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Abstract
TheSGD-QN algorithm is a stochastic gradient descent algorithm that makes careful use of second-
order information and splits the parameter update into independently scheduled components. Thanks
to this design,SGD-QN iterates nearly as fast as a first-order stochastic gradientdescent but requires
less iterations to achieve the same accuracy. This algorithm won the “Wild Track” of the first PAS-
CAL Large Scale Learning Challenge (Sonnenburg et al., 2008).
Keywords: support vector machine, stochastic gradient descent

1. Introduction

The last decades have seen a massive increase of data quantities. In various domains such as bi-
ology, networking, or information retrieval, fast classification methods able to scale on millions of
training instances are needed. Real-world applications demand learning algorithms with low time
and memory requirements. The first PASCAL Large Scale Learning Challenge (Sonnenburg et al.,
2008) was designed to identify which machine learning techniques best address these new concerns.
A generic evaluation framework and various data sets have been provided. Evaluations were carried
out on the basis of various performance curves such as training time versus test error, data set size
versus test error, and data set size versus training time.1

Our entry in this competition, namedSGD-QN, is a carefully designedStochastic Gradient
Descent(SGD) for linear Support Vector Machines(SVM).

Nonlinear models could in fact reach much better generalization performance on most of the
proposed data sets. Unfortunately, even in the Wild Track case, the evaluation criteria for the com-
petition reward good scaling properties and short training durations more than they punish subopti-
mal test errors. Nearly all the competitors chose to implement linear models in order to avoid the

∗. Also at NEC Laboratories America, Inc.
1. This material and its documentation can be found athttp://largescale.first.fraunhofer.de/.
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additional penalty implied by nonlinearities. AlthoughSGD-QN can work on nonlinear models,2

we only report its performance in the context of linear SVMs.

Stochastic algorithms are known for their poor optimization performance. However, in the
large scale setup, when the bottleneck is the computing time rather than the number of training
examples, Bottou and Bousquet (2008) have shown that stochastic algorithms often yield the best
generalization performances in spite of being worst optimizers. SGD algorithmswere therefore
a natural choice for the “Wild Track” of the competition which focuses on the relation between
training time and test performance.

SGD algorithms have been the object of a number of recent works. Bottou (2007) and Shalev-
Shwartz et al. (2007) demonstrate that the plain Stochastic Gradient Descent yields particularly
effective algorithms when the input patterns are very sparse, taking less thanO (d) space and time
per iteration to optimize a system withd parameters. It can greatly outperform sophisticated batch
methods on large data sets but suffers from slow convergence rates especially on ill-conditioned
problems. Various remedies have been proposed:Stochastic Meta-Descent(Schraudolph, 1999)
heuristically determines a learning rate for each coefficient of the parametervector. Although it can
solve some ill-conditioning issues, it does not help much for linear SVMs.Natural Gradient De-
scent(Amari et al., 2000) replaces the learning rate by the inverse of the Riemannian metric tensor.
This quasi-Newton stochastic method is statistically efficient but is penalized in practice by the cost
of storing and manipulating the metric tensor.Online BFGS(oBFGS) andOnline Limited storage
BFGS(oLBFGS) (Schraudolph et al., 2007) are stochastic adaptations of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization algorithm. The limited storage version of thisalgorithm is a
quasi-Newton stochastic method whose cost by iteration is a small multiple of the cost of a standard
SGD iteration. Unfortunately this penalty is often bigger than the gains associated with the quasi-
Newton update.Online Dual Solversfor SVMs (Bordes et al., 2005; Hsieh et al., 2008) have also
shown good performance on large scale data sets. These solvers can be applied to both linear and
nonlinear SVMs. In the linear case, these dual algorithms are surprising close toSGD but do not
require fiddling with learning rates. Although this is often viewed as an advantage, we feel that this
aspect restricts the improvement opportunities.

The contributions of this paper are twofold:

1. We conduct an analysis of different factors, ranging from algorithmic refinements to imple-
mentation details, which can affect the learning speed of SGD algorithms.

2. We present a novel algorithm, denotedSGD-QN, that carefully exploits these speedup op-
portunities. We empirically validate its properties by benchmarking it against state-of-the-art
SGD solvers and by summarizing its results at the PASCAL Large Scale Learning Chal-
lenge (Sonnenburg et al., 2008).

The paper is organized as follows: Section 2 analyses the potential gains ofquasi-Newton tech-
niques for SGD algorithms. Sections 3 and 4 discuss the sparsity and implementation issues. Finally
Section 5 presents theSGD-QN algorithm, and Section 6 reports experimental results.

2. Stochastic gradient works well in models with nonlinear parametrization.For SVMs with nonlinear kernels, we
would prefer dual methods, (e.g., Bordes et al., 2005), which canexploit the sparsity of the kernel expansion.
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2. Analysis

This section describes our notations and summarizes theoretical results that are relevant to the design
of a fast variant of stochastic gradient algorithms.

2.1 SGD for Linear SVMs

Consider a binary classification problem with examplesz = (x,y) ∈ R
d×{−1,+1}. The linear

SVM classifier is obtained by minimizing the primal cost function

Pn(w) =
λ
2
‖w‖2 +

1
n

n

∑
i=1

ℓ(yiw⊤xi) =
1
n

n

∑
i=1

(

λ
2
‖w‖2 + ℓ(yiw⊤xi)

)

, (1)

where the hyper-parameterλ > 0 controls the strength of the regularization term. Although typical
SVMs use mildly non regular convex loss functions, we assume in this paper that the lossℓ(s)
is convex and twice differentiable with continuous derivatives (ℓ ∈C2[R]). This could be simply
achieved by smoothing the traditional loss functions in the vicinity of their non regular points.

Each iteration of the SGD algorithm consists of drawing a random training example(xt ,yt) and
computing a new value of the parameterwt as

wt+1 = wt −
1

t + t0
Bgt(wt) where gt(wt) = λwt + ℓ′(ytw⊤t xt)yt xt (2)

where therescaling matrixB is positive definite. Since the SVM theory provides simple bounds
on the norm of the optimal parameter vector (Shalev-Shwartz et al., 2007),the positive constant
t0 is heuristically chosen to ensure that the first few updates do not produce a parameter with an
implausibly large norm.

• The traditional first-order SGD algorithm, with decreasing learning rate, is obtained by setting
B = λ−1 I in the generic update (2) :

wt+1 = wt −
1

λ(t + t0)
gt(wt) . (3)

• The second-order SGD algorithm is obtained by settingB to the inverse of the Hessian Matrix
H = [P ′′n (w∗n) ] computed at the optimumw∗n of the primal costPn(w) :

wt+1 = wt −
1

t + t0
H−1 gt(wt) . (4)

Randomly picking examples could lead to expensive random accesses to the slow memory. In
practice, one simply performs sequential passes over the randomly shuffled training set.

2.2 What Matters Are the Constant Factors

Bottou and Bousquet (2008) characterize the asymptotic learning propertiesof stochastic gradient
algorithms in thelarge scale regime, that is, when the bottleneck is the computing time rather than
the number of training examples.

The first three columns of Table 2.2 report the time for a single iteration, the numberof iterations
needed to reach a predefined accuracyρ, and their product, the time needed to reach accuracyρ.
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Stochastic Gradient Cost of one Iterations Time to reach Time to reach
Algorithm iteration to reach ρ accuracyρ E ≤ c(Eapp+ ε)

1st Order SGD O(d) νκ2

ρ +o
(

1
ρ

)

O

(

dνκ2

ρ

)

O

(

dνκ2

ε

)

2nd Order SGD O
(

d2
) ν

ρ +o
(

1
ρ

)

O

(

d2ν
ρ

)

O

(

d2 ν
ε

)

Table 1: Asymptotic results for stochastic gradient algorithms, reproduced from Bottou and
Bousquet (2008). Compare the second last column (time to optimize) with the last
column (time to reach the excess test errorε). Legend: n number of examples;d pa-
rameter dimension;c positive constant that appears in the generalization bounds;
κ condition number of the Hessian matrixH; ν = tr

(

GH−1
)

with G the Fisher ma-
trix (see Theorem 1 for more details). The implicit proportionality coefficients in
notationsO() and o() are of course independent of these quantities.

The excess test errorE measures how much the test error is worse than the best possible error
for this problem. Bottou and Bousquet (2008) decompose the test error as the sum of three terms
E = Eapp+Eest+Eopt. The approximation errorEapp measures how closely the chosen family
of functions can approximate the optimal solution, theestimation errorEest measures the effect of
minimizing the empirical risk instead of the expected risk, theoptimization errorEopt measures the
impact of the approximate optimization on the generalization performance.

The fourth column of Table 2.2 gives the time necessary to reduce the excess test errorE below
a target that depends onε > 0. This is the important metric because the test error is the measure that
matters in machine learning.

Both the first-order and the second-order SGD require a time inversely proportional toε to
reach the target test error. Only the constants differ. The second-order algorithm is insensitive to the
condition numberκ of the Hessian matrix but suffers from a penalty proportional to the dimension
d of the parameter vector. Therefore, algorithmic changes that exploit the second-order information
in SGD algorithms are unlikely to yield superlinear speedups. We can at best improve the constant
factors.

This property is not limited to SGD algorithms. To reach an excess errorε, the most favorable
generalization bounds suggest that one needs a number of examples proportional to 1/ε. Therefore,
the time complexity of any algorithm that processes a non vanishing fraction of these examples
cannot scale better than 1/ε. In fact, Bottou and Bousquet (2008) obtain slightly worse scaling laws
for typical non-stochastic gradient algorithms.

2.3 Limited Storage Approximations of Second-Order SGD

Since the second-order SGD algorithm is penalized by the high cost of performing the update (2)
using a full rescaling matrixB = H−1, it is tempting to consider matrices that admit a sparse repre-
sentation and yet approximate the inverse Hessian well enough to reduce thenegative impact of the
condition numberκ.

The following theorem describes how the convergence speed of the generic SGD algorithm (2)
is related to the spectrum of matrixHB.
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Theorem 1 Let Eσ denote the expectation with respect to the random selection of the examples
(xt ,yt) drawn independently from the training set at each iteration. Letw∗n = argminwPn(w) be an
optimum of the primal cost. Define the Hessian matrixH = ∂2

Pn(w∗n)/∂w2 and the Fisher matrix
G = Gt = Eσ

[

g′t(w
∗
n)g′t(w

∗
n)
⊤
]

. If the eigenvalues ofHB are in rangeλmax≥ λmin > 1/2, and if the
SGD algorithm(2) converges tow∗n, the following inequality holds:

tr (HBGB)

2λmax−1
t−1 +o

(

t−1)≤ Eσ [Pn(wt)−Pn(w∗n)]≤
tr (HBGB)

2λmin−1
t−1 +o

(

t−1) .

The proof of the theorem is provided in the appendix. Note that the theoremassumes that
the generic SGD algorithm converges. Convergence in the first-order case holds under very mild
assumptions (e.g., Bottou, 1998). Convergence in the generic SGD case holds because it reduces to
the first-order case with a the change of variablew→B−

1
2 w. Convergence also holds under slightly

stronger assumptions when the rescaling matrixB changes over time (e.g., Driancourt, 1994).
The following two corollaries recover the maximal number of iterations listed in Table2.2 with

ν = tr
(

GH−1
)

andκ = λ−1‖H‖. Corollary 2 gives a very precise equality for the second-order
case because the lower bound and the upper bound of the theorem take identical values. Corollary 3
gives a much less refined bound in the first-order case.

Corollary 2 AssumeB = H−1 as in the second-order SGD algorithm(4). Under the assumptions
of Theorem 1, we have

Eσ [Pn(wt)−Pn(w∗n)] = tr
(

GH−1) t−1 +o
(

t−1) = ν t−1 +o
(

t−1) .

Corollary 3 AssumeB = λ−1 I as in the first-order SGD algorithm(3). Under the assumptions of
Theorem 1, we have

Eσ [Pn(wt)−Pn(w∗n)] ≤ λ−2 tr
(

H2GH−1) t−1 +o
(

t−1) ≤ κ2ν t−1 +o
(

t−1) .

An often rediscovered property of second order SGD provides an useful point of reference:

Theorem 4 (Fabian, 1973; Murata and Amari, 1999; Bottou and LeCun, 2005)
Letw∗ = argminλ

2‖w‖
2+Ex,y [ℓ(yw⊤x) ]. Given a sample of n independent examples(xi ,yi) , define

w∗n = argminwPn(w) and computewn by applying the second-order SGD update(4) to each of the
n examples. If they converge, both nE

[

‖wn−w∗‖2
]

and nE
[

‖w∗n−w∗‖2
]

converge to a same
positive constant K when n increases.

This result means that, asymptotically and on average, the parameterwn obtained after one pass
of second-order SGD is as close to the infinite training set solutionw∗ as the true optimum of the
primal w∗n. Therefore, when the training set is large enough, we can expect thata single pass of
second-order SGD (n iterations of (4)) optimizes the primal accurately enough to replicate the test
error of the actual SVM solution.

When we replace the full second-order rescaling matrixB = H−1 by a more computationally
acceptable approximation, Theorem 1 indicates that we lose a constant factork on the required
number of iterations to reach that accuracy. In other words, we can expect to replicate the SVM test
error afterk passes over the randomly reshuffled training set.

On the other hand, a well chosen approximation of the rescaling matrix can savea large constant
factor on the computation of the generic SGD update (2). The best training times are therefore
obtained by carefully trading the quality of the approximation for sparse representations.
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Frequency Loss

Special example:
n

skip

λ skip
2
‖w‖2

Examples 1 ton: 1 ℓ(yiw⊤xi)

Table 2: The regularization term in the primal cost can be viewed as an additional training example
with an arbitrarily chosen frequency and a specific loss function.

2.4 More Speedup Opportunities

We have argued that carefully designed quasi-Newton techniques can save a constant factor on the
training times. There are of course many other ways to save constant factors:

• Exploiting the sparsity of the patterns(see Section 3) can save a constant factor in the cost of
each first-order iteration. The benefits are more limited in the second-order case, because the
inverse Hessian matrix is usually not sparse.

• Implementation details(see Section 4) such as compiler technology or parallelization on a
predetermined number of processors can also reduce the learning time by constant factors.

Such opportunities are often dismissed as engineering tricks. However they should be consid-
ered on an equal footing with quasi-Newton techniques. Constant factorsmatter regardless of their
origin. The following two sections provide a detailed discussion of sparsity and implementation.

3. Scheduling Stochastic Updates to Exploit Sparsity

First-order SGD iterations can be made substantially faster when the patternsxt are sparse. The
first-order SGD update has the form

wt+1 = wt −αtwt −βtxt , (5)

whereαt andβt are scalar coefficients. Subtractingβtxt from the parameter vector involves solely
the nonzero coefficients of the patternxt . On the other hand, subtractingαtwt involves alld coeffi-
cients. A naive implementation of (5) would therefore spend most of the time processing this first
term. Shalev-Shwartz et al. (2007) circumvent this problem by representing the parameterwt as the
productstvt of a scalar and a vector. The update (5) can then be computed asst+1 = (1−αt)st and
vt+1 = vt −βxt/st+1 in time proportional to the number of nonzero coefficients inxt .

Although this simple approach works well for the first order SGD algorithm, it does not extend
nicely to quasi-Newton SGD algorithms. A more general method consists of treating theregular-
ization term in the primal cost (1) as an additional training example occurring with anarbitrarily
chosen frequency with a specific loss function.

Consider examples with the frequencies and losses listed in Table 2 and write theaverage loss:

1
n

skip
+n

[

n
skip

(

λ skip
2
‖w‖2

)

+
n

∑
i=1

ℓ(yi w⊤xi)

]

=
skip

1+skip

[

λ
2
‖w‖2 +

1
n

n

∑
i=1

ℓ(yiw⊤xi)

]

.
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SGD SVMSGD2

Require: λ, w0, t0, T
1: t = 0
2: while t ≤ T do
3: wt+1 = wt −

1
λ(t+t0)

(λwt + ℓ′(ytw⊤t xt)ytxt)

4:
5:
6:
7:
8:
9: t = t +1

10: end while

11: return w T

Require: λ, w0, t0, T, skip
1: t = 0, count=skip
2: while t ≤ T do
3: wt+1 = wt −

1
λ(t+t0)

ℓ′(ytw⊤t xt)ytxt

4: count = count−1
5: if count ≤ 0 then
6: wt+1 = wt+1−

skip

t+t0
wt+1

7: count=skip
8: end if
9: t = t +1

10: end while

11: return w T

Figure 1: Detailed pseudo-codes of theSGD andSVMSGD2 algorithms.

Minimizing this loss is of course equivalent to minimizing the primal cost (1) with its regularization
term. Applying the SGD algorithm to the examples defined in Table 2 separates the regularization
updates, which involve the special example, from the pattern updates, whichinvolve the real ex-
amples. The parameterskip regulates the relative frequencies of these updates. TheSVMSGD2
algorithm (Bottou, 2007) measures the average pattern sparsity and picks a frequency that ensures
that the amortized cost of the regularization update is proportional to the number of nonzero co-
efficients. Figure 1 compares the pseudo-codes of the naive first-orderSGD and of the first-order
SVMSGD2. Both algorithms handle the real examples at each iteration (line 3) butSVMSGD2 only
performs a regularization update everyskip iterations (line 6).

Assumes is the average proportion of nonzero coefficients in the patternsxi and setskip to
c/s wherec is a predefined constant (we usec = 16 in our experiments). Each pattern update (line
3) requiressd operations. Each regularization update (line 6) requiresd operations but occurss/c
times less often. The average cost per iteration is therefore proportional toO (sd) instead ofO (d).

4. Implementation

In the optimization literature, a superior algorithm implemented with a slow scripting language
usually beats careful implementations of inferior algorithms. This is because the superior algorithm
minimizes the training error with a higher order convergence.

This is no longer true in the case of large scale machine learning because wecare about the
test error instead of the training error. As explained above, algorithm improvements do not improve
the order of the test error convergence. They can simply improve constant factors and therefore
compete evenly with implementation improvements. Time spent refining the implementation is time
well spent.

• There are lots of methods for representing sparse vectors with sharply different computing
requirement for sequential and random access. Our C++ implementation always uses a full
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Full Sparse

Random access to a single coefficient: Θ(1) Θ(s)
In-place addition into a full vector of dimensiond′: Θ(d) Θ(s)
In-place addition into a sparse vector withs′ nonzeros: Θ(d+s′) Θ(s+s′)

Table 3: Costs of various operations on a vector of dimensiond with snonzero coefficients.

vector for representing the parameterw, but handles the patternsx using either a full vector
representation or a sparse representation as an ordered list of index/value pairs.

Each calculation can be achieved directly on the sparse representation or after a conversion
to the full representation (see Table 3). Inappropriate choices have outrageous costs. For
example, on a dense data set with 500 attributes, using sparse vectors increases the training
time by 50%; on the sparse RCV1 data set (see Table 4), using a sparse vector to represent
the parameterw increases the training time by more than 900%.

• Modern processors often sport specialized instructions to handle vectors and multiple cores.
Linear algebra libraries, such asBLAS, may or may not use them in ways that suit our purposes.
Compilation flags have nontrivial impacts on the learning times.

Such implementation improvements are often (but not always) orthogonal to thealgorithmic im-
provements described above. The main issue consists of deciding how much development resources
are allocated to implementation and to algorithm design. This trade-off depends on the available
competencies.

5. SGD-QN: A Careful Diagonal Quasi-Newton SGD

As explained in Section 2, designing an efficient quasi-Newton SGD algorithminvolves a careful
trade-off between the sparsity of the scaling matrix representationB and the quality of its approxi-
mation of the inverse HessianH−1. The two obvious choices are diagonal approximations (Becker
and Le Cun, 1989) and low rank approximations (Schraudolph et al., 2007).

5.1 Diagonal Rescaling Matrices

Among numerous practical suggestions for running SGD algorithm in multilayer neural networks,
Le Cun et al. (1998) emphatically recommend to rescale each input space feature in order to improve
the condition numberκ of the Hessian matrix. In the case of a linear model, such preconditioning
is similar to using a constant diagonal scaling matrix.

Rescaling the input space defines transformed patternsXt such that[Xt ]i = bi [xt ]i where the
notation[v]i represents thei-th coefficient of vectorv. This transformation does not change the
classification if the parameter vectors are modified as[Wt ]i = [wt ]i /bi . The first-order SGD update
on these modified variable is then

∀i = 1. . .d [Wt+1]i = [Wt ]i−ηt
(

λ[Wt ]i + ℓ′(ytW⊤
t Xt)yt [Xt ]i ,

)

= [Wt ]i−ηt
(

λ[Wt ]i + ℓ′(ytw⊤t xt)yt bi [xt ]i
)

.
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Multiplying by bi shows how the original parameter vectorwt is affected:

∀i = 1. . .d [wt+1]i = [wt ]i−ηt
(

λ[wt ]i + ℓ′(ytw⊤t xt)yt b2
i [xt ]i

)

.

We observe that rescaling the input is equivalent to multiplying the gradient by a fixed diagonal
matrixB whose elements are the squares of the coefficientsbi .

Ideally we would like to make the productBH spectrally close the identity matrix. Unfortunately
we do not know the value of the Hessian matrixH at the optimumw∗n. Instead we could consider
the current value of the HessianHwt = P

′′(wt) and compute the diagonal rescaling matrixB that
makesBHwt closest to the identity. This computation could be very costly because it involves the
full Hessian matrix. Becker and Le Cun (1989) approximate the optimal diagonal rescaling matrix
by inverting the diagonal coefficients of the Hessian. The method relies on theanalytical derivation
of these diagonal coefficients for multilayer neural networks. This derivation does not extend to
arbitrary models. It certainly does not work in the case of traditional SVMs because the hinge loss
has zero curvature almost everywhere.

5.2 Low Rank Rescaling Matrices

The popular LBFGS optimization algorithm (Nocedal, 1980) maintains a low rank approximation
of the inverse Hessian by storing thek most recent rank-one BFGS updates instead of the full
inverse Hessian matrix. When the successive full gradientsP

′
n(wt−1) andP ′n(wt) are available,

standard rank one updates can be used to directly estimate the inverse Hessian matrixH−1. Using
this method with stochastic gradient is tricky because the full gradientsP

′
n(wt−1) andP ′n(wt) are

not readily available. Instead we only have access to the stochastic estimatesgt−1(wt−1) andgt(wt)
which are too noisy to compute good rescaling matrices.

TheoLBFGS algorithm (Schraudolph et al., 2007) compares instead the derivativesgt−1(wt−1)
andgt−1(wt) for the same example(xt−1,yt−1). This reduces the noise to an acceptable level at the
expense of the computation of the additional gradient vectorgt−1(wt).

Compared to the first-order SGD, each iteration of theoLBFGS algorithm computes the addi-
tional quantitygt−1(wt) and updates the list ofk rank one updates. The most expensive part however
remains the multiplication of the gradientgt(wt) by the low-rank estimate of the inverse Hessian.
With k = 10, each iteration of ouroLBFGS implementation runs empirically 11 times slower than a
first-order SGD iteration.

5.3 SGD-QN

TheSGD-QN algorithm estimates adiagonal rescaling matrixusing a technique inspired byoLBFGS.
For any pair of parameterswt−1 andwt , a Taylor series of the gradient of the primal costP provides
the secant equation:

wt −wt−1≈ H−1
wt

(

P
′
n(wt)−P

′
n(wt−1)

)

. (6)

We would then like to replace the inverse Hessian matrixH−1
wt

by a diagonal estimateB

wt −wt−1≈ B
(

P
′
n(wt)−P

′
n(wt−1)

)

.

Since we are designing a stochastic algorithm, we do not have access to the full gradientP ′n. Fol-
lowing oLBFGS, we replace them by the local gradientsgt−1(wt) andgt−1(wt−1) and obtain

wt −wt−1≈ B
(

gt−1(wt)−gt−1(wt−1)
)

.
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Since we chose to use a diagonal rescaling matrixB, we can write the term-by-term equality

[wt −wt−1]i ≈ Bii [gt−1(wt)−gt−1(wt−1)]i ,

where the notation[v]i still represents thei-th coefficient of vectorv. This leads to computingBii

as the average of the ratio[wt −wt−1]i/[gt−1(wt)−gt−1(wt−1)]i . An online estimation is easily
achieved during the course of learning by performing a leaky average of these ratios,

Bii ← Bii +
2
r

(

[wt −wt−1]i
[gt−1(wt)−gt−1(wt−1)]i

−Bii

)

∀i = 1. . .d ,

and where the integerr is incremented whenever we update the matrixB.
The weights of the scaling matrixB are initialized toλ−1 because this corresponds to the exact

setup of first-order SGD. Since the curvature of the primal cost (1) is always larger thanλ, the ratio
[gt−1(wt)−gt−1(wt−1)]i/[wt −wt−1]i is always larger thanλ. Therefore the coefficientsBii never
exceed their initial valueλ−1. Basically these scaling factors slow down the convergence along
some axes. The speedup does not occur because we follow the trajectory faster, but because we
follow a better trajectory.

Performing the weight update (2) with a diagonal rescaling matrixB consists in performing
term-by-term operations with a time complexity that is marginally greater than the complexity of
the first-order SGD (3) update. The computation of the additional gradient vector gt−1(wt) and the
reestimation of all the coefficientsBii essentially triples the computing time of a first-order SGD
iteration with non-sparse inputs (3), and is considerably slower than a first-order SGD iteration with
sparse inputs implemented as discussed in Section 3.

Fortunately this higher computational cost per iteration can be nearly avoided byscheduling
the reestimation of the rescaling matrix with the same frequency as the regularization updates. Sec-
tion 5.1 has shown that a diagonal rescaling matrix does little more than rescaling the input variables.
Since a fixed diagonal rescaling matrix already works quite well, there is little need to update its
coefficients very often.

Figure 2 compares theSVMSGD2 andSGD-QN algorithms. WheneverSVMSGD2 performs
a regularization update, we set the flagupdateB to schedule a reestimation of the rescaling co-
efficients during the next iteration. This is appropriate because both operations have comparable
computing times. Therefore the rescaling matrix reestimation schedule can be regulated with the
sameskip parameter as the regularization updates. In practice, we observe that eachSGD-QN
iteration demands less than twice the time of a first-order SGD iteration.

BecauseSGD-QN reestimates the rescaling matrix after a pattern update, special care must
be taken when the ratio[wt −wt−1]i/[gt−1(wt)−gt−1(wt−1)]i has the form 0/0 because the corre-
sponding input coefficient[xt−1]i is zero. Since the secant Equation (6) is valid for any two values
of the parameter vector, one can compute the ratios with parameter vectorswt−1 andwt + ε and
derive the correct value by continuity whenε→ 0. When[xt−1]i = 0, we can write

[(wt+ε)−wt−1]i
[gt−1(wt+ε)−gt−1(wt−1)]i

=
[(wt+ε)−wt−1]i

λ[(wt+ε)−wt−1]i+
(

ℓ′(yt−1(wt+ε)⊤xt−1)−ℓ′(yt−1w⊤t−1xt−1)
)

yt−1 [xt−1]i

=

(

λ +

(

ℓ′(yt−1(wt+ε)⊤xt−1)−ℓ′(yt−1w⊤t−1xt−1)
)

yt−1 [xt−1]i
[(wt+ε)−wt−1]i

)−1

=
(

λ + 0
[ε]i

)−1 ε→0
−→ λ−1 .
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SVMSGD2 SGD-QN

Require: λ, w0, t0, T, skip
1: t = 0, count=skip
2:
3: while t ≤ T do
4: wt+1 = wt −

1
λ(t+t0)

ℓ′(ytw⊤t xt)ytxt

5:
6:
7:
8:
9:

10:
11: count = count−1
12: if count ≤ 0 then
13: wt+1 = wt+1−skip (t + t0)−1wt+1
14: count=skip
15: end if
16: t = t +1
17: end while

18: return w T

Require: λ, w0, t0, T, skip
1: t = 0, count=skip,
2: B = λ−1 I ; updateB=false; r = 2
3: while t ≤ T do
4: wt+1 = wt − (t + t0)−1ℓ′(ytw⊤t xt)yt B xt

5: if updateB=true then
6: pt = gt(wt+1)−gt(wt)

7: ∀i , Bii = Bii +
2
r

(

[wt+1−wt ]i [pt ]
−1
i −Bii

)

8: ∀i , Bii = max(Bii ,10−2λ−1)
9: r = r +1; updateB=false

10: end if
11: count = count−1
12: if count ≤ 0 then
13: wt+1 = wt+1−skip (t + t0)−1λ B wt+1
14: count=skip; updateB=true
15: end if
16: t = t +1
17: end while

18: return w T

Figure 2: Detailed pseudo-codes of theSVMSGD2 andSGD-QN algorithms.

Data Set Train. Ex. Test. Ex. Features s λ t0 skip

ALPHA 100,000 50,000 500 1 10−5 106 16
DELTA 100,000 50,000 500 1 10−4 104 16
RCV1 781,265 23,149 47,152 0.0016 10−4 105 9,965

Table 4: Data sets and parameters used for experiments.

6. Experiments

We demonstrate the good scaling properties ofSGD-QN in two ways: we present a detailed compar-
ison with other stochastic gradient methods, and we summarize the results obtained on the PASCAL
Large Scale Challenge.

Table 4 describes the three binary classification tasks we used for comparative experiments.
The Alpha and Delta tasks were defined for the PASCAL Large Scale Challenge (Sonnenburg et al.,
2008). We train with the first 100,000 examples and test with the last 50,000 examples of the official
training sets because the official testing sets are not available. Alpha and Delta are dense data sets
with relatively severe conditioning problems. The third task is the classification ofRCV1 documents
belonging to class CCAT (Lewis et al., 2004). This task has become a standard benchmark for linear
SVMs on sparse data. Despite its larger size, the RCV1 task is much easier than the Alpha and Delta
tasks. All methods discussed in this paper perform well on RCV1.
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ALPHA RCV1

SGD 0.13 36.8
SVMSGD2 0.10 0.20

SGD-QN 0.21 0.37

Table 5: Time (sec.) for performing one pass over the training set.

The experiments reported in Section 6.4 use the hinge lossℓ(s) = max(0,1−s). All other ex-
periments use the squared hinge lossℓ(s) = 1

2(max(0,1−s))2. In practice, there is no need to make
the losses twice differentiable by smoothing their behavior nears= 0. Unlike most batch optimizer,
stochastic algorithms do not not aim directly for nondifferentiable points, butrandomly hop around
them. The stochastic noise implicitly smoothes the loss.

The SGD, SVMSGD2, oLBFGS, andSGD-QN algorithms were implemented using the same
C++ code base.3 All experiments are carried out in single precision. We did not experiencenumer-
ical accuracy issues, probably because of the influence of the regularization term. Our implementa-
tion of oLBFGS maintains a rank 10 rescaling matrix. Setting theoLBFGS gain schedule is rather
delicate. We obtained fairly good results by replicating the gain schedule of theVieCRF package.4

We also propose a comparison with the online dual linear SVM solver (Hsieh et al.,2008) imple-
mented in theLibLinear package.5 We did not reimplement this algorithm because theLibLinear
implementation has proved as simple and as efficient as ours.

The t0 parameter is determined using an automatic procedure: since the size of the training
set does not affect results of Theorem 1, we simply pick a subset containing 10% of the training
examples, perform oneSGD-QN pass over this subset with several values fort0, and pick the value
for which the primal cost decreases the most. These values are given in Table 4.

6.1 Sparsity Tricks

Table 5 illustrates the influence of the scheduling tricks described in Section 3. The table displays
the training times ofSGD andSVMSGD2. The only difference between these two algorithms are the
scheduling tricks.SVMSGD2 trains 180 times faster thanSGD on the sparse data set RCV1. This
table also demonstrates that iterations of the quasi-newtonSGD-QN are not prohibitively expensive.

6.2 Quasi-Newton

Figure 3 shows how the primal costPn(w) of the Alpha data set evolves with the number of passes
(left) and the training time (right). Compared to the first-orderSVMSGD2, both theoLBFGS and
SGD-QN algorithms dramatically decrease the number of passes required to achieve similarvalues
of the primal. Even if it uses a more precise approximation of the inverse Hessian, oLBFGS does
not perform better after a single pass thanSGD-QN. Besides, running a single pass ofoLBFGS is
much slower than running multiple passes ofSVMSGD2 or SGD-QN. The benefits of its second-
order approximation are canceled by its greater time requirements per iteration. On the other hand,

3. Implementations and experiment scripts are available in thelibsgdqn library onhttp://www.mloss.org.
4. This can be found athttp://www.ofai.at/~jeremy.jancsary.
5. This can be found athttp://www.csie.ntu.edu.tw/~cjlin/liblinear.
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Figure 3: Primal costs according to the number of epochs (left) and the training duration (right) on
the Alpha data set.

eachSGD-QN iteration is only marginally slower than aSVMSGD2 iteration; the reduction of the
number of iterations is sufficient to offset this cost.

6.3 Training Speed

Figure 4 displays the test errors achieved on the Alpha, Delta and RCV1 data sets as a function of the
number of passes (left) and the training time (right). These results show again that bothoLBFGS and
SGD-QN require less iterations thanSVMSGD2 to achieve the same test error. However,oLBFGS
suffers from the relatively high complexity of its update process. TheSGD-QN algorithm is com-
petitive with the dual solverLibLinear on the dense data sets Alpha and Delta; it runs significantly
faster on the sparse RCV1 data set.

According to Theorem 4, given a large enough training set, a perfect second-order SGD algo-
rithm would reach the batch test error after a single pass. One pass learning is attractive when we are
dealing with high volume streams of examples that cannot be stored and retrievedquickly. Figure 4
(left) shows thatoLBFGS is a little bit closer to that ideal thanSGD-QN and could become attractive
for problems where the example retrieval time is much greater than the computing time.

6.4 PASCAL Large Scale Challenge Results

TheSGD-QN algorithm has been submitted to the “Wild Track” of the PASCAL Large Scale Chal-
lenge. Wild Track contributors were free to do anything leading to more efficient and more accurate
methods. Forty two methods have been submitted to this track. Table 6 shows theSGD-QN ranks
determined by the organizers of the challenge according to their evaluation criteria. TheSGD-QN
algorithm always ranks among the top five submissions and ranks first in overall score (tie with
another Newton method).
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Figure 4: Test errors (in %) according to the number of epochs (left) andtraining duration (right).
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Data Set λ skip Passes Rank

Alpha 10−5 16 10 1st

Beta 10−4 16 15 3rd

Gamma 10−3 16 10 1st

Delta 10−3 16 10 1st

Epsilon 10−5 16 10 5th

Zeta 10−5 16 10 4th

OCR 10−5 16 10 2nd

Face 10−5 16 20 4th

DNA 10−3 64 10 2nd

Webspam 10−5 71,066 10 4th

Table 6: Parameters and final ranks obtained bySGD-QN in the “Wild Track” of the first PASCAL
Large Scale Learning Challenge. All competing algorithms were run by the organizers.
(Note: the competition results were obtained with a preliminary version ofSGD-QN. In
particular theλ parameters listed above are different from the values used for all experi-
ments in this paper and listed in Table 4.)

7. Conclusion

The SGD-QN algorithm strikes a good compromise for large scale application because it has low
time and memory requirements per iteration and because it reaches competitive test errors after a
small number of iterations. We have shown how this performance is the result ofa careful design
taking into account the theoretical knowledge about second-order SGDand a precise understanding
of its computational requirements.

Finally, although this contribution presentsSGD-QN as a solver for linear SVMs, this algorithm
can be easily extended to nonlinear models for which we can analytically compute the gradients.
We plan to further investigate the performance ofSGD-QN in this context.
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Appendix A. Proof of Theorem 1

Definevt = wt −w∗n and observe that a second-order Taylor expansion of the primal gives

Pn(wt)−Pn(w∗n) = v⊤t Hvt +o
(

t−2) = tr
(

Hvtv⊤t
)

+o
(

t−2) .

Let Et−1 representing the conditional expectation over the choice of the example at iterationt−1
given all the choices made during the previous iterations. Since we assume that convergence takes
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place, we have

Et−1
[

gt−1(wt−1)gt−1(wt−1)
⊤
]

= Et−1
[

gt−1(w∗n)gt−1(w∗n)
⊤
]

+o(1) = G+o(1)

and Et−1 [gt−1(wt−1)] = P
′
n(wt−1) = Hvt−1 +o(vt−1) = I εHvt−1

where notationI ε is a shorthand forI +o(1), that is, a matrix that converges to the identity.
ExpressingHvtv⊤t using the generic SGD update (2) gives

Hvtv⊤t = Hvt−1v⊤t−1 −
Hvt−1gt−1(wt−1)

⊤B
t + t0

−
HBgt−1(wt−1)v⊤t−1

t + t0

+
HBgt−1(wt−1)gt−1(wt−1)

⊤B
(t + t0)2

Et−1
[

Hvtv⊤t
]

= Hvt−1v⊤t−1 −
Hvt−1v⊤t−1HI ε B

t + t0
−

HBI ε Hvt−1v⊤t−1

t + t0
+

HBGB
(t + t0)2 + o

(

t−2)

Et−1
[

tr
(

Hvtv⊤t
)]

= tr
(

Hvt−1v⊤t−1

)

−
2tr

(

HBI ε Hvt−1v⊤t−1

)

t + t0
+

tr (HBGB)

(t + t0)2 + o
(

t−2)

Eσ
[

tr
(

Hvtv⊤t
)]

= Eσ
[

tr
(

Hvt−1v⊤t−1

)]

−
2Eσ

[

tr
(

HBI ε Hvt−1v⊤t−1

)]

t + t0
+

tr (HBGB)

(t + t0)2 + o
(

t−2) .

Let λmax≥ λmin > 1/2 be the extreme eigenvalues ofHB. Since, for any positive matrixX,
(

λmin +o(1)
)

tr (X) ≤ tr (HBI εX) ≤
(

λmax+o(1)
)

tr (X)

we can bracketEσ [tr (Hvtv⊤t )] between the expressions
(

1−
2λmax

t
+o

(

1
t

))

Eσ
[

tr
(

Hvt−1v⊤t−1

)]

+
tr (HBGB)

(t + t0)2 + o
(

t−2)

and
(

1−
2λmin

t
+o

(

1
t

))

Eσ
[

tr
(

Hvt−1v⊤t−1

)]

+
tr (HBGB)

(t + t0)2 + o
(

t−2)

By recursively applying this bracket, we obtain

uλmax(t + t0) ≤ Eσ [tr (Hvtv⊤t )] ≤ uλmin
(t + t0)

where the notationuλ(t) represents a sequence of real satisfying the recursive relation

uλ(t) =

(

1−
2λ
t

+o

(

1
t

))

uλ(t−1)+
tr (HBGB)

t2 +o

(

1
t2

)

.

From (Bottou and LeCun, 2005, Lemma 1),λ > 1/2 impliest uλ(t) −→
tr (HBGB)

2λ−1 . Then

tr (HBGB)

2λmax−1
t−1 +o

(

t−1)≤ Eσ
[

tr
(

Hvtv⊤t
)]

≤
tr (HBGB)

2λmin−1
t−1 +o

(

t−1)

and

tr (HBGB)

2λmax−1
t−1 +o

(

t−1)≤ Eσ [Pn(wt)−Pn(w∗n)]≤
tr (HBGB)

2λmin−1
t−1 +o

(

t−1) .
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