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Abstract

( MSC=11D04) More than one century after its formulation by the Belgian mathe-
matician Eugene Catalan, Preda Mihailescu has solved the open problem. But, is
it all ? Mihailescu’s solution utilizes computation on machines, we propose here
not really a proof as it is entended classically, but a resolution of an equation like
the resolution of the polynomial equations of third and fourth degrees. This solu-
tion is totally algebraic and does not utilize, of course, computers or any kind of
calculation. We generalize our approach to Pillai and Fermat-Catalan equations
and discuss the solutions.

(Keywords : Diophantine equations, Catalan, Fermat-Catalan, Pillai, Conjec-
tures, Proofs, Algebraic resolution)

Introduction

Catalan theorem has been proved in 2002 by Preda Mihailescu. In 2004, it became
officially Catalan-Mihailescu theorem. This theorem stipulates that there are not
consecutive pure powers. There do not exist integers stricly greater than 1, X > 1
and Y > 1, for which with exponants strictly greater than 1, p > 1 and q > 1,

Y p = Xq + 1

but for (X,Y, p, q) = (2, 3, 2, 3). We can verify that

32 = 23 + 1

Euler has proved that the equation X3+1 = Y 2 has this only solution. We propose
in this study a general solution. The particular cases already solved concern p = 2,
solved by Ko Chao in 1965, and q = 3 which has been solved in 2002. The case
q = 2 has been solved by Lebesgue in 1850. We solve here the equation and prove
that Pillai and Fermat-Catalan equations are related to this problem.

The resolution

Let Catalan equation
Y p = Xq + 1
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We pose

c =
Xp − 1

Y
p

2

; c′ =
7−Xp

Y
p

2

Thus

Y
p

2 =
6

c+ c′

Xp = cY
p

2 + 1 =
6c

c+ c′
+ 1 =

7c+ c′

c+ c′

And

Xq = Y p − 1 =
36− (c+ c′)2

(c+ c′)2

We have Xp > 7 hence c′ < 0 and c > c′ and Y
p

2 ≥ 3 thus 0 < c + c′ ≤ 2. We will
prove now that q + 1 = 2p. We have to discuss two cases c2 > 1 and c2 ≤ 1

c
2
> 1 We have

Xq −X2p =
36− (c+ c′)2 − (7c+ c′)2

(c+ c′)2

<
36− 36c2

(c+ c′)2
< 0

We deduce
q + 1 ≤ 2p

Also

2c2Xq −X2p =
72c2 − 2c2(c+ c′)2 − (7c + c′)2

(c+ c′)2

>
64c2 − (7c+ c′)2

(c+ c′)2
=

(c− c′)(15c + c′)

(c+ c′)2
> 0

And

c2Xq −X2p =
36c2 − (c+ c′)2 − (7c+ c′)2

(c+ c′)2

<
36c2 − (7c+ c′)2

(c+ c′)2
=

(c′ − c)(13c + c′)

(c+ c′)2
< 0

But
2c2X2p−1 ≥ 2c2Xq > X2p ⇒ 2c2 > X

Let

4c2 =
n+ 2

n+ 1
, X =

m+ 2

m+ 1

It is evident that n < 0 and m < 0 (2X − 1−X − 1 = X − 2 = −m

m+1
> 0). But

320n > −535 −
√
30225 ⇒ 160n2 + 535n + 400 < 0

⇒ 256n2(n + 1)2 + (5n+ 12)2 + n(160n2 + 535n + 400) + 12 > 0

⇒ (16n(n + 1) + 5n+ 12)2 > 9n2 − 16n− 12 = 9n(n+ 1)− 25n − 12
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⇒ X > 2 >
−5n+

√
9n2 − 16n− 12

8n2 + 8n+ 6

⇒ (4n2 + 4n+ 3)X2 + 5nX + 1 > 0

⇒
1

X2
+

5n

X
+ 4n2 + 4n+ 3 = (m+ 1)2 + 5n(m+ 1) + 4n2 + 4n+ 3 > 0

⇒ (m+ 1)2 + n(4n+ 5m+ 9) + 3 > 0

⇒ (m+ n+ 1)(m− 1) + (2n + 1)(2m+ 2n+ 4) = (m+ 1)2 + n(4n+ 5m+ 9) + 3 > 0

⇒ (m+ n+ 1)(m − 1) + 2(2n + 1)(m + n+ 1) > −4n− 2

⇒ (m+ n+ 1)(m− 1 + 4n+ 2) = (m+m+ 1)(m+ 4n + 1) > −4n− 2

⇒ (m+ n+ 1)(
m

2
+ 2n +

1

2
) + 2n + 1 > 0

But if 2n+ 1 > 0 then 4c2 = 1 + 1

n+1
< 3 < X thus 2n + 1 < 0 and also

m+ 1 + n =
2−X

X − 1
+

2− 4c2

4c2 − 1
+ 1 =

1

4c2 − 1
+

2−X

X − 1

=
2X − 1 + 8c2 − 2− 4c2X

X − 1
=

2X(1 − c2) + 2c2(4−X)− 3

X − 1
< 0

⇒ (2n+ 1)(m + 1) < 0 < 2(n + 1) ⇒ −1−m < −1 +
1

−2n− 1
=

2n+ 2

−2n− 1

⇒ −m <
1

−2n− 1
⇒ m(2n + 1) < 1

⇒ m+ 2mn− 1 < 0 ⇒ 2m+ 2n+ 2mn < m+ 2n+ 1

⇒ (m+ n+ 1)(m+ n+mn) + 2n + 1 > (m+ n+ 1)(
m

2
+ 2n+

1

2
) + 2n+ 1 > 0

⇒ m(n+m+mn) + n(m+ n+mn+ 2) + 2(m+ n+mn+ 1)

> m(n+m+mn)+n(m+n+mn)+(m+n+mn+1)+2n = (m+n+1)(m+n+mn)+2n+1 > 0

⇒ m(m+ 1)(n + 1)−m+ n(m+ 1)(n + 1) + n+ 2(m+ 1)(n + 1) > 0

⇒
(m+ 1)2(n+ 1) + n+ 1 + (n+ 1)2(m+ 1)− (m+ 1)

(m+ 1)(n + 1)
> 0

⇒
(m+ 1)2 + 1

m+ 1
+

(n+ 1)2 − 1

n+ 1
> 0

⇒ m+ 1 +
1

m+ 1
+ n+ 1−

1

n+ 1
= m+ 1 +X − 1 + n+ 1− 4c2 + 1 > 0

⇒ 2 +X − 4c2 > −m− n > 0 ⇒ 2X > 2 +X > 4c2 > 2X

⇒ Xq+1 > 2c2Xq > X2p ≥ Xq+1 ⇒ q + 1 = 2p

Thus
2c2 > X > 2c2 ⇒ X = 2c2

⇒ 2c2Y p = 2(Xp − 1)2 = XY p = Xq+1 +X

⇒
2

X
= Xq + 1− 2X2p−1 + 4Xp−1 ∈ N
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⇒ X = 2 ⇒ −22p−1 + 2p+1 = 0 ⇒ q = 2p − 1 = 3

⇒ Y = ±3

We want to prove now that c2 = 1 with another matter and solve the equation.
We know that for all k > 1, kc2 > 1. Let for all k > 1

kc2 = 1 +
1

n+ 1
> 1

If

n >
1− 10u

10u
⇒ kc2 < 10u + 1

k = 10u + 1 ⇒ 1 > c2 > 1 ⇒ c2 = 1

Else for u enough great

n <
1− 10u

10u
⇒ −1 < n < lim

u−→∞

(
1− 10u

10u
) = −1

Impossible ! It means that c = 1 and we have 2c2 = 2 ≥ X, and

⇒ X = 2c2 = 2

And
X2p < 2c2Xq = Xq+1 ≤ X2p ⇒ q + 1 = 2p

The equation becomes
Y p = 22p−1 + 1

And also

(c2 − 1)Y pX−p−1 = 0 = Xp−1 − 1−Xp−2 = 2p−1 − 1− 2p−2 ⇒ 2p−2 = 1

⇒ p = 2 ⇒ q = 2p − 1 = 3 ⇒ Y = ±3

c
2 ≤ 1

2Xq −X2p =
72− 2(c+ c′)2 − (7c + c′)2

(c+ c′)2

>
64− 49c2

(c+ c′)2
> 0

Thus
Xq ≥ X2p−1

Or
q + 1 ≥ 2p

Also

2c2Xq −X2p =
72c2 − 2c2(c+ c′)2 − (7c + c′)2

(c+ c′)2

>
64c2 − (7c+ c′)2

(c+ c′)2
=

(c− c′)(15c + c′)

(c+ c′)2
> 0

4



And

c2Xq −X2p =
36c2 − (c+ c′)2 − (7c+ c′)2

(c+ c′)2

<
36c2 − (7c+ c′)2

(c+ c′)2
=

(c′ − c)(13c + c′)

(c+ c′)2
< 0

Let

4c−2 =
n+ 2

n+ 1
, X =

m+ 2

m+ 1

It is evident that n < 0 and m < 0 (2X − 1−X − 1 = X − 2 = −m

m+1
> 0). But

320n > −535 −
√
30225 ⇒ 160n2 + 535n + 400 < 0

⇒ 256n2(n + 1)2 + (5n+ 12)2 + n(160n2 + 535n + 400) + 12 > 0

⇒ (16n(n + 1) + 5n+ 12)2 > 9n2 − 16n− 12 = 9n(n+ 1)− 25n − 12

⇒ X > 2 >
−5n+

√
9n2 − 16n− 12

8n2 + 8n+ 6

⇒ (4n2 + 4n+ 3)X2 + 5nX + 1 > 0

⇒
1

X2
+

5n

X
+ 4n2 + 4n+ 3 = (m+ 1)2 + 5n(m+ 1) + 4n2 + 4n+ 3 > 0

⇒ (m+ 1)2 + n(4n+ 5m+ 9) + 3 > 0

⇒ (m+ n+ 1)(m− 1) + (2n + 1)(2m+ 2n+ 4) = (m+ 1)2 + n(4n+ 5m+ 9) + 3 > 0

⇒ (m+ n+ 1)(m − 1) + 2(2n + 1)(m + n+ 1) > −4n− 2

⇒ (m+ n+ 1)(m− 1 + 4n+ 2) = (m+m+ 1)(m+ 4n + 1) > −4n− 2

⇒ (m+ n+ 1)(
m

2
+ 2n +

1

2
) + 2n + 1 > 0

But if 2n+ 1 > 0 then 4c−2 = 1 + 1

n+1
< 3 < X thus 2n + 1 < 0 and also

m+ 1 + n =
2−X

X − 1
+

2− 4c−2

4c−2 − 1
+ 1 =

1

4c−2 − 1
+

2−X

X − 1

=
2X − 1 + 8c−2 − 2− 4c−2X

X − 1
=

2X(1 − c−2) + 2c−2(4−X)− 3

X − 1
< 0

⇒ (2n+ 1)(m + 1) < 0 < 2(n + 1) ⇒ −1−m < −1 +
1

−2n− 1
=

2n+ 2

−2n− 1

⇒ −m <
1

−2n− 1
⇒ m(2n + 1) < 1

⇒ m+ 2mn− 1 < 0 ⇒ 2m+ 2n+ 2mn < m+ 2n+ 1

⇒ (m+ n+ 1)(m+ n+mn) + 2n + 1 > (m+ n+ 1)(
m

2
+ 2n+

1

2
) + 2n+ 1 > 0

⇒ m(n+m+mn) + n(m+ n+mn+ 2) + 2(m+ n+mn+ 1)

> m(n+m+mn)+n(m+n+mn)+(m+n+mn+1)+2n = (m+n+1)(m+n+mn)+2n+1 > 0

⇒ m(m+ 1)(n + 1)−m+ n(m+ 1)(n + 1) + n+ 2(m+ 1)(n + 1) > 0
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⇒
(m+ 1)2(n+ 1) + n+ 1 + (n+ 1)2(m+ 1)− (m+ 1)

(m+ 1)(n + 1)
> 0

⇒
(m+ 1)2 + 1

m+ 1
+

(n+ 1)2 − 1

n+ 1
> 0

⇒ m+ 1 +
1

m+ 1
+ n+ 1−

1

n+ 1
= m+ 1 +X − 1 + n+ 1− 4c−2 + 1 > 0

⇒ 2 +X − 4c−2 > −m− n > 0 ⇒ 2X > 2 +X > 4c−2 > 2X

⇒ Xq+1 > 2c−2Xq > X2p ≥ Xq+1 ⇒ q + 1 = 2p

We want to prove with another matter that c−2 = 1, we have for all k > 1

kc−2 =
n+ 2

n+ 1

If

n >
1− 10u

10u
⇒ kc−2 < 10u + 1

k = 10u + 1 ⇒ 1 < c−2 < 1 ⇒ c2 = 1

Else

−1 < n < lim
u−→∞

(
1− 10u

10u
) = −1

Impossible ! It means that c2 = 1 and we have the Catalan solutions. The only
solution of Catalan equation is then

(Y,X, p, q) = (±3, 2, 2, 3)

Generalization to Pillai and Fermat-Catalan equation

The Pillai equation is Y p = Xq + a let us pose a = 1a1a thus

Y p = Xq + 1a1a

and Fermat-Catalan equation is Y p = Xq + Za. Let Za = 1a1a. Thus

Y p = Xq + 1a1a

We pose

c =
Xp − 1a

Y
p

2

, c′ =
7a −Xp

Y
p

2

Thus

Y
p

2 =
6a

c+ c′

Xp = cY
p

2 + 1a =
6ac

c+ c′
+ 1a =

7ac+ 1ac
′

c+ c′

And

Xq = Y p − 1a1a =
36a1a − 1a1a(c+ c′)2

(c+ c′)2

We have Xp > 7a hence c′ < 0 and c > c′ and Y
p

2 ≥ 3a thus 0 < c + c′ ≤ 2 Two
cases c2 > 1 and c2 ≤ 1
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c
2
> 1 We have

Xq −X2p =
36a1a − 1a1a(c+ c′)2 − (7ac+ 1ac

′)2

(c+ c′)2

<
36a1a − 36a1ac

2

(c+ c′)2
< 0

We deduce
q + 1 ≤ 2p

Also

2c2Xq −X2p =
72a1ac

2 − 2a1ac
2(c+ c′)2 − (7ac+ 1ac

′)2

(c+ c′)2

>
64a1ac

2 − (7ac+ 1ac
′)2

(c+ c′)2
= 1a1a

(c− c′)(15c + c′)

(c+ c′)2
> 0

And

c2Xq −X2p =
36a1ac

2 − 1a1a(c+ c′)2 − (7ac+ 1ac
′)2

(c+ c′)2

<
36a1ac

2 − (7ac+ 1ac
′)2

(c+ c′)2
= 1a1a

(c′ − c)(13c + c′)

(c+ c′)2
< 0

But
2c2X2p−1 ≥ 2c2Xq > X2p ⇒ 2c2 > X

Let

4c2 =
n+ 2

n+ 1
, X =

m+ 2

m+ 1

It is evident that n < 0 and m < 0 (2X − 1−X − 1 = X − 2 = −m

m+1
> 0). But

320n > −535 −
√
30225 ⇒ 160n2 + 535n + 400 < 0

⇒ 256n2(n + 1)2 + (5n+ 12)2 + n(160n2 + 535n + 400) + 12 > 0

⇒ (16n(n + 1) + 5n+ 12)2 > 9n2 − 16n− 12 = 9n(n+ 1)− 25n − 12

⇒ X > 2 >
−5n+

√
9n2 − 16n− 12

8n2 + 8n+ 6

⇒ (4n2 + 4n+ 3)X2 + 5nX + 1 > 0

⇒
1

X2
+

5n

X
+ 4n2 + 4n+ 3 = (m+ 1)2 + 5n(m+ 1) + 4n2 + 4n+ 3 > 0

⇒ (m+ 1)2 + n(4n+ 5m+ 9) + 3 > 0

⇒ (m+ n+ 1)(m− 1) + (2n + 1)(2m+ 2n+ 4) = (m+ 1)2 + n(4n+ 5m+ 9) + 3 > 0

⇒ (m+ n+ 1)(m − 1) + 2(2n + 1)(m + n+ 1) > −4n− 2

⇒ (m+ n+ 1)(m− 1 + 4n+ 2) = (m+m+ 1)(m+ 4n + 1) > −4n− 2

⇒ (m+ n+ 1)(
m

2
+ 2n +

1

2
) + 2n + 1 > 0
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But if 2n+ 1 > 0 then 4c2 = 1 + 1

n+1
< 3 < X thus 2n + 1 < 0 and also

m+ 1 + n =
2−X

X − 1
+

2− 4c2

4c2 − 1
+ 1 =

1

4c2 − 1
+

2−X

X − 1

=
2X − 1 + 8c2 − 2− 4c2X

X − 1
=

2X(1 − c2) + 2c2(4−X)− 3

X − 1
< 0

⇒ (2n+ 1)(m + 1) < 0 < 2(n + 1) ⇒ −1−m < −1 +
1

−2n− 1
=

2n+ 2

−2n− 1

⇒ −m <
1

−2n− 1
⇒ m(2n + 1) < 1

⇒ m+ 2mn− 1 < 0 ⇒ 2m+ 2n+ 2mn < m+ 2n+ 1

⇒ (m+ n+ 1)(m+ n+mn) + 2n + 1 > (m+ n+ 1)(
m

2
+ 2n+

1

2
) + 2n+ 1 > 0

⇒ m(n+m+mn) + n(m+ n+mn+ 2) + 2(m+ n+mn+ 1)

> m(n+m+mn)+n(m+n+mn)+(m+n+mn+1)+2n = (m+n+1)(m+n+mn)+2n+1 > 0

⇒ m(m+ 1)(n + 1)−m+ n(m+ 1)(n + 1) + n+ 2(m+ 1)(n + 1) > 0

⇒
(m+ 1)2(n+ 1) + n+ 1 + (n+ 1)2(m+ 1)− (m+ 1)

(m+ 1)(n + 1)
> 0

⇒
(m+ 1)2 + 1

m+ 1
+

(n+ 1)2 − 1

n+ 1
> 0

⇒ m+ 1 +
1

m+ 1
+ n+ 1−

1

n+ 1
= m+ 1 +X − 1 + n+ 1− 4c2 + 1 > 0

⇒ 2 +X − 4c2 > −m− n > 0 ⇒ 2X > 2 +X > 4c2 > 2X

⇒ Xq+1 > 2c2Xq > X2p ≥ Xq+1 ⇒ q + 1 = 2p

We want to prove with another matter that c2 = 1, we have for all k > 1, kc2 > 1,
let

kc2 =
n+ 2

n+ 1

If

n >
1− 10u

10u
⇒ kc−2 < 10u + 1

k = 10u + 1 ⇒ 1 < c−2 < 1 ⇒ c2 = 1

Else

−1 < n < lim
u−→∞

(
1− 10u

10u
) = −1

Impossible ! It means that c2 = 1

⇒ 2c2 = 2 ≥ X ⇒ X = 2c2 = 2

And
X2p < 2c2Xq = Xq+1 ≤ X2p ⇒ q + 1 = 2p

The equation becomes
Y p = X2p−1 + 1a1a
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And also

(2c2 −X)Y p = 0 = 2X2p − 4aX
p + 2a1a −X2p − 1a1aX

⇒
2a1a
X

= −X2p−1 + 4aX
p−1 + 1a1a ∈ N

⇒ X ≤ 2a1a

The equation has a finite number of solutions for a fixed 1a1a, then for Pillai equa-
tion and we will discuss below Fermat-Catalan.

c
2 ≤ 1

2Xq −X2p =
72a1a − 2a1a(c+ c′)2 − (7ac+ 1ac

′)2

(c+ c′)2

> 1a1a
64− 49c2

(c+ c′)2
> 0

Thus
Xq ≥ X2p−1

Or
q + 1 ≥ 2p

Let

4c−2 =
n+ 2

n+ 1
, X =

m+ 2

m+ 1

It is evident that n < 0 and m < 0 (2X − 1−X − 1 = X − 2 = −m

m+1
> 0). But

320n > −535 −
√
30225 ⇒ 160n2 + 535n + 400 < 0

⇒ 256n2(n + 1)2 + (5n+ 12)2 + n(160n2 + 535n + 400) + 12 > 0

⇒ (16n(n + 1) + 5n+ 12)2 > 9n2 − 16n− 12 = 9n(n+ 1)− 25n − 12

⇒ X > 2 >
−5n+

√
9n2 − 16n− 12

8n2 + 8n+ 6

⇒ (4n2 + 4n+ 3)X2 + 5nX + 1 > 0

⇒
1

X2
+

5n

X
+ 4n2 + 4n+ 3 = (m+ 1)2 + 5n(m+ 1) + 4n2 + 4n+ 3 > 0

⇒ (m+ 1)2 + n(4n+ 5m+ 9) + 3 > 0

⇒ (m+ n+ 1)(m− 1) + (2n + 1)(2m+ 2n+ 4) = (m+ 1)2 + n(4n+ 5m+ 9) + 3 > 0

⇒ (m+ n+ 1)(m − 1) + 2(2n + 1)(m + n+ 1) > −4n− 2

⇒ (m+ n+ 1)(m− 1 + 4n+ 2) = (m+m+ 1)(m+ 4n + 1) > −4n− 2

⇒ (m+ n+ 1)(
m

2
+ 2n +

1

2
) + 2n + 1 > 0

But if 2n+ 1 > 0 then 4c−2 = 1 + 1

n+1
< 3 < X thus 2n + 1 < 0 and also

m+ 1 + n =
2−X

X − 1
+

2− 4c−2

4c−2 − 1
+ 1 =

1

4c−2 − 1
+

2−X

X − 1

9



=
2X − 1 + 8c−2 − 2− 4c−2X

X − 1
=

2X(1 − c−2) + 2c−2(4−X)− 3

X − 1
< 0

⇒ (2n+ 1)(m + 1) < 0 < 2(n + 1) ⇒ −1−m < −1 +
1

−2n− 1
=

2n+ 2

−2n− 1

⇒ −m <
1

−2n− 1
⇒ m(2n + 1) < 1

⇒ m+ 2mn− 1 < 0 ⇒ 2m+ 2n+ 2mn < m+ 2n+ 1

⇒ (m+ n+ 1)(m+ n+mn) + 2n + 1 > (m+ n+ 1)(
m

2
+ 2n+

1

2
) + 2n+ 1 > 0

⇒ m(n+m+mn) + n(m+ n+mn+ 2) + 2(m+ n+mn+ 1)

> m(n+m+mn)+n(m+n+mn)+(m+n+mn+1)+2n = (m+n+1)(m+n+mn)+2n+1 > 0

⇒ m(m+ 1)(n + 1)−m+ n(m+ 1)(n + 1) + n+ 2(m+ 1)(n + 1) > 0

⇒
(m+ 1)2(n+ 1) + n+ 1 + (n+ 1)2(m+ 1)− (m+ 1)

(m+ 1)(n + 1)
> 0

⇒
(m+ 1)2 + 1

m+ 1
+

(n+ 1)2 − 1

n+ 1
> 0

⇒ m+ 1 +
1

m+ 1
+ n+ 1−

1

n+ 1
= m+ 1 +X − 1 + n+ 1− 4c−2 + 1 > 0

⇒ 2 +X − 4c−2 > −m− n > 0 ⇒ 2X > 2 +X > 4c−2 > 2X

⇒ Xq+1 > 2c−2Xq > X2p ≥ Xq+1 ⇒ q + 1 = 2p

We want to prove with another matter that c−2 = 1, we have for all k > 1

kc−2 =
n+ 2

n+ 1
> 1

If

n >
1− 10u

10u
⇒ kc−2 < 10u + 1

k = 10u + 1 ⇒ 1 < c−2 < 1 ⇒ c2 = 1

Else

−1 < n < lim
u−→∞

(
1− 10u

10u
) = −1

Impossible ! It means that c2 = 1 and

X2p > c2Xq > 2Xq−1 ≥ X2p−2

It means that
q + 1 = 2p

The equation becomes
Y p = X2p−1 + 1

And

0 ≥ (c2 − 1)Y p = X2p − 2aX
p −Xq = X2p − 2aX

p −X2p−1 ≥ 0
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⇒ (c2 − 1)Y p = 0 = X2p − 2aX
p −X2p−1

⇒
2a1a
X

∈ N

The equation has a finite number of solutions for Pillai ! For Fermat-Catalan equa-
tion which is

Y p = Xq + Za

We have the following solutions and explanations

1 + 23 = 31

When we have an equation like Y p = Xq−1a1a our approach is available but not
for Y p = 1a1a−Xq, it is why we must pose here c2(1a1a−Xq) = 1a1a+2Xp−2X2p

and also c′2(1a1a − Xq) = 49a1a + 2Xp − X2p and why there are the solution
q + 1 = 2p in one of the following equations and not in the other (for which
q + 3 = 2p) : 72 = 34 − 25 and 132 = −73 + 29, but for the same equations, we
do not have Y p = Xq + 1a1a because 1a1a is negative an can not be a square. But
for 712 = 173 + 27, our approach is available, we have p = 2, X = 17, q = 3,
Y = 71, 1a1a = 27 and all the conditions are satisfied, we have q = 2p − 1, but
for the same equation and p = 2, X = 2, q = 7, Y = 71, 1a1a = 173 we do
not have Xp = 22 = 4 greater than 7a, that is why q + 1 is not equal to 2p. Also
35 + 114 = 1222, p = 2, X = 3, q = 5, Y = 122, 1a1a = 114 (also X = 11,
q = 4, 1a1a = 35), we do not have X2 = 9 greater than 7a that is why q + 1 is not
equal to 2p. And for 15493042 = 156133 − 338, we have q + 1 = 2p = 3. And for
22134592 = 657−14143 and for 153122832 = 1137−92623, we have q+1 = 2p. But
for 210629382 = 762713 + 177, we have all the conditions for p = 2, X = 76271,
q = 3, Y = 21062938, 1a1a = 1, and also for 300429072 = 962223 + 438, we have
all the conditions for p = 2, X = 96222, q = 3, Y = 30042907, 1a1a = 438 but
not for p = 2, X = 43, q = 8, 1a1a = 962223 as 432 is not greater than 7a. Thus
Fermat-Catalan equation is equivalent to Y p = X2p−1 + Z2p−1 if the conditions
stated in our approach are satisfied, and the equation does not have solutions for
p > 2. It has only a finite number of solutions in all cases !

Conclusion

Catalan equation implies a second one, and an original solution of Catalan equa-
tion exists. We have generalized the approach to both Pillai and Fermat-Catalan
equations and proved that they have a finite number of solutions !
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