N
N

N

HAL

open science

SGD-QN: Careful Quasi-Newton Stochastic Gradient
Descent

Antoine Bordes, Léon Bottou, Patrick Gallinari

» To cite this version:

Antoine Bordes, Léon Bottou, Patrick Gallinari. SGD-QN: Careful Quasi-Newton Stochastic Gradient
Descent. Journal of Machine Learning Research, 2009, 10, pp.1737-1754. hal-00750911

HAL Id: hal-00750911
https://hal.science/hal-00750911

Submitted on 12 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00750911
https://hal.archives-ouvertes.fr

Journal of Machine Learning Research 10 (2009) 1737-1754 bm8ted 1/09; Revised 4/09; Published 7/09

SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent

Antoine Bordes' ANTOINE.BORDES@LIP6.FR
LIP6, Université Pierre et Marie Curie

104, Avenue du Président Kennedy

75016 Paris, France

Léon Bottou LEONB@NEC-LABS.COM
NEC Laboratories America, Inc.

4 Independence Way

Princeton, NJ 08540, USA

Patrick Gallinari PATRICK.GALLINARI @LIP6.FR
LIP6, Université Pierre et Marie Curie

104, Avenue du Président Kennedy

75016 Paris, France

Editors: Soeren Sonnenburg, Vojtech Franc, Elad Yom-Tov and Mic8Beleag

Abstract

TheSGD-QN algorithm is a stochastic gradient descent algorithm thekewn careful use of second-
order information and splits the parameter update intopeddently scheduled components. Thanks
to this designSGD-QN iterates nearly as fast as a first-order stochastic gradéstent but requires
less iterations to achieve the same accuracy. This algosithn the “Wild Track” of the first PAS-
CAL Large Scale Learning Challenge (Sonnenburg et al., 2008

Keywords: support vector machine, stochastic gradient descent

1. Introduction

The last decades have seen a massive increase of data quantitiesous damains such as bi-
ology, networking, or information retrieval, fast classification methods ableale ®n millions of
training instances are needed. Real-world applications demand learnimighaigowith low time
and memory requirements. The first PASCAL Large Scale Learning Cheall@annenburg et al.,
2008) was designed to identify which machine learning techniques bestsadtiese new concerns.
A generic evaluation framework and various data sets have been proadaldations were carried
out on the basis of various performance curves such as training timesvest error, data set size
versus test error, and data set size versus trainingltime.

Our entry in this competition, name®iGD-QN, is a carefully designe&tochastic Gradient
Descen{SGD) forlinear Support Vector MachingSVM).

Nonlinear models could in fact reach much better generalization performance omftios
proposed data sets. Unfortunately, even in the Wild Track case, the twaladteria for the com-
petition reward good scaling properties and short training durations more aapuhish subopti-
mal test errors. Nearly all the competitors chose to implement linear models in ordaeidctize

*. Also at NEC Laboratories America, Inc.
1. This material and its documentation can be fourid &p: / /| ar gescal e. first. fraunhofer. de/.

(©2009 Antoine Bordes, Léon Bottou and Patrick Gallinari.

BORDES BOTTOU AND GALLINARI

additional penalty implied by nonlinearities. Althoug&D-QN can work on nonlinear modefs,
we only report its performance in the context of linear SVMs.

Stochastic algorithms are known for their poor optimization performance. Hawevthe
large scale setup, when the bottleneck is the computing time rather than the numiz@ningtr
examples, Bottou and Bousquet (2008) have shown that stochastic algoritlemyield the best
generalization performances in spite of being worst optimizers. SGD algorithere therefore
a natural choice for the “Wild Track” of the competition which focuses on #lation between
training time and test performance.

SGD algorithms have been the object of a number of recent works. Bottod)(aAd Shalev-
Shwartz et al. (2007) demonstrate that the plain Stochastic Gradient Dgselels particularly
effective algorithms when the input patterns are very sparse, taking kes®tll) space and time
per iteration to optimize a system withparameters. It can greatly outperform sophisticated batch
methods on large data sets but suffers from slow convergence rasadly on ill-conditioned
problems. Various remedies have been propo&idchastic Meta-DescefBchraudolph, 1999)
heuristically determines a learning rate for each coefficient of the paraweeter. Although it can
solve some ill-conditioning issues, it does not help much for linear SVIN&gural Gradient De-
scent(Amari et al., 2000) replaces the learning rate by the inverse of the Rigéamametric tensor.
This quasi-Newton stochastic method is statistically efficient but is penalizeddtige by the cost
of storing and manipulating the metric tens@mnline BFGS0BFGS) andOnline Limited storage
BFGS (0LBFGS) (Schraudolph et al., 2007) are stochastic adaptations of thel@&r-Fletcher-
Goldfarb-Shanno (BFGS) optimization algorithm. The limited storage version ddltisithm is a
guasi-Newton stochastic method whose cost by iteration is a small multiple of thef ecstbadard
SGD iteration. Unfortunately this penalty is often bigger than the gains assbevitethe quasi-
Newton updateOnline Dual Solverdor SVMs (Bordes et al., 2005; Hsieh et al., 2008) have also
shown good performance on large scale data sets. These solvers applied to both linear and
nonlinear SVMs. In the linear case, these dual algorithms are surprising cl&&&Ddut do not
require fiddling with learning rates. Although this is often viewed as an advantegfeel that this
aspect restricts the improvement opportunities.

The contributions of this paper are twofold:

1. We conduct an analysis of different factors, ranging from algmiithrefinements to imple-
mentation details, which can affect the learning speed of SGD algorithms.

2. We present a novel algorithm, denote@D-QN, that carefully exploits these speedup op-
portunities. We empirically validate its properties by benchmarking it againstcidie-art
SGD solvers and by summarizing its results at the PASCAL Large Scale ihga@hal-
lenge (Sonnenburg et al., 2008).

The paper is organized as follows: Section 2 analyses the potential gajnasi¥Newton tech-
nigues for SGD algorithms. Sections 3 and 4 discuss the sparsity and implemensatém Binally
Section 5 presents tH#GD-QN algorithm, and Section 6 reports experimental results.

2. Stochastic gradient works well in models with nonlinear parametrizatiamr. SVMs with nonlinear kernels, we
would prefer dual methods, (e.g., Bordes et al., 2005), whiclegploit the sparsity of the kernel expansion.

1738

SGD-QN

2. Analysis

This section describes our notations and summarizes theoretical resulte tiedd@ant to the design
of a fast variant of stochastic gradient algorithms.

2.1 SGD for Linear SVMs

Consider a binary classification problem with exampes (x,y) € RY x {—1,+1}. The linear
SVM classifier is obtained by minimizing the primal cost function

rw) = LS dw) = TS (G 7 dwx)).)

where the hyper-paramet®r> 0 controls the strength of the regularization term. Although typical
SVMs use mildly non regular convex loss functions, we assume in this papethth#oss/(s)
is convex and twice differentiable with continuous derivatives C?[R]). This could be simply
achieved by smoothing the traditional loss functions in the vicinity of their non regalats.

Each iteration of the SGD algorithm consists of drawing a random training exampje) and
computing a new value of the parameigras

1
Wiyt = We— = Bat(w) where gr(we) = Awg + £ (YewyXe) Ve Xt (2)
where therescaling matrixB is positive definite. Since the SVM theory provides simple bounds
on the norm of the optimal parameter vector (Shalev-Shwartz et al., 20@&/positive constant
to is heuristically chosen to ensure that the first few updates do not pradparameter with an
implausibly large norm.

e The traditional first-order SGD algorithm, with decreasing learning rate, isnsutdy setting
B = A1l in the generic update (2):

Wiyl = Wy —

—— (W) 3

Mt+to) ot (W) 3)

e The second-order SGD algorithm is obtained by setrig the inverse of the Hessian Matrix
H = [27 (w})] computed at the optimunv’, of the primal cost?,(w) :

1 _
W1 = Wt—ﬁH 1gt(Wt)~ (4)

Randomly picking examples could lead to expensive random accesses towhmemory. In
practice, one simply performs sequential passes over the randomlyeshudiining set.

2.2 What Matters Are the Constant Factors

Bottou and Bousquet (2008) characterize the asymptotic learning propsrieschastic gradient
algorithms in thdarge scale regimethat is, when the bottleneck is the computing time rather than
the number of training examples.

The first three columns of Table 2.2 report the time for a single iteration, the nwhibemrations
needed to reach a predefined accumcgnd their product, the time needed to reach accupacy

1739

BORDES BOTTOU AND GALLINARI

Stochastic Gradient Costofone Iterations Timetoreach Tine toreach

Algorithm iteration toreach p accuracyp ‘E < C(Eapp+€)
1% Order SGD od) % +o(%) o(dvTKZ) O(%)
2 2
2"d Order SGD o(d?) %Jro(%) O(dTV) O(dTV)

Table 1: Asymptotic results for stochastic gradient algorithms, reproduoed Bottou and
Bousquet (2008). Compare the second last column (time to optimize) with the last
column (time to reach the excess test emoiegend n number of examples pa-
rameter dimensiong¢ positive constant that appears in the generalization bounds;
k condition number of the Hessian mattik v = tr (GH~!) with G the Fisher ma-
trix (see Theorem 1 for more details). The implicit proportionality coefficients in
notationsO() and) are of course independent of these quantities.

The excess test errd@ measures how much the test error is worse than the best possible error
for this problem. Bottou and Bousquet (2008) decompose the test errce aarthof three terms
E = Eapp+ Eest+ Fopt. The approximation errorZE,p, measures how closely the chosen family
of functions can approximate the optimal solution, @stimation errorkess measures the effect of
minimizing the empirical risk instead of the expected risk,apémization error£q, measures the
impact of the approximate optimization on the generalization performance.

The fourth column of Table 2.2 gives the time necessary to reduce thesdrsesrrort below
a target that depends en> 0. This is the important metric because the test error is the measure that
matters in machine learning.

Both the first-order and the second-order SGD require a time inversepogional to€ to
reach the target test error. Only the constants differ. The secaled-@igorithm is insensitive to the
condition numbek of the Hessian matrix but suffers from a penalty proportional to the dimension
d of the parameter vector. Therefore, algorithmic changes that exploittbad®rder information
in SGD algorithms are unlikely to yield superlinear speedups. We can at besivienjie constant
factors.

This property is not limited to SGD algorithms. To reach an excess grtbe most favorable
generalization bounds suggest that one needs a number of examples praptotiga. Therefore,
the time complexity of any algorithm that processes a non vanishing fraction & #xasnples
cannot scale better thariel In fact, Bottou and Bousquet (2008) obtain slightly worse scaling laws
for typical non-stochastic gradient algorithms.

2.3 Limited Storage Approximations of Second-Order SGD

Since the second-order SGD algorithm is penalized by the high cost airpéng the update (2)
using a full rescaling matriB = H—1, it is tempting to consider matrices that admit a sparse repre-
sentation and yet approximate the inverse Hessian well enough to redussgtitere impact of the
condition numbek.

The following theorem describes how the convergence speed of the@8@&D algorithm (2)
is related to the spectrum of matiiB.

1740

SGD-QN

Theorem 1 Let Eg; denote the expectation with respect to the random selection of the examples
(xt,Yt) drawn independently from the training set at each iteration. Wgt= argmin, Z,(w) be an
optimum of the primal cost. Define the Hessian malttix %%, (w;,) /ow? and the Fisher matrix

G =Gy =Eq [g(W};) gt (wy;) '] If the eigenvalues dfiB are in rangeAmax > Amin > 1/2, and if the

SGD algorithm(2) converges tav;,, the following inequality holds:

tr (HBGB) tr (HBGB)
2)\max_1 27\min“1

The proof of the theorem is provided in the appendix. Note that the theassomes that
the generic SGD algorithm converges. Convergence in the first-orderhzdds under very mild
assumptions (e.g., Bottou, 1998). Convergence in the generic SGD caseéduddsdit reduces to
the first-order case with a the change of variable- B-zw. Convergence also holds under slightly
stronger assumptions when the rescaling m@rchanges over time (e.g., Driancourt, 1994).

The following two corollaries recover the maximal number of iterations listed in TABlgvith
v=tr (GH—l) andk = A~1||H||. Corollary 2 gives a very precise equality for the second-order
case because the lower bound and the upper bound of the theoremetatikesiidvalues. Corollary 3
gives a much less refined bound in the first-order case.

t 4o (th) <Eg[Ba(Wh) — Ba(wj)] < t1+o(td).

Corollary 2 AssumeB = H~! as in the second-order SGD algorithi#). Under the assumptions
of Theorem 1, we have

Eg [Ba(W) — Ba(wp)] = tr (GH Yt 1 4+0(t™) = vt t+o(t?).

Corollary 3 AssumeB = A1l as in the first-order SGD algorithr¢8). Under the assumptions of
Theorem 1, we have

Eg [Ba(W) — Ba(wj)] < A2t (HBGH)t +0(t7h) < k?vtt+o(t?).
An often rediscovered property of second order SGD provides efiulysoint of reference:

Theorem 4 (Fabian, 1973; Murata and Amari, 1999; Bottou and LeCu, 2005)

Letw* = arg min%HWHZ—i-EX’y [¢(yw'x)]. Given a sample of n independent exampkesy;) , define
w;, = argmin, ,(w) and computev, by applying the second-order SGD updégto each of the
n examples. If they converge, bottE fllw, —w*||?] and rE [|\w;,—w*|?] converge to a same
positive constant K when n increases.

This result means that, asymptotically and on average, the paramgbbtained after one pass
of second-order SGD is as close to the infinite training set solwtioas the true optimum of the
primal w;,. Therefore, when the training set is large enough, we can expeca giagle pass of
second-order SGIn(iterations of (4)) optimizes the primal accurately enough to replicate the test
error of the actual SVM solution.

When we replace the full second-order rescaling marix H-1 by a more computationally
acceptable approximation, Theorem 1 indicates that we lose a constantKamtothe required
number of iterations to reach that accuracy. In other words, we cantaxpeplicate the SVM test
error afterk passes over the randomly reshuffled training set.

On the other hand, a well chosen approximation of the rescaling matrix caa Eage constant
factor on the computation of the generic SGD update (2). The best training time¢besefore
obtained by carefully trading the quality of the approximation for sparsesepitations.

1741

BORDES BOTTOU AND GALLINARI

Frequency Loss
_ A ski
Special example: n ° 1]'DIIWHZ
skip 2
Examples 1 ton: 1 L(YiWXi)

Table 2: The regularization term in the primal cost can be viewed as an addlitiaiming example
with an arbitrarily chosen frequency and a specific loss function.

2.4 More Speedup Opportunities

We have argued that carefully designed quasi-Newton techniquesweam £onstant factor on the
training times. There are of course many other ways to save constansfacto

e Exploiting the sparsity of the patteriisee Section 3) can save a constant factor in the cost of
each first-order iteration. The benefits are more limited in the second-oskericause the
inverse Hessian matrix is usually not sparse.

e Implementation detailgsee Section 4) such as compiler technology or parallelization on a
predetermined number of processors can also reduce the learning timesbgrtdactors.

Such opportunities are often dismissed as engineering tricks. Howeyeshbald be consid-
ered on an equal footing with quasi-Newton techniques. Constant fawtdter regardless of their
origin. The following two sections provide a detailed discussion of sparsttyraplementation.

3. Scheduling Stochastic Updates to Exploit Sparsity

First-order SGD iterations can be made substantially faster when the pattaresparse. The
first-order SGD update has the form

Wit = Wi — O0Wp — BeXe, (5)

wherea; and[3; are scalar coefficients. Subtractifig; from the parameter vector involves solely
the nonzero coefficients of the pattegn On the other hand, subtractiogw; involves alld coeffi-
cients. A naive implementation of (5) would therefore spend most of the time gsiocgthis first
term. Shalev-Shwartz et al. (2007) circumvent this problem by reptiagegthe parametew; as the
productsVv; of a scalar and a vector. The update (5) can then be compugedias (1— a;)s and
Vi1 = Vi — BXt/S+1 In time proportional to the number of nonzero coefficients;in

Although this simple approach works well for the first order SGD algorithm, ésdwt extend
nicely to quasi-Newton SGD algorithms. A more general method consists of treatinggihlar-
ization term in the primal cost (1) as an additional training example occurring witirtztvarily
chosen frequency with a specific loss function.

Consider examples with the frequencies and losses listed in Table 2 and witesthge loss:

1
nn

skip

_oskip A o1& L

n (Askip, . L
itz (P2 IWIR) + 3w

1742

SGD-QN

SGD SVMSGD2
Require: A, wg,to, T Require: A, wo,to, T, skip
1:t=0 1: t=0, count =skip
2: whilet <T do 2: whilet<T do
j: W1 =W — A(tiito)()‘wt 0 (VWi Xe)Xt) ‘31: let: Wi — T}rtoiéf()/tWIXt)tht
: count = count —
5: 5 if count <Othen
6: 6: W&+1::Wh+1—'%§§mh+1
7 7 count =ski p
8: 8 end if
9: t=t+1 9: t=t+1
10: end while 10: end while
11: returnwT 11: return wr

Figure 1: Detailed pseudo-codes of #@D andSVYMSGD?2 algorithms.

Minimizing this loss is of course equivalent to minimizing the primal cost (1) with fsil@ization
term. Applying the SGD algorithm to the examples defined in Table 2 separategtiarization
updates, which involve the special example, from the pattern updates, inkaitie the real ex-
amples. The parametekip regulates the relative frequencies of these updates.SVMSGD2
algorithm (Bottou, 2007) measures the average pattern sparsity and pirekgiarfcy that ensures
that the amortized cost of the regularization update is proportional to the nuhbenzero co-
efficients. Figure 1 compares the pseudo-codes of the naive first-®@Ierand of the first-order
SVMSGD2. Both algorithms handle the real examples at each iteration (line \WasGD2 only
performs a regularization update evetyip iterations (line 6).

Assumes is the average proportion of nonzero coefficients in the pattgrasd setskip to
c/swherec is a predefined constant (we use- 16 in our experiments). Each pattern update (line
3) requiressd operations. Each regularization update (line 6) requdreperations but occurs/c
times less often. The average cost per iteration is therefore proportio@dsth instead ofO (d).

4. Implementation

In the optimization literature, a superior algorithm implemented with a slow scripting lgegua
usually beats careful implementations of inferior algorithms. This is becausepkear algorithm
minimizes the training error with a higher order convergence.

This is no longer true in the case of large scale machine learning becausarevabout the
test error instead of the training error. As explained above, algorithm weprents do not improve
the order of the test error convergence. They can simply improve curfatstors and therefore
compete evenly with implementation improvemehitae spent refining the implementation is time
well spent.

e There are lots of methods for representing sparse vectors with shar@gedif computing
requirement for sequential and random access. Our C++ implementatiapsalises a full

1743

BORDES BOTTOU AND GALLINARI

Full Sparse
Random access to a single coefficient: 0(1) O(s)
In-place addition into a full vector of dimensiatx O(d) O(s)

In-place addition into a sparse vector witmonzeros: ©(d+s) O(s+59)

Table 3: Costs of various operations on a vector of dimendiaith s nonzero coefficients.

vector for representing the parameterbut handles the pattermsusing either a full vector
representation or a sparse representation as an ordered list of indexgaatu

Each calculation can be achieved directly on the sparse representatidarax abnversion
to the full representation (see Table 3). Inappropriate choices havageotrs costs. For
example, on a dense data set with 500 attributes, using sparse vectoasésciige training
time by 50%; on the sparse RCV1 data set (see Table 4), using a spetsetoaepresent
the parametew increases the training time by more than 900%.

e Modern processors often sport specialized instructions to handle sectdrmultiple cores.
Linear algebra libraries, such BISAS, may or may not use them in ways that suit our purposes.
Compilation flags have nontrivial impacts on the learning times.

Such implementation improvements are often (but not always) orthogonala@rhmic im-
provements described above. The main issue consists of deciding how svgtbpiment resources
are allocated to implementation and to algorithm design. This trade-off depende auditable
competencies.

5. SGD-QN: A Careful Diagonal Quasi-Newton SGD

As explained in Section 2, designing an efficient quasi-Newton SGD algoiitholves a careful
trade-off between the sparsity of the scaling matrix representBtiamd the quality of its approxi-
mation of the inverse Hessiah 1. The two obvious choices are diagonal approximations (Becker
and Le Cun, 1989) and low rank approximations (Schraudolph et al., 2007)

5.1 Diagonal Rescaling Matrices

Among numerous practical suggestions for running SGD algorithm in multilayeaheeiworks,

Le Cun et al. (1998) emphatically recommend to rescale each input spaoefearder to improve

the condition numbek of the Hessian matrix. In the case of a linear model, such preconditioning
is similar to using a constant diagonal scaling matrix.

Rescaling the input space defines transformed pattéfrssich that[X]; = b; [x;], where the
notation|v]; represents théth coefficient of vecton. This transformation does not change the
classification if the parameter vectors are modifiefWég; = [w;]; /bi. The first-order SGD update
on these modified variable is then

Vi=1l..d [Wia], = Wi —ne AW + £ (Wi Xe) v [X,)
= [WiJ; —ne (\We; + £ (vewixe) ye bixe];) -

1744

SGD-QN

Multiplying by b; shows how the original parameter vectgris affected:
Vi=1...d (Wl = W —ne (AW + £ (viwixe) ye b? [x;) -

We observe that rescaling the input is equivalent to multiplying the gradient bea diiagonal
matrix B whose elements are the squares of the coefficlents

Ideally we would like to make the produBtd spectrally close the identity matrix. Unfortunately
we do not know the value of the Hessian matrxat the optimunw;,. Instead we could consider
the current value of the Hessi#hy, = ?”(w;) and compute the diagonal rescaling maBixhat
makesBH,,, closest to the identity. This computation could be very costly because it involees th
full Hessian matrix. Becker and Le Cun (1989) approximate the optimal dagescaling matrix
by inverting the diagonal coefficients of the Hessian. The method relies @m#igtical derivation
of these diagonal coefficients for multilayer neural networks. This dgolm does not extend to
arbitrary models. It certainly does not work in the case of traditional SVMsau&e the hinge loss
has zero curvature almost everywhere.

5.2 Low Rank Rescaling Matrices

The popular LBFGS optimization algorithm (Nocedal, 1980) maintains a low rapfoajmation

of the inverse Hessian by storing themost recent rank-one BFGS updates instead of the full
inverse Hessian matrix. When the successive full gradiéite;_1) and 2,(w;) are available,
standard rank one updates can be used to directly estimate the inversanHessixH 1. Using

this method with stochastic gradient is tricky because the full gradigfits;_;) and B;(w;) are

not readily available. Instead we only have access to the stochastic estimates_1) andg; (w;)
which are too noisy to compute good rescaling matrices.

TheoLBFGS algorithm (Schraudolph et al., 2007) compares instead the derivativesv; 1)
andg;_1(w;) for the same example:_1,Yi—1). This reduces the noise to an acceptable level at the
expense of the computation of the additional gradient vegtar(w;).

Compared to the first-order SGD, each iteration ofdhBFGS algorithm computes the addi-
tional quantityg: 1 (w;) and updates the list &frank one updates. The most expensive part however
remains the multiplication of the gradiegtw;) by the low-rank estimate of the inverse Hessian.
With k = 10, each iteration of owLBFGS implementation runs empirically 11 times slower than a
first-order SGD iteration.

5.3 SGD-QN

TheSGD-QN algorithm estimates@iagonal rescaling matrixsing a technique inspired byBFGS.
For any pair of parameterg 1 andw;, a Taylor series of the gradient of the primal c@gprovides
the secant equation:

Wi — W1 & Hyt (Bn(We) — Bh(We-1)) . (6)

We would then like to replace the inverse Hessian m&l(;i;t% by a diagonal estimat®
W —Wi_1 =~ B (fPé(Wt) — (.Pr;(Wt_l)) .

Since we are designing a stochastic algorithm, we do not have access ttl gradient®,. Fol-
lowing oLBFGS, we replace them by the local gradiegts: (w;) andg;_1(w;—1) and obtain

Wi — W1 ~ B (g-1(Wp) — G-1(We-1)) .

1745

BORDES BOTTOU AND GALLINARI

Since we chose to use a diagonal rescaling m&8yiwe can write the term-by-term equality

Wt —wi—1]; ~ Bii [Gt—1(Wt) — Gt—1(We—1)]; »

where the notatiofv]; still represents theth coefficient of vector. This leads to computinB;
as the average of the ratjoy —wi_1];/[Gi—1(Wt) — Gi—1(Wi—1)];. An online estimation is easily
achieved during the course of learning by performing a leaky averfapese ratios,

B”<_B”+2< Wt — Wh —B“) Vi=1...d,
r\[g-1(Wt) — Ge—1(Wi-1)];
and where the integeris incremented whenever we update the marix

The weights of the scaling matrB are initialized to\ ! because this corresponds to the exact
setup of first-order SGD. Since the curvature of the primal cost (1jiaya larger than, the ratio
[Ot—1(Wt) — Gr—1(Wi—1)]i/[Wr —We—1]; is always larger thai. Therefore the coefficien; never
exceed their initial valud~1. Basically these scaling factors slow down the convergence along
some axes. The speedup does not occur because we follow the trajaster, but because we
follow a better trajectory.

Performing the weight update (2) with a diagonal rescaling m&roonsists in performing
term-by-term operations with a time complexity that is marginally greater than the catgpéx
the first-order SGD (3) update. The computation of the additional gradietdnggc;(w;) and the
reestimation of all the coefficienB;; essentially triples the computing time of a first-order SGD
iteration with non-sparse inputs (3), and is considerably slower than afi@et-SGD iteration with
sparse inputs implemented as discussed in Section 3.

Fortunately this higher computational cost per iteration can be nearly avoidednieguling
the reestimation of the rescaling matrix with the same frequency as the regularizadites. Sec-
tion 5.1 has shown that a diagonal rescaling matrix does little more than rescalingutesnables.
Since a fixed diagonal rescaling matrix already works quite well, there is littled teeapdate its
coefficients very often.

Figure 2 compares theVMSGD2 and SGD-QN algorithms. Wheneve8VMSGD2 performs
a regularization update, we set the flggdat eB to schedule a reestimation of the rescaling co-
efficients during the next iteration. This is appropriate because bothtuperdave comparable
computing times. Therefore the rescaling matrix reestimation schedule can be meguthtéhe
sameski p parameter as the regularization updates. In practice, we observe thas@aelN
iteration demands less than twice the time of a first-order SGD iteration.

BecauseSGD-QN reestimates the rescaling matrix after a pattern update, special care must
be taken when the ratiovy —w;_1]; /[0i—1(Wt) — Gi—1(Wi—1)]; has the form @0 because the corre-
sponding input coefficierik;_1]; is zero. Since the secant Equation (6) is valid for any two values
of the parameter vector, one can compute the ratios with parameter vegterandw; + € and
derive the correct value by continuity wher- 0. When[x;_1}; = 0, we can write

[(wWe+E)—wh1]; _ [(We+E)—wi_1];
1G-2(WeH€) =02 (We-1) AL(we-+€)—w 1+ (¢ (V1 (WeA-€) ™xe1)— € (Yo aw{_pxe—1)) ot e

— (a (5,(yt—l(Wt+£)Txt—l)76/(yt—lW?71Xt—l))YI—l[Xt—l]i -
= M W+ —we]

- (A+ﬁ)fl E20 \1,

1746

SGD-QN

SVMSGD2 SGD-OQN
Require: A, wo,to, T, skip Require: A, wo,to, T, skip
1: t=0, count =skip 1: t =0, count =skip,
2: 2: B=A"11; updateB=false; r=2
3: whilet <T do 3: whilet <T do
4: Wi =W — WLO)W(YtWIXt)tht 4 Wi =W — (t+to) 1 (ew{x)yt Bxe
5: 5 if updateB=true then
6: 6: Pt = Ot (Wit1) — G (We)
7 7. Vi, Bjj = Bjj + 2 <[Wt+l*Wt}i [Pt]i_lfBii>
g 8 Vi, Bjj = max(Bii,lO*z)rl)
10'_ 9 r=r+1; updateB=false

10: end if
11: count = count —1
12: if count < Othen

11: count = count -1
12: if count < 0then
13: Wiyt =Wy 1—ski p (t+19) " Twy g

) 13: Wiyt =W 1—Skip(t+to) " TABw 1
1a: cqunt =skip 14: count =ski p; updateB=true
15: endif) .
15: end if
16: t=t+1 .
17- end whil 16: t=t+1
- endwhile 17: end while

18: returnw 18: return w

Figure 2: Detailed pseudo-codes of #$MSGD2 andSGD-QN algorithms.

Data Set| Train. Ex. Test. Ex. Features s | A to skip
ALPHA 100,000 50,000 500 1105 1c° 16
DELTA 100,000 50,000 500 1|10% 10 16

RCV1 781,265 23,149 47,152 .@16| 10% 10> 9,965

Table 4: Data sets and parameters used for experiments.

6. Experiments

We demonstrate the good scaling propertieS@Db-QN in two ways: we present a detailed compar-
ison with other stochastic gradient methods, and we summarize the resultedintaithe PASCAL
Large Scale Challenge.

Table 4 describes the three binary classification tasks we used for compargpieriments.
The Alpha and Delta tasks were defined for the PASCAL Large Scale Cgal({&onnenburg et al.,
2008). We train with the first 100,000 examples and test with the last 50,000 examfihe official
training sets because the official testing sets are not available. Alpha #ladabedense data sets
with relatively severe conditioning problems. The third task is the classificatiBECdfL documents
belonging to class CCAT (Lewis et al., 2004). This task has become a siidmetachmark for linear
SVMs on sparse data. Despite its larger size, the RCV1 task is much easieidpith and Delta
tasks. All methods discussed in this paper perform well on RCV1.

1747

BORDES BOTTOU AND GALLINARI

ALPHA RCV1

SGD 0.13 36.8
SVMSGD2 0.10 0.20

SGD-QN 021 0.37

Table 5: Time (sec.) for performing one pass over the training set.

The experiments reported in Section 6.4 use the hinge/l@gs= max0,1—s). All other ex-
periments use the squared hinge 16& = (max(0,1—s))2. In practice, there is no need to make
the losses twice differentiable by smoothing their behavior aead. Unlike most batch optimizer,
stochastic algorithms do not not aim directly for nondifferentiable points;amdomly hop around
them. The stochastic noise implicitly smoothes the loss.

The SGD, SVMSGD2, oLBFGS, andSGD-QN algorithms were implemented using the same
C++ code bas@.All experiments are carried out in single precision. We did not experirnoeer-
ical accuracy issues, probably because of the influence of the regtilen term. Our implementa-
tion of oLBFGS maintains a rank 10 rescaling matrix. Setting th&FGS gain schedule is rather
delicate. We obtained fairly good results by replicating the gain schedule ¥i¢RF packagé.
We also propose a comparison with the online dual linear SVM solver (Hsieh 20aB) imple-
mented in theLibLinear package. We did not reimplement this algorithm because Lt inear
implementation has proved as simple and as efficient as ours.

The tp parameter is determined using an automatic procedure: since the size ofinimgtra
set does not affect results of Theorem 1, we simply pick a subset cimgdi% of the training
examples, perform ong@GD-QN pass over this subset with several valuegfpand pick the value
for which the primal cost decreases the most. These values are giveléndTa

6.1 Sparsity Tricks

Table 5 illustrates the influence of the scheduling tricks described in Sectione3table displays
the training times o6§GD andSVMSGD2. The only difference between these two algorithms are the
scheduling tricksSVMSGD?2 trains 180 times faster tha8GD on the sparse data set RCV1. This
table also demonstrates that iterations of the quasi-ne®@@IQN are not prohibitively expensive.

6.2 Quasi-Newton

Figure 3 shows how the primal cagt(w) of the Alpha data set evolves with the number of passes
(left) and the training time (right). Compared to the first-or@88MSGD2, both theoLBFGS and
SGD-QN algorithms dramatically decrease the number of passes required to achieve \smiasr

of the primal. Even if it uses a more precise approximation of the inverse HessBIFGS does

not perform better after a single pass tf&®ED-QN. Besides, running a single passaBFGS is
much slower than running multiple passesS&fMSGD2 or SGD-QN. The benefits of its second-
order approximation are canceled by its greater time requirements per iteratidhe Other hand,

3. Implementations and experiment scripts are available ihitbegdgn library onhtt p: / / ww. ni 0ss. or g.
4. This can be found &t t p: / / ww. of ai . at/ ~j ereny. j ancsary.
5. This can be found dut t p: / / www. csi e. ntu. edu. tw ~cjlin/liblinear.

1748

SGD-QN

0.40 T T 0.40 T
SVMSGD2 —— SVMSGD2 ——
; SGD-QN | SGD-QN
038l OLBFGS k- | ag| OLBFGS -3~ |
0.36 P 0.36 |
0.34 & 0.34 .
*x I s

030 1 1 1 1 030 1 1 1

0 2 4 6 8 10 0 0.5 1 1.5 2

Number of epochs Training time (sec.)

Figure 3: Primal costs according to the number of epochs (left) and the galonation (right) on
the Alpha data set.

eachSGD-QN iteration is only marginally slower than@®/MSGD?2 iteration; the reduction of the
number of iterations is sufficient to offset this cost.

6.3 Training Speed

Figure 4 displays the test errors achieved on the Alpha, Delta and RG¥ $e&la as a function of the
number of passes (left) and the training time (right). These results show agtiothoLBFGS and
SGD-QN require less iterations thaBVMSGD?2 to achieve the same test error. HowewBFGS
suffers from the relatively high complexity of its update process. @GB-QN algorithm is com-
petitive with the dual solvetibLinear on the dense data sets Alpha and Delta; it runs significantly
faster on the sparse RCV1 data set.

According to Theorem 4, given a large enough training set, a perdecinsl-order SGD algo-
rithm would reach the batch test error after a single pass. One pass tgigraitractive when we are
dealing with high volume streams of examples that cannot be stored and retjigekly. Figure 4
(left) shows thabLBFGS is a little bit closer to that ideal tha®GD-QN and could become attractive
for problems where the example retrieval time is much greater than the computing time.

6.4 PASCAL Large Scale Challenge Results

The SGD-QN algorithm has been submitted to the “Wild Track” of the PASCAL Large Scalé-Cha
lenge. Wild Track contributors were free to do anything leading to more eftiarhmore accurate
methods. Forty two methods have been submitted to this track. Table 6 sho&GDh@N ranks
determined by the organizers of the challenge according to their evaluatiamecritbe SGD-QN
algorithm always ranks among the top five submissions and ranks first ialloseore (tie with
another Newton method).

1749

BORDES BOTTOU AND GALLINARI

27.0 T T 27.0 .
: SVMSGD2 —— SVMSGD2 ——
| SGD-QN < ,, SGD-QN <
26.0F | OLBFGS - { 26.0r s OLBFGS - A
i LibLinear - [-] LibLinear - [-]
25.0 | 3 25.0 L
240} 240
23.0 %% i 230F o T)M N\ T ER K
e Y,
N N 2 N A S S i
220} HRAFHREHIHR 220}]
21.0 . : : . 21.0 : : :
0 2 4 6 8 10 0 0.5 1 15 2
Number of epochs Training time (sec.)
ALPHA DATA SET
25.0 ‘ ‘ 25.0 — ‘ ‘
SVMSGD2 —+— i : SVMSGD2 —+—
L SGD-QN ¢ | R SGD-QN ¢ |
24.5 OLBFGS ¥ 24.5 OLBFGS 3
240 LibLinear [} | 240 LibLinear -{-}- |
235+ 1 235}
230+ 1 230+
225+ 3 1 225+
2201 g v 220}
215} %%&%%&%9@%% X 2151t
21.0 ‘ : : ‘ 21.0 ‘ ‘ : :
0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1
Number of epochs Training time (sec.)
DELTA DATA SET
7.0 T T 7.0 :
SVMSGD2 —— SVMSGD2 ——
. SGD-QN < | ol SGD-QN ¢ |
“o LibLinear -] ' LibLinear -]
6.6 1 6.6 1
6.4 1 64t 1
6.2 1 6.2 - 1
6.0 6.0 r 1
58 5.8
56 I I I I 5-6 I I I
0 1 2 3 4 5 0 0.5 1 15 2

Number of epochs Training time (sec.)

RCV1DATA SET

Figure 4: Test errors (in %) according to the number of epochs (leftjraimdng duration (right).

1750

SGD-QN

Data Set | A skip Passeg Rank

Alpha 10° 16 10 18t
Beta 104 16 15 3rd
Gamma | 103 16 10 18t
Delta 103 16 10 13t
Epsilon | 10° 16 10 5th
Zeta 10° 16 10 4th
OCR 10°° 16 10 2nd
Face 10° 16 20 4th
DNA 10° 64 10 2nd
Webspam| 105 71,066 10 | 4

Table 6: Parameters and final ranks obtaine&®p-QN in the “Wild Track” of the first PASCAL
Large Scale Learning Challenge. All competing algorithms were run by the iaegan
(Note: the competition results were obtained with a preliminary versic®Gi-QN. In
particular thex parameters listed above are different from the values used for alliexpe
ments in this paper and listed in Table 4.)

7. Conclusion

The SGD-QN algorithm strikes a good compromise for large scale application because it has low
time and memory requirements per iteration and because it reaches competitiveorssafter a
small number of iterations. We have shown how this performance is the resuttaseful design
taking into account the theoretical knowledge about second-ordersé®@R precise understanding

of its computational requirements.

Finally, although this contribution preser#6D-QN as a solver for linear SVMs, this algorithm
can be easily extended to nonlinear models for which we can analytically computeathierds.
We plan to further investigate the performanceaD-QN in this context.

Acknowledgments

Part of this work was funded by NSF grant CCR-0325463 and by thé&Etwork of Excellence
PASCAL2. Antoine Bordes was also supported by the French DGA.

Appendix A. Proof of Theorem 1

Definev; = w; —wy, and observe that a second-order Taylor expansion of the primal gives
Pa(We) — Pa(Wj) = ViHV{+0(t72) = tr (Hvyv{) +o(t7?).

Let [E;_1 representing the conditional expectation over the choice of the example at itdration
given all the choices made during the previous iterations. Since we assurngertiiargence takes

1751

BORDES BOTTOU AND GALLINARI

place, we have

Ero1[g-1(Wi—1) G—1(Wi—1)'] = Eioa [g-1(Wh) g—1(wp)'] +0(1) = G+0(1)
and By 1[g-1(We-1)] = Pr(Wi-1) = Hve1+0(vie1) = leHve g

where notatior¢ is a shorthand for+0(1), that is, a matrix that converges to the identity.
Expressing-viv; using the generic SGD update (2) gives

Hvi1ga(we-1)'B HBga(Wi-1)Vi 4

T _ n _
Hvve = Hviavig t+1 t+1
HBgt 1(Wt 1)0 1(Wi-1)'B
(t+to)2
Hvi_1v] ;HI¢B HBl¢Hvi_1V]_ HBGB _
S T t-1 _ t—1 2
Er g [Hvivi] = Hveav g Tt Tt (112 + o(t™)
2tr (HBlgHvi_1v{_ tr (HBGB _
B fr (M) = tr (M) — 2o et 1) ((H-to)z) Lot ?)
2Eg |tr (HBlgHvi_1v]_ tr (HBGB _
Boft (Hvo)] = B [(v o o)) — 2ol (BIMaD)] WIHBOR) g oos)

Let Amax > Amin > 1/2 be the extreme eigenvalueskB. Since, for any positive matriX,
(Amin+0(2)) tr (X) < tr (HBI¢X) < (Amax+0(1)) tr (X)

we can brackeEg [tr (Hvv{)] between the expressions

2)\max T G —
(1— . +o(tl)> Eo [tr (Hve_1vi 1)] + tr((tiBto)E) +o(t7?)

and

2Amin 1 T HBGB -
(1— t+o(t>) Eo [tr (Hvi—1v{_)] + tr((H—to)Z) +oft 2)

By recursively applying this bracket, we obtain
u)\max(t+t0) < Eq [tr (HVtVI)] < uAmin(t—i_tO)

where the notatiom, (t) represents a sequence of real satisfying the recursive relation

u(t) = (1—2t)\+o(t1>) uA(t—l)+tr(H§GB)+o(t12> :

From (Bottou and LeCun, 2005, Lemma 4)> 1/2 impliest u (t) — HESB) Then

tr (HBGB) .,

S +o(t™) <Eg tr (Hvevf)] < A1 +o(t™h)
and
w (HBGB), 1, o1 _) < THBGB) 1 gt
2}\max_ 1 t +O(t) <Eg [an(Wt) an(Wn)] < 2)\min—1 t +o(t) . [}

1752

SGD-QN

References

S.-l. Amari, H. Park, and K. Fukumizu. Adaptive method of realizing naignadient learning for
multilayer perceptrondNeural Computation12:1409, 2000.

S. Becker and Y. Le Cun. Improving the convergence of back-petjayglearning with second-
order methods. IRroc. 1988 Connectionist Models Summer Schoadies 29—37. Morgan Kauf-
man, 1989.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifigh online and active
learning.J. Machine Learning Research:1579-1619, September 2005.

L. Bottou. Online algorithms and stochastic approximations. In David Saad, €dittime Learning
and Neural NetworksCambridge University Press, Cambridge, UK, 1998.

L. Bottou. Stochastic gradient descent on toy problems, 200%t p://| eon. bottou. or g/
proj ect s/ sgd.

L. Bottou and O. Bousquet. The tradeoffs of large scale learningddin in Neural Information
Processing Systemelume 20. MIT Press, 2008.

L. Bottou and Y. LeCun. On-line learning for very large datasépplied Stochastic Models in
Business and Industr1(2):137-151, 2005.

X. Driancourt. Optimisation par descente de gradient stochastique de systémes modudaitegis ¢
nant réseaux de neurones et programmation dynamiB® thesis, Université Paris XI, Orsay,
France, 1994.

V. Fabian. Asymptotically efficient stochastic approximation; the RM césmals of Statistigsl
(3):486-495, 1973.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. Keerthi, and S. Sundarara)adual coordinate descent
method for large-scale linear SVM. Proc. 25th Intl. Conf. on Machine Learning (ICML'Q8)
pages 408-415. Omnipress, 2008.

Y. Le Cun, L. Bottou, G. Orr, and K.-R. Muller. Efficient backprop. Nieural Networks, Tricks of
the Trade Lecture Notes in Computer Science LNCS 1524. Springer Verlag, 1998.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmarkeobion for text catego-
rization researchl. Machine Learning Research:361-397, 2004.

N. Murata and S.-l. Amari. Statistical analysis of learning dynamisgnal Processing74(1):
3-28, 1999.

J. Nocedal. Updating quasi-Newton matrices with limited stordgathematics of Computation
35:773-782, 1980.

N. Schraudolph. Local gain adaptation in stochastic gradient descefr. Proc. of the 9th Intl.
Conf. on Artificial Neural Networkgpages 569-574, 1999.

1753

BORDES BOTTOU AND GALLINARI

N. Schraudolph, J. Yu, and S. Glnter. A stochastic quasi-Newton methathline convex opti-

mization. InProc. 11th Intl. Conf. on Artificial Intelligence and Statistics (Alstapgges 433—
440. Soc. for Artificial Intelligence and Statistics, 2007.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimabtgradient solver for
SVM. In Proc. 24th Intl. Conf. on Machine Learning (ICML'Q7fages 807-814. ACM, 2007.

S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Sebag. Pascal gk learning challenge.
ICML'08 Workshop, 2008ht tp: / /| argescal e. first. fraunhof er. de.

1754

