+ β). (7)

Remark 1: We will sometimes use in the following the notation G[α, β] in reference to (5).

Proof. Since all the matrices Ms and Mf have (1, 1)t for eigenvector associated with 1, so does any (finite)
product of such matrices and this explains the form of the matrix Gδt in (5). Moreover, since all the matrices
Ms and Mf also have their other real eigenvalue in (0, 1), the determinant of a product of such matrices is in
(0, 1). Hence for all δt ∈ IN , Gδt is diagonalizable with eigenvalues 1 and µ(δt) = Tr(Gδt)− 1 = det(Gδt) ∈
(0, 1).

With Lemma 2.1, we can show that the exact and numerical propagators share an interesting property:
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Fig. 1: Evolution of the exact and numerical solution in the phase space Ru ×Rv. We note Wn = (un, vn)t.

Proposition 2.2: For any fixed δt > 0, Fn
δt = Fnδt projects the vector (u

0, v0)t onto the line of equation u = v
when n tends to infinity and so does Gn

δt for all δt ∈ IN .

Proof. The projection property for Fnδt as n → +∞ relies on the decomposition (4). Using Lemma 2.1,
we get ∀n ∈ N, Gn

δt = (µ(δt))nP (δt) +Q(δt), with |µ(δt)| < 1 and the result follows.

Let us denote those limits (which depend on δt)

(u∞num, v
∞
num)

t = lim
n→+∞

Gn
δt(u

0, v0)t and (u∞ex, v
∞
ex)

t = lim
n→+∞

Fn
δt(u

0, v0)t.

Let us define S(δt) as the ratio α(δt)/β(δt). Since ∀t ∈ R, u(t) + Nv(t) = u(0) + Nv(0), and ∀n ≥ 0,
un + S(δt)vn = u0 + S(δt)v0, the asymptotic error (u∞num, v

∞
num)

t − (u∞ex, v
∞
ex)

t = (Q(δt)−Q)(u0, v0)t can be
measured as the difference of the slopes of the two straight lines u + Nv = u0 + Nv0 and u + S(δt)v =
u0 + S(δt)v0 (see Figure 1).

Therefore, we set the following

Definition 2.3: The relative asymptotic error is the scaled difference

ε∞ =
|S(δt)−N |

N
,

and we say that the asymptotic order (A-order) is at least p ∈ N
⋆ if when δt tends to 0, we have

ε∞ = O(δtp).

Of course, as usual, the A-order is the supremum of the set of such p.

Our first result is the following

Theorem 2.4: Let Gδt be defined for δt ∈ IN , associated with a discretization of (1) and assume that it is a
product of matrices of the form (3). If the local order of Gδt is at least p+14, then its A-order is at least p.

Proof. Since the numerical flow Gδt has local order p+ 1, its difference with the exact flow Fδt reads

Gδt − Fδt =

(
1− α(δt) α(δt)
β(δt) 1− β(δt)

)
− e−(N+1)cδtP −Q = O(δtp+1).

This implies the following Taylor expansions for α and β:

α(δt) = (1− e−c(N+1)δt)(N/(N + 1)) +O(δtp+1) and β(δt) = (1− e−c(N+1)δt)/(N + 1) +O(δtp+1).

4 hence its global order is at least p
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We infer that the slope of the equilibrium state is S(δt) = α(δt)/β(δt) = N +O(δtp).

Now, we define linear splitting schemes for the linear differential system (1), based on the composition
of exact flows of the split vector fields and on θ-schemes discretizing the split equations. We focus on their
asymptotic behavior. We know from Proposition 2.2 and Theorem 2.4 that for all initial datum (u0, v0) ∈ R

2,
the numerical solutions provided by such splitting schemes (assuming they are consistent with equation (1))
converge to an asymptotic state when the numerical time nδt tends to infinity (and δt is fixed). The typical
questions of interest are the following: What is the size of this relative asymptotic error with respect to the
numerical time step δt ? Can we do better than the estimate on the relative A-order provided by Theorem
2.4 ?

2.3 Lie and Strang splitting schemes

Denoting by δt the numerical time step related to the ”slow” equation, the time step associated to the ”fast”
equation is then δt/N . When dealing with slow/fast Lie-splitting methods, one has to choose which equation
will be integrated first: either the slow equation first, and then the fast one (which we denote by FS)5, or the
fast equation and then the slow one (which we denote by SF). Note that, in our very simple linear setting,
the eigenvalues, eigenvectors, spectral projectors, etc of any FS splitting method can be deduced from those
of a SF splitting formula in a way explained in Appendix A and the analysis extends straightforwardly.
Therefore, we restrict ourselves to the study of SF Lie-splitting schemes.

The (exact or numerical) integration of the fast (resp. slow) equation of (2) over a time step δt yields
the flow

Φf,δt (resp. Φs,δt) with matrix Mf (λf (δt)) (resp. Ms(λs(δt))),

with λs(δt) = λf (δt/N). In the following, we may use the superscript θ, which is either a parameter within
[0, 1] of a θ-scheme or θ = ex for the exact solution. This means that




λ
θf
f (δt) =

1−Ncθfδt

1 + (1− θf )Ncδt
; λθss (δt) =

1− cθsδt

1 + (1− θs)cδt
;

λexf (δt) = e−Ncδt; λexs (δt) = e−cδt.

In case θf ∈ (1/2, 1] (resp. θs ∈ (1/2, 1]), we assume that (2θf − 1)cNδt/N < 2 (resp. (2θs − 1)cδt < 2) so

that λ
θf
f (δt/N) ∈ (0, 1) (resp. λθss (δt) ∈ (0, 1)) (the associated schemes are A-stable). The stability interval

IN is the intersection of these domains in δt.

Remark 2: Recall that λ
θf
f (δt) = 1−Ncδt+N2c2(1− θf )δt

2 +O(δt3).

For any functions of δt λf , λs, we consider the following four schemes: given Wn ∈ R
2, we set

• Scheme #1: (Lie type - slow time - subcycled) Wn+1 = G1(δt)W
n where

G1(δt) =Ms(λs(δt))Mf (λf (δt/N))N

• Scheme #2: (Lie type - fast time - no subcycling) Wn+1 = G2(δt)W
n where

G2(δt) = (Ms(λs(δt/N))Mf (λf (δt/N)))
N

• Scheme #3: (Strang type - slow time - subcycled) Wn+1 = G3(δt)W
n where

G3(δt) =Ms(λs(δt/2)) Mf (λf (δt/N))N Ms(λs(δt/2))

5 We chose this notation because of the usual convention on the composition of flows: the first to be applied is written on
the right-hand side of the others.
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• Scheme #4: (Strang type - fast time - no subcycling) Wn+1 = G4(δt)W
n where

G4(δt) = (Ms(λs(δt/(2N))) Mf (λf (δt/N)) Ms(λs(δt/(2N))))
N

Using the notations of Lemma 2.1, we obtain

Scheme #1 α1(δt) = 1− (λf (δt/N))N β1(δt) = (1− λs(δt))(λf (δt/N))N

Scheme #2 α2(δt) = 1− λf (δt/N) β2(δt) = (1− λs(δt/N))λf (δt/N)
Scheme #3 α3(δt) = (1− λf (δt/N)N )[λs(δt/2)]

N β3(δt) = (1− λs(δt/2))(1 + [λf (δt/N)N ]λs(δt/2))
Scheme #4 α4(δt) = (1− λf (δt/N))λs(δt/2) β4(δt) = (1− λs(δt/2))(1 + λf (δt/N)λs(δt/2))

Asymptotic order The above computations enable us to prove the following

Proposition 2.5: A linear Lie-splitting method such as Scheme #1 and #2 has an A-order of at least 1.
Moreover, if it involves two schemes of order at least 2, then its A-order is at most 1. However, it is possible
to build linear Lie-splitting methods of A-order at least 2 involving schemes of order 1.

Proof. The fact that Schemes #1 and #2 have order at least 1 follows from Theorem 2.4. Let us consider
Scheme #1 and assume that we have the following Taylor expansion for λs(δt) and λf (δt/N):

λf (δt/N) = 1− cδt+ c2Afδt
2 +O(δt3) and λs(δt) = 1− cδt+ c2Asδt

2 +O(δt3).

We derive that

S1(δt) = α1(δt)/β1(δt) = N + cN(As −Af + (N + 1)/2)δt+O(δt2).

When the two schemes are of order at least 2, we have Af = As = 1/2, so that the A-order is exactly
1. To build a Lie-splitting scheme such that its A-order is at least 2, one just has to solve the equation
Af −As = (N + 1)/2 for Af and As. A similar computation yields

S2(δt) = α2(δt)/β2(δt) = N + c((1−Af )N +As)δt+O(δt2).

Hence, the choice (Af , As) = (1, 0) leads to a Lie-splitting method of A-order at least 2 with two underlying
methods of order 1.

Remark 3: The crucial point lies in the fact that the linear combination of the derivatives Af and As involves
N in both cases, so that the slow and fast schemes have to be specifically designed with the knowledge of N
if one wants to achieve the second A-order. Let us examine the θ-schemes case. One infers from Remark 2
that (Af , As) = (1−θf , 1−θs). So, as soon as N > 1, one cannot build schemes of type #1 or #2 of A-order
at least 2 with θ-schemes, unless, in Scheme #2, the slow scheme is fully explicit and the fast scheme is fully
implicit. In this very particular case, the A-order is infinite because α2 = Nβ2. Note that, if a fully implicit
scheme is at hand for the fast equation, it seems unwise to use a subcycling technique anyway, since there is
no stability constraint on δt from the fast scheme part.

Proposition 2.6: A linear Strang-splitting method such as Scheme #3 and #4 involving only schemes of order
at least 2 has an A-order of at least 2. Moreover, it is possible to build a Strang-splitting scheme of A-order
at least 2 involving two schemes of order only 1.

Proof. The fact that a Strang-splitting method involving two methods of order 2 is of A-order 2 comes
from Theorem 2.4. Assume we have the same Taylor expansion as in the proof of Proposition 2.5. For
Scheme #3, we have

S3(δt) = α3(δt)/β3(δt) = N +Nc(2As − 1 + 2− 4Af )δt/4 +O(δt2),

and for Scheme #4

S4(δt) = α4(δt)/β4(δt) = N + c(N(2Af − 1) + 2− 4As)δt/4 +O(δt2).
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For example, one can choose (Af , As) = (1/4, 0) to have a Scheme #3 of A-order at least 2 involving two
schemes of order 1.

Remark 4: In contrast to what occurs in the Lie case, the dependence upon N in the Strang subcycled scheme
#3 is decoupled from the combination of Af and As. In particular, in case the fast and slow schemes are
θ-schemes, the above condition 1 − 2As + 4Af − 2 = 0 for Scheme #3 reads 4θf − 2 + 1 − 2θs = 0 so that
we have a fairly natural one-parameter family of couples of schemes of order 1, not depending on N , that
lead to a subcycled scheme (#3) of A-order at least 2. In particular, one can choose to use an explicit Euler
scheme for the slow equation (θf = 1) and a semi-implicit scheme for the fast equation (θs = 1/4) so that the
subcycled Strang-splitting scheme #3 is at least of A-order 2. It is also possible to build a second A-order
scheme #4 with θ-schemes provided one solves 2N(1 − 2θs) + 2θf − 1 = 0. One sees in that case that the
influence of the choice of θf weakens as N increases.

Remark 5: We can exchange the influence of the choices of As and Af in the A-order by Strang-splitting
with the order FSF, that is, by introducing

G̃3(δt) =Mf (λf (δt/(2N)))N Ms(λs(δt)) Mf (λf (δt/(2N)))N ,

G̃4(δt) = (Mf (λf (δt/(2N))) Ms(λs(δt)) Mf (λf (δt/(2N))))N ,

thanks to the computations detailed in Appendix A. The coefficient in front of δt2 is then 4θs−2+1−2θf = 0

(resp. 2(1− 2θs) +N(2θf − 1) = 0) for Scheme #̃3 (resp. #̃4). One concludes easily that it is then possible

to build a #̃3 scheme of A-order 2 with an explicit fast scheme (θf = 1) and a semi-implicit slow scheme

(θs = 3/4). For #̃4 schemes, one notes that the choice of the fast scheme is now the most important.

Convergence rate Let us perform the same analysis on the convergence rate to equilibrium, i.e. the
eigenvalues µi, i ∈ {1, . . . , 4}. We get the following Taylor expansions of ρi(δt) = µi(δt) − e−c(N+1)δt, that
we summarize in the following table in the (Af , As) form:

i (Af , As)

ρ1(δt) c2(N(2Af − 1) + 2As − 1)δt2/2 +O(δt3)

ρ2(δt) c2(N2(2Af − 1) + 2As − 1)δt2/(2N) +O(δt3)

ρ3(δt) c2(2N(2Af − 1) + 2As − 1)δt2/4 +O(δt3)

ρ4(δt) c2(2N2(2Af − 1) + 2As − 1)δt2/(4N) +O(δt3)

One notes at once that second order fast and slow schemes generate a second order approximation of the
convergence rate, (as well as an A-order of 2 for Schemes #3 and #4). Besides, one can manage to construct
a second order approximated rate choosing at least one of the fast and slow schemes to be of order 1, but
the A-order will be exactly 1. The only combination of θ-schemes leading to a second order approximated
rate and of A-order 2 consists in taking the Crank-Nicolson scheme for both the fast and slow schemes, using
the Strang splitting (Schemes #3 and #4). In any case, the choice of the fast scheme plays a greater role

than that of the slow scheme for the approximated rate. As predicted in Appendix A, schemes #̃3 and #̃4
have similar rates of convergence to that of schemes #3 and #4: the choice of the fast scheme is always
predominant.

2.4 Conclusion

Let us remind the reader that the applications we have in mind involve a fast equation for which an implicit
scheme is hard to solve, thus implying the use of an explicit scheme, inducing a stability constraint on the
numerical time-step δt. In that case, the subcycling techniques are computationally less costly, thus relevant.
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We proved in this section that, in view of the aforementioned goal, we can indeed build a scheme of

type #̃3 with θf = 1 (explicit), θs = 1/4 (semi-implicit), which will be of second A-order, even though it is
(locally) consistent of order 1 with (1) and has a rate of convergence which approximates the exact rate at
order 1. It is the only scheme, among the four types described above and involving an explicit resolution of
the fast equation, that achieves a second A-order.

3 Analysis of the nonlinear system

3.1 Analysis of the exact solutions

In this section, we investigate the long time behavior of the two-scale nonlinear system (2). Let us first write
this system in the form {

u′ = −N(u− v)[c+ (u− v)]
v′ = (u− v)[c+ (u− v)].

(8)

This way, we are able to derive the following

Proposition 3.1: Let (u0, v0) ∈ R
2 be given. The maximal solution starting at (u0, v0) lies on the straight

line of equation u+Nv = u0 +Nv0. It is defined for all non-negative time if u0 + c ≥ v0 and it dies in finite
positive time if u0 + c < v0. Moreover, if u0 + c = v0 then the solution is constant, and if u0 + c > v0 then
the solution tends to the intersection of the two straight lines of equations u +Nv = u0 +Nv0 and u = v,
i.e. to the point of coordinates (u0 +Nv0)/(N + 1)× (1, 1).

Proof. The linear change of variable (X,Y ) = (u + Nv, u − v) yields the equivalent differential system
X ′ = 0, Y ′ = −(N + 1)Y (c− Y ). The second equation of this system has for maximal solution starting
at t = 0 in Y 0 ∈ R the function Y (t) = Y 0e−c(N+1)t/(1 + (1− e−c(N+1)t)Y 0/c) defined as long as −c <
Y 0(1− e−c(N+1)t). The result follows from this observation and the fact that the system reads (8).

3.2 Splitting schemes with or without subcycling for the nonlinear problem (2)

Let us recall this result providing an estimate of the order of a splitting scheme (with or without subcycling)
as a function of the order of the underlying schemes and the order of the splitting method.

Theorem 3.2: Let us consider a differential system of the form

{
u′ = Nf(u, v)
v′ = g(u, v),

where f and g are smooth functions from R
2 to R. We denote by ϕe,δt the exact flow of this equation. Let

us denote by ϕf (δt) (respectively) ϕs(δt) the propagators at time δt of the two split equations:

{
u′ = Nf(u, v)
v′ = 0

(resp.)

{
u′ = 0
v′ = g(u, v).

Assume that Sf,δt and Ss,δt are numerical methods of respective orders p and q. Assume that a splitting
method is defined for a1, . . . , an, b1, . . . , bn ∈ C by the formula

Φδt = Πn
i=1(Ss,biδt ◦ Sf,aiδt),

so that this method with the exact flows has order r. Then the order of the method Φδt is at least min(p, q, r),
and so is the order of the method with subcycling

Φsc
δt = Πn

i=1(Ss,biδt ◦ (Sf,aiδt/N )N ). (9)
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Proof. Since the method Ss,δt has order p, we may write, when δt→ 0,

Ss,δt = ϕs,δt +O(δtp+1) and Sf,δt/N = ϕf,δt/N +O(δtq+1).

The smoothness of the propagators implies that all p ∈ N
⋆,

Sp
f,δt/N = ϕp

f,δt/N +O(δtq+1),

where the constant in the Landau symbol depends on p. In particular, for p = N , using the semi-group
property of the exact flow, we have

SN
f,δt/N = ϕf,δt +O(δtq+1).

This implies that

Φsc
δt = Πn

i=1(Ss,biδt ◦ (Sf,aiδt/N )N ) = Πn
i=1(ϕs,biδt +O(δtp+1)) ◦ (ϕf,aiδt +O(δtq+1))

= Πn
i=1(ϕs,biδt ◦ ϕf,aiδt) +O(δtmin(p,q)+1)

= ϕe,δt +O(δtmin(p,q,r)+1),

since the splitting method is assumed to have order r when used with the exact flows. This proves the result
for Φsc

δt . The result for Φδt is even simpler.

In the following, we consider numerical splitting methods for the nonlinear problem (2) in the same
way as for the linear problem (1) in Section 2.3: Scheme #1 is a SF Lie-splitting method with subcycling,
Scheme #2 is a SF Lie-splitting method without subcycling, Scheme #3 is a FSF Strang-splitting method
with subcycling, and Scheme #4 is a FSF Strang-splitting method without subcycling.

Once again, we consider numerical flows for the integration of the split equations described by θ-schemes,

i.e. for the fast equation, the first component of Φ
θf
f,δt(u

n, vn) solves the equation in X

X − un = Nδtθf
(
c(vn − un)− (un − vn)2

)
+Nδt(1− θf )

(
c(vn −X)− (X − vn)2

)
,

while its second one is its second argument and, for the slow equation, the second component of Φ
θf
f,δt(u

n, vn)
solves the equation in X

X − vn = δtθs
(
c(un − vn) + (un − vn)2

)
+ δt(1− θs)

(
c(un −X) + (un −X)2

)
,

while its first component is its first argument.

3.3 Numerical examples of splitting methods for problem (2)

We run the four schemes with four different values of the couple (θf , θs). We sum up the results on the
asymptotic order in Table 1 and provide numerical results in Figure 2. These results were obtained with
final time T = 2.0, speed c = 1, factor N = 50, initial datum (u0, v0) = (5, 1), so that, using the analysis
carried out in the proof of Proposition 3.1, the exact solution at final time is within a distance smaller than
10−40 of its asymptotic limit 55/51× (1, 1).

By Theorem 3.2, we know that the Lie-splitting schemes (Scheme #1 and Scheme #2) are of classical
order 1 for any possible choice of (θf , θs). The first two columns of Table 1 show that the asymptotic order is
also 1 in these cases. Theorem 3.2 also implies that the Strang-splitting scheme #3 has at least order 1 with
the choice (θf , θs) = (1, 0) and the asymptotic orders collected at the end of the first line of Table 1 show
that the asymptotic order is also 1 in this case. The same theorem also ensures that Scheme #3 has order
2 when applied with (θf , θs) = (1/2, 1/2). The asymptotic orders displayed at the end of the second line of
Table 1 show that the asymptotic order is also 2 in this case. The end of the 2 last lines is surely the most
interesting part of this section: for (θf , θs) = (1, 3/4) and (θf , θs) = ((N − 1)/(2N), 1/4), the classical order
of the splitting method is, by Theorem 3.2 at least 1. In the first case (θf , θs) = (1, 3/4)), the numerical
results show that the subcycled scheme #3 has A-order 2 while the Strang-splitting scheme #4 has A-order
1. We recall that, for these parameters, the Scheme #3 was of A-order 2 in the linear setting (see Remark
4). In the second case (θf , θs) = ((N −1)/(2N), 1/4), the same phenomenon occurs: Scheme #3 has A-order
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1 while Scheme #4 has A-order 2. We recall that these values of the parameters were chosen in the linear
setting in such a way that the (linear) Scheme #4 has A-order 2.

3.4 Conclusion

These examples suggest that, in this context, the A-order of a scheme applied to the linear problem is the
same as the A-order of the scheme applied to the nonlinear problem. This can be explained by the fact that
the two problems (1) and (2) have the same set of attractive equilibrium points (the straight line u = v),
they project the initial datum (u0, v0) (chosen in an appropriate subset of the phase plane (u0 + c < v0)) on
the same equilibrium point (u0 +Nv0)/(N + 1)× (1, 1), and in the neighborhood of this equilibrium point,
(u− v)2 << |u− v|. In particular, these examples show that it is possible to build in the nonlinear setting,
as well in the linear setting, splitting methods with asymptotic order greater than the classical order of the
schemes used for solving the split-equations.

(θf , θs) Scheme #1 Scheme #2 Scheme #3 Scheme #4
(1.0, 0.0) 0.9671 1.0000 1.2808 1.0499
(0.5, 0.5) 0.9677 1.0000 2.0071 1.9952
(1.0, 0.75) 0.9686 1.0021 1.9889 1.0548
(N−12N , 0.25) 0.9672 0.9991 1.5041 1.9932

Tab. 1: Asymptotic error for the 4 schemes for some values of (θf , θs).
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Fig. 2: Logarithm of the asymptotic error as a function of the time step: Scheme #1 (full red line), Scheme
#2 (dotted red line), Scheme #3 (full blue line), Scheme #4 (dotted blue line). (θf , θs) = (1.0, 0.0)
(a), (θf , θs) = (0.5, 0.5) (b), (θf , θs) = (1.0, 0.75) (c) and (θf , θs) = (N − 1)/(2N), 0.75) (d).
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4 A coupled reaction-diffusion system

4.1 The homogeneous Dirichlet problem

The continuous problem This section aims at studying the behavior of time-splitting schemes involving
subcycling techniques for solving the following system of partial differential equations

{
∂tu = ν1∆u+ c1(v − u)
∂tv = ν2∆v + c2(u− v)

t > 0, x ∈ (0, L), (10)

with homogeneous Dirichlet boundary conditions at x = 0 and x = L, and given initial data u0 and v0 in
an appropriate function space. Of course, ∆ = ∂2x is the Laplace operator and L > 0 is given. We focus on
the case where one of the equations in System (10) is “fast” and the other is “slow”. Moreover, we assume
the “speed” ratios allow us to actually do subcycling. This means that

ν1
ν2

=
c1
c2

= N ∈ N
⋆, (11)

and N >> 16. Consequently, in accordance with Section 2, we will use the notation ν = ν2 and c = c2. In
that case, the first equation in (10) is the “fast” one, so u is the “fast” unknown and the second one (on v)
is the slow one. Let us recall that we have the following

Theorem 4.1: For all initial data (u0, v0) ∈ L2(0, L)2, System (10) has a unique solution t 7→ (u(t), v(t)) in
C0([0,+∞), L2(0, L)2) ∩ C∞((0,+∞)× [0, L],R2), satisfying (u, v)(0) = (u0, v0).

Proof. If one looks for solutions of the form

u(t, x) =
+∞∑

k=1

αk(t) sin (kπx/L) and v(t, x) =
+∞∑

k=1

βk(t) sin (kπx/L) ,

then the coefficients satisfy the differential systems

α̇k(t) = −N
(
c+ ν

k2π2

L2

)
αk(t) +Ncβk(t), β̇k(t) = cαk(t)−

(
c+ ν

k2π2

L2

)
βk(t),

and the eigenvalues λk and µk of the matrices Mk =


−N

(
c+ ν k2π2

L2

)
+Nc

+c −
(
c+ ν k2π2

L2

)

 are both real,

negative and satisfy, when k tends to +∞,

λk ∼ −N k2π2

L2
and µk ∼ −k

2π2

L2
.

The following theorem deals with the asymptotic behavior of the solutions of System (10):

Theorem 4.2: For all solutions (u, v) of System (10) and all t ≥ 0, we have

∫ L

0

(|u2|+N |v|2)(t)dx ≤
(∫ L

0

(|u|2 +N |v|2)(0)dx
)
e−

2π2ν

L2 t.

6 Yet, we are not interested in the limit N → +∞.
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Proof. Let (u, v) be a smooth solution of (10). We compute
(

d

dt

1

2

∫ L

0

(|u|2 +N |v|2)dx
)
(t) = Nν

∫ L

0

u(t)∆u(t) +Nν

∫ L

0

v(t)∆v(t) +Nc

∫ L

0

(u(v − u) + v(u− v))(t)

= −Nν
∫ L

0

|∇u(t)|2 − ν

∫ L

0

N |∇v(t)|2 −Nc

∫ L

0

|u(t)− v(t)|2

≤ −2π2ν

L2

1

2

∫ L

0

(|u(t)|2 +N |v(t)|2)dx,

using that N ≥ 1 and Poincaré’s inequality.

The goal of the next paragraphs is to show how this exponential convergence to 0 in L2(0, L) is reproduced
by splitting schemes with (or without) subcycling.

The space discretization In the following, we will use the classical finite-difference discretization of minus
the Laplace operator, using the symmetric tridiagonal M × M matrix A = toeplitz(−1, 2,−1, 0) where
M ∈ N

⋆ and δx = L/(M + 1). We note for all i ∈ {0, . . . ,M + 1}, xi = i.δx and U = (u1, . . . , uM ) will be
the solution of the discretized problem. Let us recall that the eigenvalues and associated eigenvectors of A
are, for 1 ≤ p ≤M ,

(
λp = 4 sin2

( pπ

2(M + 1)

)
, (sin(1pπ/(M + 1)), sin(2pπ/(M + 1)), . . . , sin(Mpπ/(M + 1)))

)
. (12)

In the following, we denote by
A = PDP−1 (13)

the corresponding diagonalization of A.

The time discretization: numerical analysis of the rate of convergence for several time-splitting schemes

Assume δt > 0 is given. The methods we have in mind all share the same basic idea: we discretize in time
separately the spatially-discretized versions of both equations of System (10). We consider (p, p′, q, q′) ∈
(N∗)4 such that

q′

q
=

p′

Np
. (14)

The “fast” one is discretized on an interval of length δt/(Np) and we denote by Φfast,δt/(Np) its numerical
flow. We iterate this method p′ times. The “slow” one is discretized on an interval of length δt/q and we
denote by Φslow,δt/q its numerical flow. We iterate this method q′ times. Then, we compute numerical flows
using splitting methods and subcycling by considering numerical flows such as

ΨLie,δt = Φslow,δt ◦ ΦN
fast,δt/N , (15)

corresponding to (p, p′, q, q′) = (1, N, 1, 1). As we did in Section 2 and in Section 3, we consider θ-schemes
for the solution of the slow and fast equations. We choose two parameters (θf , θs) ∈ [0, 1]2. The numerical
integrators involved in the splitting scheme therefore read:

Φfast,δt/N (un, vn) =

[(
I − θfδt

(
cI + ν

1

(δx)2
A

))(
I + (1− θf )δt

(
cI + ν

1

(δx)2
A

))−1
un + cδtvn , vn

]
,

(16)
and

Φslow,δt(u
n, vn) =

[
un ,

(
I − θsδt

(
cI + ν

1

(δx)2
A

))(
I + (1− θs)δt

(
cI + ν

1

(δx)2
A

))−1
vn + cδtun

]
.

(17)
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This way, a stability condition reads

δt ≤ 1

c+ 4ν/(δx)2
. (18)

Note also that the stability condition (18) on the scheme is actually independent on N , and this is a very
interesting feature of splitting schemes involving subcycling. Let us define for i ∈ {s, f},

Bi(δt) := I − θiδt

(
cI + ν

1

(δx)2
A

)
and Ci(δt) := I + (1− θi)δt

(
cI + ν

1

(δx)2
A

)
.

For the sake of simplicity, we omit the dependence in δt of C and B, thus noting (B,C)s = (B,C)s(δt/q)
and (B,C)f = (B,C)f (δt/p). Since they are polynomials in A, the matrices I, Cs, Cf , Bs, Bf , C

−1
s , C−1f

and A do commute for all values (distinct or not) of δt. The matrices of the linear mappings Φslow,δt/q and
Φfast,δt/(Np) in the canonical basis of R2M read respectively

Ms(δt/q) =

(
I 0

c δtq C
−1
s BsC

−1
s

)
and Mf (δt/(Np)) =

(
BfC

−1
f c δtp C

−1
f

0 I

)
. (19)

Let us define Σi,m =
∑m−1

k=0 (C−1i Bi)
k for m ≥ 1 and i ∈ {s, f}. Therefore, the matrix of Φp′

fast,δt/(Np) reads

Mf (δt/(Np))
p′

=

(
(BfC

−1
f )p

′

c δtp C
−1
f Σf,p′

0 I

)
.

Recalling (14), we define Ψδt,p,p′,q,q′ = Φq′

slow,δt/q ◦ Φ
p′

fast,δt/(Np) the matrix of which reads

(
(BfC

−1
f )p

′

c δtp C
−1
f Σf,p′

c δtq C
−1
s (BfC

−1
f )p

′

Σs,q′ (BsC
−1
s )q

′

+ c2 δt2

pq C
−1
s C−1f Σs,q′Σf,p′

)
. (20)

In particular, if q = q′ = p = 1 and p′ = N , Ψδt,p,p′,q,q′ = ΨLie,δt and, if q = q′ = 2, p = 1 and p′ = N ,
Ψδt,p,p′,q,q′ and ΨStrang,δt = Φslow,δt/2 ◦ΦN

fast,δt/N ◦Φslow,δt/2 are similar and thus share the same spectrum.

Denoting by P the matrix (see (13))

P =

(
P 0
0 P

)
, (21)

we obtain that the matrix D := P−1Ψδt,p,p′,q,q′P is exactly the same as that of (20) where A is replaced
with D in the definition of the matrices Bf , Bs, Cf and Cs. In particular, it consists in four square blocks
of size 2M × 2M , each of which is diagonal. We infer that all the eigenvalues of Ψδt,p,p′,q,q′ are the roots of
the M polynomial equations

λ2 −
(
(φ−1f ψf )

p′

+ (φ−1s ψs)
q′ + c2

δt2

pq
φ−1f φ−1s Σ̃s,q′Σ̃f,p′

)
λ+ (φ−1f ψf )

p′

(φ−1s ψs)
q′ = 0, (22)

where

ψf,s(µ) = 1− θf,s
δt

p
µ and φf,s(µ) = 1 + (1− θf,s)

δt

p
µ, (23)

Σ̃f,p′ =

p′−1∑

k=0

(φ−1f ψf )
k and Σ̃s,q′ =

q′−1∑

k=0

(φ−1s ψs)
k, (24)

and µ is an eigenvalue of cI + νA/(δx)2. We extend these six real-valued functions of µ to the continuous
interval (c, c + 4ν/(δx)2). The functions µ 7→ φ−1i (µ) and µ 7→ ψi(µ) are smooth, decreasing on (c, c +

13



4ν/(δx)2) with values in (0, 1]. Hence, any finite product of such functions and any finite sum is smooth and
decreasing on (c, c+ 4ν/(δx)2). For example,

P : µ 7→ (φ−1f (µ)ψf (µ))
p′

, Q : µ 7→ (φ−1s (µ)ψs(µ))
q′ , Σ : µ 7→ c2

δt2

pq
φ−1f (µ)φ−1s (µ)Σ̃s,q′(µ)Σ̃f,p′(µ),

are positive decreasing functions on (c, c+ 4ν/(δx)2). Note that the discriminant of the polynomial (22) is

D(µ) :=
(
P (µ) +Q(µ) + Σ(µ)

)2
− 4Q(µ)P (µ)

=
(
Q(µ)− P (µ) + Σ(µ)

)2
+ 4P (µ)Σ(µ) > 0 (25)

=
(
P (µ)−Q(µ) + Σ(µ)

)2
+ 4Q(µ)Σ(µ) > 0, (26)

so that the eigenvalues of Ψδt,p,p′,q,q′ real and can be expressed using the functions

λ−(µ) =
P (µ) +Q(µ) + Σ(µ)−

√
D(µ)

2
and λ+(µ) =

P (µ) +Q(µ) + Σ(µ) +
√
D(µ)

2
,

for µ ∈ (c, c+4ν/(δx)2). Note that, with the stability condition (18), we have for all µ, 0 < λ−(µ) < λ+(µ).
Moreover, we have the following monotonicity property:

Lemma 4.3: The map µ 7→ λ+(µ) is decreasing in (c, c+ 4ν/(δx)2)7.

Proof. Note that, thanks to (25),
√
D(µ) > Q(µ) − P (µ) if Q(µ) > P (µ). Similarly, (26) leads to√

D(µ) > P (µ)−Q(µ) if P (µ) > Q(µ) since P , Q, Σ are positive functions. So
√
D > |P−Q|. Differentiating

the function µ 7→ λ+(µ) with respect to µ yields

2
√
D d

dµ
λ+ = (P ′ +Q′ +Σ′︸ ︷︷ ︸

<0

)
√
D + (P +Q+ Σ︸︷︷︸

>0

)(P ′ +Q′ +Σ′︸ ︷︷ ︸
<0

)− 2(PQ)′

< (P ′ +Q′ +Σ′)|Q− P |+ (P +Q)(P ′ +Q′ +Σ′)− 2P ′Q− 2PQ′

< P ′(|P −Q|+ P −Q) +Q′(|Q− P |+Q− P )

≤ 0.

This implies that the derivative of µ 7→ λ+(µ) is negative on (c, c+ 4ν/(δx)2) and proves the lemma.

Hence the biggest eigenvalue of Ψδt,p,p′,q,q′ is λ
+(µ1) with µ1 := c+ νλ1/(δx)

2 (see (12)). Of course, an
asymptotic expansion of that biggest eigenvalue as δt→ 0+ helps us controlling the exponential decay of the
L2 norm of the numerical solution provided by Ψδt,p,p′,q,q′ . This allows us to prove the following

Theorem 4.4: Let c, ν > 0, N ≥ 2 and Φδt,p,p′,q,q′ be defined as above. Assume M ∈ N
⋆ is given. There

exists8 C, γ, h > 0 such that for all T > 0, all U0, V 0 ∈ R
M , all δt ∈ (0, h) and all n ∈ N with nδt ≤ T , we

have
‖Ψn

Lie,δt(U
0, V 0)‖2 ≤ Ce−γnδt‖(U0, V 0)‖2. (27)

Remark 6: Note that one can impose γ ≥ Nνλ1/((N + 1)(δx)2) in this case (provided h is small enough).

Since Nνλ1/(δx)
2 → Nν π2

L2 as δx→ 0+ (or equivalently asM → +∞), we have, at least asymptotically with
respect to δx, a numerical decay rate of the appropriate order with respect to the parameters ν and L: we
compare the exact decay rate νπ2/L2 from Theorem 4.2 with the asymptotic numerical oneNνπ2/(L2(N+1))
(recall that N is large).

7 Note that D is not a decreasing function of µ in general.
8 The reason for the constant C is the lack of symmetry of the matrix D.
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Proof. Let M ∈ N
⋆ be fixed. Since φ−1f (µ1)ψf (µ1) = (1− θfδtµ1)/(1 + (1− θf )δtµ1), we may write

∀k ∈ {0, . . . , p′}, (φ−1f (µ1)ψf (µ1))
k = 1− kµ1δt+O(δt2),

We infer that
p′−1∑

k=0

(φ−1f (µ1)ψf (µ1))
k = p′ − µ1

p′(p′ − 1)

2
δt+O(δt2).

Following the same way, we obtain Taylor expansions for P (µ1), Q(µ1), Σ(µ1) and then D(µ1) and eventually
λ+(µ1) when δt tends to 0:

λ+1 = 1− (N + 1)µ1 −
√

(N − 1)2µ2
1 + 4Nc2

2
δt+O(δt2), (28)

and therefore,
T

δt
ln(λ+1 ) = −T

2

(
(N + 1)µ1 −

√
(N − 1)2µ2

1 + 4Nc2
)
+O(δt).

Note that, since 0 < c < µ1, we have 0 < 4Nc2 < 4Nµ1 and hence

(N + 1)2µ2
1 − (N − 1)2µ2

1 = 4Nµ2
1 > 4Nc2,

and therefore

(N + 1)µ1 −
√
(N − 1)2µ2

1 + 4Nc2 > 0.

Since λ+1 is the biggest eigenvalue of ΨLie,δt, this proves the result. Note also that the constant γ can be
taken arbitrary close to

1

2
(N + 1)µ1 −

√
(N − 1)2µ2

1 + 4Nc2 =
1

2

(
(N + 1)µ1 −

√
(N + 1)2µ2

1 − 4N(µ2
1 − c2)

)
.

Using the mean value theorem, for some cθ ∈ (0, 4N(µ2
1 − c2)), the latter quantity is equal to

1

2

1

2

4N(µ2
1 − c2)√

(N + 1)2µ2
1 − cθ

> N
µ2
1 − c2

(N + 1)µ1
=

N

N + 1

(µ1 + c)

µ1︸ ︷︷ ︸
≥1

(µ1 − c)︸ ︷︷ ︸
=νλ1/δx2

≥ N

N + 1
ν
λ1

(δx)2
.

4.2 The non homogeneous Dirichlet problem

The continuous problem In this section we consider System (10) equipped with inhomogeneous Dirichlet
boundary conditions, namely

u(t, 0) = ul, u(t, L) = ur, v(t, 0) = vl, v(t, L) = vr, (29)

where ul, vl, ur and vr are four given real numbers. As in the homogeneous case above (see Section 4.1),
there is a unique stationary solution to the boundary value problem:

Proposition 4.5: The PDE system (10) with non homogeneous Dirichlet boundary conditions has a unique
stationary solution given by





u∞ex : x 7→ ul+vl

2 + (ur+vr−ul−vl)x
2L + (ul−vl)[cosh(x/α)−cosh(L/α) sinh(x/α)/ sinh(L/α)]

2 + (ur−vr) sinh(x/α)/ sinh(L/α)
2

v∞ex : x 7→ ul+vl
2 + (ur+vr−ul−vl)x

2L − (ul−vl)[cosh(x/α)−cosh(L/α) sinh(x/α)/ sinh(L/α)]
2 − (ur−vr) sinh(x/α)/ sinh(L/α)

2

(30)
where α =

√
ν/(2c).
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Therefore, using the linearity of the problems, for all (u0, v0) ∈ L2(0, L)2, the non homogeneous reaction-
diffusion system (10)-(29) has a unique solution in C0([0,+∞), L2(0, L)2) ∩ C∞((0,+∞)× [0, L],R2) satis-
fying (u, v)(0) = (u0, v0), which is obtained from that of the homogeneous Dirichlet problem (with a modified
initial datum) by adding the constant-in-time function (30) to it (see Theorem 4.1). Moreover, for all ini-
tial datum (u0, v0), the solution of the non homogeneous System (10) converges exponentially fast to the
stationary solution (30).

The goal of the next paragraphs is to illustrate how well this convergence towards (a discretized version
of) the stationary solution is achieved by numerical methods using subcycling techniques.

Space and time discretizations Using the same space discretization as above (see Section 4.1), we consider
two θ-schemes for the time discretization in the spirit of what we did for the homogeneous problem (see (16)-
(17)), with parameters θf and θs. Taking into account the non homogeneous Dirichlet boundary conditions
yields a sequence ((Un, V n)t)n∈N defined by an arithmetic-geometric recursion: given W 0 = (U0, V 0)t ∈
R

2M , we have for all n ≥ 0,

Wn+1 = MWn +Mu

(
Ul,r

0M

)
+Mv

(
0M
Vl,r

)
=: MWn +Υ (31)

where M is defined as a product of matrices of the form (19), Ul,r = (ul, 0, . . . , 0, ur)
t, Vl,r = (vl, 0, . . . , 0, vr)

t

andMu andMv are 2M -by-2M matrices, depending on δt, δx and the choice of the splitting method between
the two θ-schemes.

Let us list the numerical experiments we conducted:

• Scheme #1 (Lie - SF - slow time - subcycled): Ms :=Ms(δt) and Mf :=Mf (δt/N)

M =MsM
N
f , Mu = ν

δt

δx2
Ms

N−1∑

k=0

Mk
f

(
C−1f 0

0 0

)
and Mv = ν

δt

δx2

(
0 0
0 C−1s

)
(32)

• Scheme #2 (Lie - SF - fast time - no subcycling): Ms :=Ms(δt/N) and Mf :=Mf (δt/N)

M = (MsMf )
N , Mu = ν

δt

δx2

N−1∑

k=0

(MsMf )
k

(
C−1f 0

0 0

)
and Mv =

ν

N

δt

δx2

N−1∑

k=0

(MsMf )
k

(
0 0
0 C−1s

)

• Scheme #3 (Strang - SFS - slow time - subcycled): Ms :=Ms(δt/2) and Mf :=Mf (δt/N)

M =MsM
N
f Ms, Mu = ν

δt

δx2
Ms

N−1∑

k=0

Mk
f

(
C−1f 0

0 0

)
and Mv = ν

δt

2δx2
(I2M +MsM

N
f )

(
0 0
0 C−1s

)

• Scheme #4 (Strang - SFS - fast time - no subcycling): Ms :=Ms(δt/(2N)) and Mf :=Mf (δt/N)

M =MsMfMs, Mu = ν
δt

δx2
Ms

(
C−1f 0

0 0

)
and Mv = ν

δt

2Nδx2
(I2M +MsMf )

(
0 0
0 C−1s

)

Equilibrium states of the splitting schemes We prove the existence of a unique equilibrium state for the
splitting schemes above, comment on the rate of convergence of the schemes towards their equilibrium state
and also analyze how close the equilibrium state of each scheme is to a projection on the numerical space
grid of the equilibrium state (30) of the continuous reaction-diffusion system (10) with non homogeneous
Dirichlet conditions (29) in an L2 sense. Following (18), we denote by CFL(M) the positive real number

CFL(M) =
1

c+ 4ν/δx2
=

1

c+ 4ν(M + 1)2/L2
.
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We endow R
M and R

M × R
M with the classical Euclidian norms denoted by ‖ · ‖2 and the corresponding

algebras of square matrices with the induced norms denoted by ||| · |||2. To compute the asymptotic numerical
solution of a given method of type (31), we need to solve the 2M -by-2M linear system

(I2M −M)W = Υ. (33)

Proposition 4.6: Let δt, δx > 0 satisfying (18) be fixed. For a general Lie-splitting method of the form (15),
the numerical asymptotic state of any of the splitting schemes defined by the recursion relation (31) above
is the unique solution W∞num of the linear system (33).

Proof. Since δt, δx satisfy (18), we know from Theorem 4.4 that the spectral radius of the matrix M
of ΨLie,δt in the canonical basis of R2M is less than 1. Hence, the matrix I2M − M is invertible and the
numerical asymptotic state is well-defined and unique.

Using the linearity of the problems, we infer that the numerical rate of convergence towards this asymp-
totic state is then given by Theorem 4.4.

Let us state and prove the central result of this section, i.e. the convergent asymptotic behavior of the
subcycled Lie scheme (Scheme #1):

Theorem 4.7: Provided that δt ∈ (0,CFL(M)), the asymptotic state of Scheme #1 is a uniform-in-δt second
order approximation of the exact asymptotic state given in Proposition 309:

(
Πδx

(
u∞ex
)

Πδx

(
v∞ex
)
)
−W∞num(δt) = O(δx2).

Proof. To analyze the asymptotic convergence of Scheme #1, we put the projections Πδx

(
u∞ex
)
and

Πδx

(
v∞ex
)
of the exact solutions u∞ex and v∞ex defined in (30) in the numerical scheme. Using the identity

1

δx2
AΠδx

(
u∞ex
)
= −Πδx

(
∆u∞ex

)
+ Ul,r +O(δx2),

and the fact that the functions u∞ex and v∞ex are solutions of (10) with the non-homogeneous Dirichlet boundary
conditions (29), we first compute

Mf

(
Πδx

(
u∞ex
)

Πδx

(
v∞ex
)
)

=

(
Πδx

(
u∞ex
)

Πδx

(
v∞ex
)
)
− ν

δt

δx2

(
C−1f Ul,r

0

)
+O(δt(δx)2),

where the constant in the O is independent of δt and δx provided that the CFL condition is fulfilled. Iterating
this computation, we obtain

MN
f

(
Πδx

(
u∞ex
)

Πδx

(
v∞ex
)
)

=

(
Πδx

(
u∞ex
)

Πδx

(
v∞ex
)
)
− ν

δt

δx2

N−1∑

k=0

Mk
f

(
C−1f 0

0 0

)(
Ul,r

0

)
+O(δt(δx)2), (34)

where, once again, the constant in the O is independent of δt and δx provided that the CFL condition (18)
is fulfilled. This is due to the fact that we have

MfO(δt(δx2)) = O(δt(δx2)),

provided that δt ∈ (0,CFL(M)) thanks to Lemma 4.8 that follows.

Lemma 4.8: There exists a positive constant C > 0 such that, for all M ∈ N
⋆ and all δt ∈ (0,CFL(M)), we

have
|||Ms|||2 ≤ C and |||Mf |||2 ≤ C.

9 for w ∈ C0([0, L]), Πδx(w) = (w(x1), . . . , w(xM ))t
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Remark 7: Note that the constant C above is in fact greater than 1, even if the matrices have their spectrum
in the interval [0, 1]. This is due to the lack of symmetry in those matrices.

Proof. Since the situation for Ms and Mf is very similar, we prove the inequality for Mf only, and we
start with the decomposition

Mf =

(
C−1f 0

0 IM

)
×
(
Bf cδtIM
0 IM

)
.

The CFL condition (18) ensures that the spectrum of C−1f lies in (0, 1]. Since the first matrix in the product
above is symmetric, we infer that its norm is 1. Hence, using the algebra property, it is sufficient to prove
the result for the second matrix in the product above, which is not symmetric. Using the fact that, for any
square matrix R with real coefficients, |||R|||22 = ρ(AtA), where ρ denotes the spectral radius, we are left with
the computation of the eigenvalues of the symmetric non-negative matrix

Nf =

(
B2

f cδtBf

cδtBf (1 + c2δt2)IM

)
.

The eigenvalues of the matrix Nf are the 2M roots of the M polynomials

X2 − (µ2
p + (1 + c2δt2))X + µ2

p, 1 ≤ p ≤M,

where (µp)1≤p≤M denotes the list of the eigenvalues of Bf . The CFL condition (18) ensures that for all
p ∈ {1, . . . ,M}, µp ∈ [0, 1]. Hence, the greatest eigenvalue of the corresponding polynomial above is less
than 2(1+1+ c2δt2). Moreover, the CFL condition also provides us with an estimate on δt which yileds the
result with C =

√
2(2 + c2/(c+ 16ν/L2)2).

Multiplying (34) by Ms, we finally get

(I2M −MsM
N
f )

(
Πδx

(
u∞ex
)

Πδx

(
v∞ex
)
)

= ν
δt

δx2

N−1∑

k=0

Mk
f

(
C−1f 0

0 0

)(
Ul,r

0

)
+ ν

δt

δx2

(
0 0
0 C−1s

)(
0
Vl,r

)
+O(δt(δx)2).

Comparing this relation with that defining the numerical equilibrium state (31) (with the right-hand side
defined in (32)), we infer that

(I2M −MsM
N
f )

((
Πδx

(
u∞ex
)

Πδx

(
v∞ex
)
)
−W∞num

)
= δtO(δx2),

where the constant in the O is independent of δt and δx provided that the CFL condition (18) is fulfilled.
Finally, let us state and prove the following Proposition about the inverse of the matrix (I2M −MsM

N
f ):

Proposition 4.9: There exists a positive constant C > 0 such that for all M ∈ N
⋆ and all δt ∈ (0,CFL(M)),

|||(I −MsM
N
f )−1|||2 ≤ C

δt
. (35)

Proof. Let us fixM ∈ N
⋆ and δt ∈ (0,CFL(M)). Using the conjugation with the orthogonal matrix P (see

(21)), we have that the ||| · |||2-norm of I2M −MsM
N
f is equal to that of the same matrix where A is replaced

with D (see (13)). The latter matrix has a very particular structure: the four M -by-M matrices defining it
are diagonal. Let us denote by (ai)1≤i≤M , (bi)1≤i≤M , (ci)1≤i≤M , and (di)1≤i≤M these entries such that

Z := P−1(I −MsM
N
f )P =




a1 0 0

0
. . . 0

0 0 aM

b1 0 0

0
. . . 0

0 0 bM
c1 0 0

0
. . . 0

0 0 cM

d1 0 0

0
. . . 0

0 0 dM




.
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The eigenvalues of Z lie in (0, 1) (see Theorem 4.4). Hence, Z is invertible and its inverse is given by

Z−1 = P−1(I −MsM
N
f )−1P =




α1 0 0

0
. . . 0

0 0 αM

β1 0 0

0
. . . 0

0 0 βM
γ1 0 0

0
. . . 0

0 0 γM

δ1 0 0

0
. . . 0

0 0 δM




,

where for all i ∈ {1, . . . ,M}, (
ai bi
ci di

)−1
=

(
αi βi
γi δi

)
=: mi.

One can check easily that
|||Z−1|||2 = max1≤i≤M |||mi|||2.

Moreover, we have

|||mi|||22 =
a2i + b2i + c2i + d2i +

√
(a2i + b2i + c2i + d2i )

2 − 4(aidi − bici)2

2(aidi − bici)2
≤ a2i + b2i + c2i + d2i

(aidi − bici)2
.

We split the upper bound above as follows

|||mi|||22 ≤ b2i + c2i
(aidi − bici)2

+
a2i + d2i

(aidi − bici)2
, (36)

and we prove an estimate of the form O(1/δt2) for the two terms in the sum above. In view of (20), we have

ai = 1− P (µi), bi = −cδt(φ−1f Σ̃f,N )(µi),

and
ci = −cδt(φ−1s P )(µi) and di = 1−Q(µi)− c2δt2(φ−1s φ−1f Σ̃f,N )(µi).

For the first term in the upper bound (36), let us show that the numerator is O(δt2) while the denominator
is bounded from below by a positive constant times δt4.
On the one hand, we have

|bi|2 ≤ c2N2δt2 and |ci|2 ≤ c2δt2. (37)

On the other hand, for all i ∈ {1, . . . ,M}, we have

aidi − bici = (1− P (µi))(1−Q(µi))− c2δt2(φ−1s φ−1f Σ̃f,N )(µi)

=

(
1− (ψfφ

−1
f )N (µi)

)
(1−Q(µi))− c2δt2

(
φ−1s φ−1f

1− (ψfφ
−1
f )N

1− ψfφ
−1
f

)
(µi)

=

((
1− (ψfφ

−1
f )N

φs

)(
φs − ψs −

c2δt2

φf − ψf

))
(µi).

The CFL condition (18) ensures that δtµi, ψs(µi), φ
−1
s (µi), ψf (µi), φ

−1
f (µi) and P (µi) belong to (0, 1]. In

view of the definitions (23), we have

(φs − ψs)(µi) = δtµi = (φf − ψf )(µi),

so that

aidi − bici = δt
(1− (ψfφ

−1
f )N (µi))

φs(µi)

µ2
i − c2

µi
. (38)

The CFL condition (18) implies that 1/φs(µi) ≥ 1/2 and

0 < (ψfφ
−1
f )N (µi) ≤ (ψfφ

−1
f )(µi) =

1− θfδtµi

1 + (1− θf )δtµi
.
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Therefore, we have

1− (ψfφ
−1
f )N (µi) ≥ 1− (ψfφ

−1
f )(µi) =

δtµi

1 + (1− θf )δtµi
≥ δtµi

2
. (39)

This allows to bound from below

aidi − bici ≥
δt2

4
(µi + c︸ ︷︷ ︸
≥c

)( µi − c︸ ︷︷ ︸
=νλi/δx2

) ≥ cν
δt2

4

λ1

δx2
.

Recall that for all x ∈ (0, π/2), sin(x) ≥ 2x/π, so that

λ1

δx2
=

4

δx2
sin2

(π
2

1

(M + 1)

)
≥ 4

(M + 1)2

L2

4

π2

π2

4

1

(M + 1)2
≥ 4

L2
. (40)

This proves

aidi − bici ≥
cν

L2
δt2. (41)

Using (37) and (41), there exists a positive constant C such that

∀M ∈ N
⋆, ∀δt ∈ (0,CFL(M)),

b2i + c2i
(aidi − bici)2

≤ C

δt2
. (42)

Let us now bound the second term in the right hand side of (36). Let us fix M ∈ N
⋆ and i ∈ (0,CFL(M))

again. From (38), we have

1

(aidi − cibi)2
=

1

δt2
φ2s(µi)

(1− (ψfφ
−1
f )N (µi))2

(
µi

µ2
i − c2

)2

.

A similar direct calculation yields

a2i + d2i =

(
1− (ψfφ

−1
f )N (µi)

)2

+

(
φs(µi)− ψs(µi)

φs(µi)
− c2δt2

1

φsφf (µi)

1− (ψfφ
−1
f )N (µi)

1− ψfφ
−1
f (µi)

)2

=

(
1− (ψfφ

−1
f )N (µi)

)2[
1 +

1

φ2s(µi)

(
µiδt

1− (ψfφ
−1
f )N (µi)

− c2δt2
1

φf (µi)− ψf (µi)

)2]

=

(
1− (ψfφ

−1
f )N (µi)

)2[
1 +

1

φ2s(µi)

(
µiδt

1− (ψfφ
−1
f )N (µi)

− c2

µi
δt

)2]
.

We infer

a2i + d2i
(aidi − cibi)2

=
1

δt2
φ2s(µi)

(
µi

µ2
i − c2

)2[
1 +

1

φ2s(µi)

(
µiδt

1− (ψfφ
−1
f )N (µi)

− c2

µi
δt

)2]
. (43)

We can bound the terms in the product above as follows. The CFL condition (18) implies that φ2s(µi) ≤ 4.
Moreover, using (40), we have

µi

µ2
i − c2

=
µi

(µi + c)︸ ︷︷ ︸
≤1

1

(µi − c)
≤ δx2

νλi
≤ δx2

νλ1
≤ L2

4ν
.

Recall that 1/φs(µi)
2 ≤ 1. From (39), we obtain µiδt/(1 − (ψfφ

−1
f )N (µi)) ≤ 2. For the last term in the

product, we have
c2

µi
δt = cδt︸︷︷︸

≤1

c

c+ νλi/δx
2

︸ ︷︷ ︸
≤1

≤ 1.
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Using these inequalities in (43), taking products and using Young’s inequality, we infer that

∀M ∈ N
⋆, ∀δt ∈ (0,CFL(M)),

a2i + d2i
(aidi − bici)2

≤ 11

4

L4

ν2
1

δt2
. (44)

The inequalities (42) and (44) together with (36) prove the result.

The numerical tests we conducted for several values of θf , θs and N showed that the matrix I2M −M is
also invertible for Schemes #3 and #4. We show here the graph obtained with Scheme #1 for the following
sets of parameters , N = 10 being fixed, M = 20, 40, 80, 160, δx = L/(M + 1):

• (ul, ur, vl, vr) = (1, 2,−1, 4), δt = δx2/ν1/2, (θf , θs) = (1, 1) [explicit,explicit]

• (ul, ur, vl, vr) = (2, 4,−1, 4), M = 20, 40, 80, 160, δx = L/(M + 1), δt = 0.01, (θf , θs) = (1/2, 1/2)
[Crank-Nicolson,Crank-Nicolson]

Fig. 3: L∞-error of the asymptotic numerical and exact states for explicit/explicit and Crank-
Nicolson/Crank-Nicolson schemes. The numerical order is 1.94.

From Figure 3, we conclude that the asymptotic state depends only on the spatial discretization through δx
and does not depend on the time discretization δt or the values of θ. Moreover, the numerical order is close
to 2 in δx.

5 Conclusion and perspectives

Speeding up computations through a subcycling procedure is widely used, but the asymptotic behavior of
the numerical solution in large time is a concern. Indeed, there are two limits involved, as δt (and δx in
the PDE case) tend to 0 and as the final time T tends to +∞. We proved for an illustrative case of ODE
systems that the asymptotic error is at least of the same order of convergence as the local-in-time error,
and can even be better since there exists a Strang combination of (local) first order schemes that leads to a
second asymptotic order ! The analysis of the convergence rate of the subcycled scheme has been performed
for ODE and PDE toy-models, showing that the Strang splitting associated with Crank-Nicolson schemes
was the only way to get a second order approximation of the exact rate. Finally, in the case of a coupled
reaction-diffusion system with non homogeneous Dirichlet boundary conditions, we were able to prove that
the asymptotic numerical solution obtained through a subcycled scheme is a uniform-in-δt second order
approximation in δx of the exact asymptotic state. The aim is now to tackle the much more difficult case
of a fully coupled hyperbolic-parabolic system, in particular as the limit of a system consisting of a kinetic
equation in the diffusive regime and a transport equation.
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A FS to SF computations

Let us define the matrix

Π :=

(
0 1
1 0

)
,

and let us denote by G[α, β] a matrix of the form (5). Let A be a 2-by-2 matrix. Then ΠA exchanges the
lines of A and AΠ exchanges the columns. Thus, if λ ∈ R,

ΠMs(λ)Π =Mf (λ),

and, if α, β ∈ (0, 1),
ΠG[α, β] Π = G[β, α].

Since Π2 = I, it means that Ms(λ) and Mf (λ) are similar, thus share the same spectrum. In Section 2, we
computed the A-orders and rates of convergence of SF (fast, then slow) and FSF (fast, then slow, then fast)
type schemes. We show here that the results we obtained can easily be applied to FS and SFS schemes.

Lie-splitting schemes Consider λs, λf ∈ (0, 1). According to Lemma 2.1 and Remark 1, we define α(λs, λf )
and β(λs, λf ) as

Ms(λs)Mf (λf ) = G[α(λs, λf ), β(λs, λf )].

Since
Mf (λf )Ms(λs) = ΠMs(λf )Mf (λs)Π,

we infer that
Mf (λf )Ms(λs) = ΠG[β(λf , λs), α(λf , λs)] Π

Consequently, we can deduce the convergence rate and the A-order of the FS methods at once from the
results we obtained for the SF methods.

Strang-splitting methods In the same way, knowing Mf (λf )Ms(λs)Mf (λf ), one can deduce the conver-
gence rate and the A-order of Mf (λf )Ms(λs)Mf (λf ) by noting that

Ms(λs)Mf (λf )Ms(λs) = ΠMf (λs)Ms(λf )Mf (λs)Π.
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