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ABSTRACT
While multi-class categorization of documents has been of
research interest for over a decade, relatively fewer approaches
have been proposed for large scale taxonomies in which the
number of classes range from hundreds of thousand as in Di-
rectory Mozilla to over a million in Wikipedia. As a result
of ever increasing number of text documents and images
from various sources, there is an immense need for auto-
matic classification of documents in such large hierarchies.
In this paper, we analyze the tradeoffs between the impor-
tant characteristics of different classifiers employed in the
top down fashion. The properties for relative comparison
of these classifiers include, (i) accuracy on test instance, (ii)
training time (iii) size of the model and (iv) test time re-
quired for prediction. Our analysis is motivated by the well
known error bounds from learning theory, which is also fur-
ther reinforced by the empirical observations on the publicly
available data from the Large Scale Hierarchical Text Class-
fication Challenge. We show that by exploiting the data het-
erogenity across the large scale hierarchies, one can build an
overall classification system which is approximately 4 times
faster for prediction, 3 times faster to train, while sacrificing
only 1% point in accuracy.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-

sifier design and evaluation; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Infor-

mation filtering
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1. INTRODUCTION
With an increasing amount of data from various sources

such as web advertizing, social media and images, automatic
classification of unseen data to one of tens of thousand target
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classes has caught the attention of the research community.
In flat classification, no relationship is assumed between the
target classes and O(K) classifiers are learnt, one for each
of the K classes. If some semantic structure exists among
the classes, such as hierarchical, as in a rooted tree (Figure
1), a multi-class classifier is trained on each of the non-leaf
node in the tree to distinguish between each of its children.
For large scale classification, hierarchical strategies have two
main advantages over flat classification: (i) to classify a test
instance, one needs to evaluate only O(lg(K)) classifiers,
as against O(K) for flat classification, and (ii) hierarchi-
cal classification may lead to better (in general comparable)
predictive performance as compared to flat techniques [4].

In the context of large scale hierarchical classification,
open challenges like the Pascal Large Scale Hierarchical Text
Classification (LSHTC) 1 and Imagenet Large Scale Visual
Recognition Challenge (ILSVRC) 2 have been orgranized.
In LSHTC for instance, the classes from the DMOZ and
Wikipedia taxonomies are arranged in a rooted tree and di-
rected acyclic graph respectively. The taxonomy thereby im-
plicitly defines the semantic relationship among the classes.
The publicly available DMOZ dataset contains around 400k
training documents from the 27,875 target classes on the leaf
nodes of the hierarchy tree with an extremely sparse repre-
sentation involving 594,158 features. Outside of the LSHTC,
various other approaches have also been proposed for large
scale hierarchical classification, which have met with varying
degrees of success (e.g., [1, 7]).

Previous approaches to large scale hierarchical categoriza-
tion have mainly focused on the overall accuracy of the clas-
sifiers without taking into account other important factors
such as: (i) training time to build the model, (ii) size of
the model generated by fitting the parameters, and (iii) test
time to predict the target class of a given test example.

We study here the tradeoffs between using generative mod-
els such as multinomial Naive Bayes, on one hand, and dis-
criminative models such as Support Vector Machines (SVM)
or Logistic Regression, on the other. In particular, we dis-
cuss the variation of training sample size from the root of
hierarchy towards the leaves, which further determines the
choice of model one might want to fit.

Another contribution of this work is to highlight a useful
scenario in which one could combine both types of models
in the larger hierarchy to get the best of both worlds. Large
scale category hierarchies which occur in most practical and
commercial applications, such as DMOZ used in our experi-

1http://lshtc.iit.demokritos.gr/
2http://www.image-net.org/challenges/LSVRC/2011/



Figure 1: Example of a simple tree hierarchy, leaves
are represented by squares

ments, are non-uniform across their entire structure. There-
fore, to build an overall classification scheme, it is imperative
to use classifiers which suit that particular local regime of
operation. Empirical observations further demonstrate the
interplay between various metrics of interest as we go from a
fully discriminative setting to a fully generative framework.

We would also like to point out that the scope of this work
is orthogonal to the large scale learning analysis by applying
stochastic gradient descent [2] which essentially deals with
binary classification in the context of large number of train-
ing examples. They stress on the fact that, in order to attain
better training performance, one need not fully solve the op-
timization problem in learning the parameters and can stop
the optimization process long before its convergence.

2. TRADEOFFS IN LARGE SCALE HIER-
ARCHICAL CLASSIFICATION

In single-label multi-class hierarchical classification, the
training set can be represented by S = {(x(i), y(i))}Ni=1. In

the context of text classification, x(i) ∈ X denotes the vector
representation of document i in the input space X ⊆ Rd.
Assuming that there are K classes denoted by the set Y =
{1 . . .K}, the label y(i) ∈ Y represents the class associated

with the instance x(i). The hierarchy in the form of rooted
tree is given by G = (V, E) where V ⊇ Y denotes the set
of nodes of G, and E denotes the set of edges with parent-
to-child orientation. The leaves of the tree which usually
forms the set of target classes is given by Y = {u ∈ V : ∄v ∈
V, (u, v) ∈ E}.

In the above setup, given a new test instance x, the goal
is to predict the class ŷ. This is typically done by making
a sequence of predictions iteratively in a top-down fashion
starting from the root until a leaf node is reached. At each
non-leaf node v ∈ V, a score fc(x) ∈ R is computed for each
child c and the child ĉ with the maximum score is predicted
i.e. ĉ = argmax

c:(v,c)∈E

fc(x).

For our analysis, we focus on SVM and Multinomial Naive
Bayes (NB) representing discriminative and generative mod-
els respectively. In SVM, fc(x) is modeled as a linear clas-
sifier such that fc(x) = wt

cx. To learn an SVM-based dis-
criminative classifier for node v, we solve the following opti-
mization problem for each child c of v

min
wc,ξ

λ

2
||wc||

2 +

nv∑

i=1

ξ
2
i

The indices i above are such that ∀i, 1 ≤ i ≤ nv , yi ∈ Lv ,
were Lv denotes the set of leaves in the subtree rooted at
node v and nv denotes the number of training examples
for which the root-to-leaf path passes through the node v.
Furthermore, if yi ∈ Lc and (v, c) ∈ E , then the constraints

for the above optimization problem are given by, ∀i

wt
cxi ≥ wt

c′xi−ξi, ∀c′ 6= c s.t. (v, c) ∈ E , (v, c′) ∈ E and ξi ≥ 0

We use standard multinomial NB model in which predicted
class is the one with maximum posterior probability, i.e.

ĉ = argmax
c:(v,c)∈E

Pr(c|x), s.t. Pr(c|x) ∝ Pr(c)Pr(x|c)

and the probabilities are replaced by their maximum likeli-
hood estimates, taking Laplace smoothing into account.

2.1 Exploiting Data Heterogenity
For a multi-class classification problem at node v of the

hierarchy, let dv denote the dimensionality of the feature
space and nv denote the number of training documents for
which the root-to-leaf path goes through node v. Let their
ratio for node v be denoted by rv, i.e. rv = dv

nv

.
In the context of large scale hierarchical classification,

such as DMOZ, there is a wide spectrum over which rv
varies. For the classification problem corresponding to a
node v at the top levels of the hierarchy tree, the ratio rv
is much higher as compared to its value for nodes at lower
levels. Figure 2 shows the variation of average value of rv
for DMOZ dataset when plotted against the hierarchy levels.
Each piece-wise linear curve in the plot corresponds to the
class size range of the multi-class problem. Two important
properties of the dataset, one of which follows from Figure
2, are: (i) The ratio rv increases towards the leaves, and (ii)
Almost 97% of the multi-class problems involve 2-15 classes.
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Figure 2: Variation in ratio of feature set size to
training sample size with the hierarchy level. Level
2 corresponds to the children of root node and level
5 to the level that leads to leaves.

This shows that the nature of the learning problem posed
is different in different parts of the hierarchy tree. We
now present relevant results from statistical learning the-
ory which are perfectly suited to address these problems
[6]. Let fG and fD represent the classifiers learnt by fit-
ting generative and discriminative model respectively and
fG,∞ and fD,∞ be their corresponding asymptotic versions
i.e. functions learnt when the sample size approaches infin-
ity. Let ε(.) be the function representing the generalization
error of its argument. For a binary classification problem in
d-dimensional feature space with n training examples, these
results can essentially be summarized as follows:



1. ε(fD,∞) ≤ ε(fG,∞);

2. ε(fG) ≤ ε(fG,∞) + δ0 if n = Ω(ln(d));

3. ε(fD) ≤ ε(fD,∞)+ δ′0 if n = Ω(d), for any fixed δ, δ′0 >

0 and Ω(.) denotes the big Omega notation

Argument 1 implies that in the regime of aymptotic oper-
ation, discriminative models should be preferred over gen-
erative models. Argument 2 and 3 suggest that generative
classifiers approach their asymptotic performance with much
lesser training data as compared to discriminative classifiers.

As a consequence of the above arguments, this implies the
following design choices to build component classifiers for
large scale hierarchical classification. We also briefly men-
tion our observation for each of them in case of DMOZ data:

• On the nodes which are close to the root (including
the root itself), we are close to the regime of asymp-
totic operation. Therefore using argument (1) from
above, one should deploy discriminative classifiers such
as SVM or logistic regression.
Observation for DMOZ : As shown in Figure 3, for
level 1 and 2, SVM does indeed performs better and
achieves much higher accuracy than NB classifier.

• Argument (2) above suggests that one should deploy
NB classifier for the subproblems lower down the hier-
archy since for most of the nodes, n is upper bounded
by lg(d) i.e. n = O(lg(d)).
Observation for DMOZ : As shown in Figure 3, for lev-
els 4 and 5, NB cannot surpass the accuracy of SVM
in this regime, which could be the result of argument
(1). Importantly, however, the accuracy gap between
the two classifiers is much smaller in this regime.

This indicates that, for lower levels in large hierarchy, NB is
competetive to SVM and one can still employ NB instead of
SVM, provided it can excel on metrics other than accuracy.

2.2 Adaptive Classifier Selection
From above observations for the DMOZ dataset, if pre-

diction accuracy is the only criterion, then employing SVM
over the entire hierarchy seems to be the classifier of choice.
However, this comes with a few cons as well, which include:
(i) more training time to train the classifiers, (ii) large size
of the models built from the training data, (iii) due to which
the models need to be read from hard disk every time for
hierarchical predictions which leads to significant slowdown
for prediction time. The NB classifier, on the other hand,
does not suffer from these disadvantages. Moreover, due to
compact models in this case, one can load all the classifiers
of the hierarchy in the physical memory and can get massive
speedup for prediction.

This leads us to the conclusion that, depending on the
relative priority to satisfy the conflicting constraints of ac-
curacy and run-time, we can get best of both models by
combining SVM and NB classifiers in an adaptive way. For
node v in the hierarchy, this can be achieved by using a
threshold τv for the feature set size to sample size ratio rv.
The threshold value τv determines the choice of the classifier
in the following way

Classifier at node v =

{
Naive Bayes if rv ≥ τv
SVM otherwise

Property Name Value

Total number of training examples 394,756
Size of the Overall Feature Space 594,158
Number of Target Classes (|Y|) 27,875
Number of Nodes in the Hierarchy (|V|) 35,449
Size of training file on Disk 586.3 MB
Depth of Hierarchy Tree 6
Total number of multiclass classifiers 7,574
Number of classifiers at depth 5 5,055

Table 1: Training Data Properties

The parameter τ = {τv},∀v ∈ V, thus controls the trade-
off between accuracy of the overall classification system and
the response time for training and prediction. Even though
the above thresholding strategy is a simplification of the
classifier selection criterion in section 2.1, it works well in
practice as shown in our experiments and presented in more
detail in section 4.

3. EXPERIMENTAL SETUP
The experiments were performed on a Linux system with

24GB physical memory and 1TB hard-disk. We use the pub-
licly available DMOZ data set from the LSHTC, 2011. The
dataset, after having been preprocessed by stemming and
stopword removal, appears in the LibSVM format. Table
1 presents the numeric values corresponding to the impor-
tant properties of the dataset. Since the average number of
labels per document is 1.02, we consider it as single-label
classification problem for our purpose.

We use Liblinear [3] to train the models for L2-regularized
L2-loss support vector classification. The optimization prob-
lem was solved in the primal, since the dual formulation
failed to converge for training classifier at the root node.
The models are trained for all 7,574 non-leaf nodes in the
hierarchy for One-Vs-All classification. For NB classifier,
we implement the standard multinomial Naive Bayes us-
ing Laplace smoothing. Predictions are done in a top-down
manner starting at the root node till the class corresponding
to a leaf node is finally predicted.

Table 2 shows the different classification mechanisms to
build the overall classifier, which include, (i) SVM classi-
fier for the entire hierarchy, (ii) Adaptive classifier selection
strategy based on threshold value, (iii) Static classifier se-
lection by deploying NB classifier at lower levels, and fi-
nally (iv) NB classifier for the entire hierarchy. By employ-
ing SVM-only classification system, the accuracy (35.6%)
is comparable to the best participant (38.8%) in LSHTC
for the DMOZ track. However, we would like to point out
that the objective of our work does not coincide with the
participants’ in the LSHTC challenge since the major fo-
cus of the challenge is on accuracy related metrics. As a
result, some of the participants do not necessarily utilize
the hierarchy completely as in [5] or may employ some post-
processing for higher accuracy. On the other hand, we take a
more principled approach leading to a more robust and inter-
pretable analysis which is also applicable to other large scale
hierarchical classification problems involving more complex
topologies such as directed acyclic graphs. Moreover, we aim
to study the tradeoffs involving various constraints which



Model employed Accuracy
in %

Training
Time
(hours)

Test
Time
(secs)

SVM for entire hierarchy 35.6 35 20
Adaptive Selection, τ = 60 35.2 22 12
Adaptive Selection, τ = 30 34.7 12 5
SVM with NB for last level 32.4 14 4
NB for entire hierarchy 22.2 0.25 0.5

Table 2: Tradeoff between Prediction Accuracy in
%, Total Training for entire dataset in hours, and
Average Test Time per Instance in seconds

could be used to tune the desired behavior for a large scale
hierarchical classification system.

4. RESULTS AND ANALYSIS
Table 2 shows the tradeoffs as we go from a fully discrimi-

native framework to a fully generative one. When replacing
the SVM classifiers (row 1) at the outer-most periphery of
the hierarchy by NB (row 4), there is a 10% decrease in accu-
racy while the gain in prediction speed is close to 500%. This
property could be leveraged to make robust real-time pre-
dictions such as for large scale Question-Answering systems
or data stream environments which need real-time response
for acceptable behavior. Also, there is an almost 3-fold im-
provement in training time as a result of this adaptation.

The gain in speed-up for training and test time is achieved
as a result of more compact models built by NB as compared
to SVM from same training data. All the NB models can,
therefore, be loaded in the physical memory for predictions.
For SVM, the total size of all the models is almost twice the
physical memory size and hence the models for only the top
two levels can be loaded in the physical memory.

The adaptive classifier selection as shown in row 2 and 3
of Table 2 was computed based on a uniform threshold value
of τv = 60 and τv = 30, ∀v ∈ V. Increasing the threshold
value would select more SVM classifiers and thereby leading
to better accuracy but slower training and test time. De-
creasing it would correspond to more NB classifiers in the
hierarchical framework, which leads to better run-time per-
formance but lower accuracy.

Comparison between the adaptive classifier selection strat-
egy and the static rule of applying NB classifier for the last
level, rows 3 and 4 of Table 2, reveals another interesting
observation. The prediction accuracy is noticeably higher
by employing the adaptive strategy, for comparable values
of training and prediction time.

Figure 3 shows the variation of difference in accuracy of
SVM and NB classifiers when plotted against levels in the
hierarchy. As per the arguments given in section 2.1, SVM
outperforms NB at the levels near the root node of the hier-
archy. However, NB catches up with SVM for the classifiers
at level 4 and level 5 of the hierarchy but it is not able to
surpass SVM accuracy. This could be due to argument (1),
i.e. ε(fD,∞) ≤ ε(fG,∞), which implies that asymptotic gen-
eralization performance of SVM is better than that of NB.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented tradeoffs between conflicting

constraints of prediction accuracy and computing resources
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Figure 3: Difference of SVM and NB accuracy,
(SVM - NB), in % for each hierarchy level. Level
1 corresponds to the root and level 5 to the level
leading to leaves.

which are crucial for the design of large scale hierarchical
classification systems. Our analysis was based on utiliz-
ing the heterogeneity in large scale web directories, such as
DMOZ, for designing effective local classifiers. We also pre-
sented an adaptive classifier selection strategy which can be
employed to tune the extent of tradeoff. There are numer-
ous avenues of further investigation, such as, (i) exploring
more complex hierarchies such as graphs with cycles, (ii) ad-
dressing the data imbalance problems among classes more
effectively, and (iii) extension to multi-label predictions.
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