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The main purpose of this work is to estimate the regression function of a real random variable with functional explanatory variable by using a recursive nonparametric kernel approach. The mean square error and the almost sure convergence of a family of recursive kernel estimates of the regression function are derived. These results are established with rates and precise evaluation of the constant terms. Also, a central limit theorem for this class of estimators is established. The method is evaluated on simulations and a real data set study.

Introduction

Functional data analysis is a branch of statistics that has been the object of many studies and developments these last years. This kind of data appears in many practical situations, as soon as one is interested on a continuous phenomenon for instance. For this reason, the possible application fields propitious for the use of functional data are very wide: climatology, economics, linguistics, medicine, . . . Since the pioneer works ( [START_REF] Ramsay | Some tools for functional data analysis (with discussion)[END_REF]], [START_REF] Frank | A statistical view of some chemometrics regression tools[END_REF]]), many developments have been investigated, in order to build theory and methods around functional data, for instance how it is possible to define the mean, or the variance of functional data, what kind of model it is possible to consider with functional data, and so on . . . These papers also highlight the drawback of a mere use of multivariate methods with this kind of data, and on the contrary suggest to consider these data as objects belonging to some functional space. The monographs of [START_REF] Ramsay | Functional data analysis[END_REF], [START_REF] Ramsay | Applied functional data analysis[END_REF]] present an overview on both theoretical and practical aspects of functional data analysis.

One of the most studied models in this functional setting is the regression model when the variable of interest Y is real and the covariate X belongs to some functional space E, endowed with a semi-norm • . Then, the regression model writes

Y = r(X ) + ε, (1) 
where r : E -→ R is an operator and ε is an error random variable. Many works have been done around this model when the operator r is supposed to be linear, contributing to the popularity of the so-called functional linear model. In this linear context, the operator r writes α, . where ., . stands for an inner product of the space E and α belongs to E. The goal is then to estimate the unknown function α. We refer the reader for instance to the works of [START_REF] Cardot | Splines estimators for the functional linear model[END_REF]] or [START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF]] for different methods to estimate α. Another way to approach the model ( 1) is to think in a nonparametric way. This direction has also been investigated by many authors. Recent advances on the topic have been the object of monographs by [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]], [START_REF] Ferraty | Handbook on functional data analysis and related fields[END_REF]], giving theoretical and practical properties of a kernel estimator of the operator r. More precisely, if (X i , Y i ) i=1,...,n is a sample of independent and identically distributed couples with the same law as (X , Y ), this kernel estimator is defined, for all χ ∈ E, by

r n (χ) := n i=1 Y i K χ -X i h n i=1 K χ -X i h , ( 2 
)
where K is a kernel and h > 0 is a bandwidth. In the dependent case, [Masry(2005)] have considered the asymptotic normality of (2), while the almost sure convergence was obtained by [START_REF] Ling | Consistency of modified kernel regression estimation for functional data[END_REF]]. This nonparametric regression estimator raises several problems, as the choice of the semi-norm • of the space E, the choice of the bandwidth, . . . Concerning the bandwidth, when the covariate is real, many solutions has been considered, like for instance cross validation. Recently, in the multivariate setting, [Amiri(2012)] studied an estimator using a sequence of bandwidths that allows to compute this estimator in a recursive way, generalizing previous works of [START_REF] Devroye | Distribution-free consistency results in nonparametric discrimination and regression function estimation[END_REF]], [START_REF] Ahmad | Nonparametric sequential estimation of a multiple regression function[END_REF]]. This esti-mator shows good theoretical properties, from the point of view of mean square error and almost sure convergence. It also have some practical interests: for instance, it presents a computational gain of time when one wants to predict new values of the variable of interest when new observations appear. It is not the case for the basic kernel estimator which has to be computed again on the whole sample. The purpose of this work is to adapt the recursive estimator studied in [Amiri(2012)] to the case where the covariate is of functional nature. The remainder of the paper is organized as follows. In section 2, we define the recursive estimator of the operator r when the covariate X is functional and we present the asymptotic properties of this estimator. In section 3, we evaluate the performances of our estimator with a simulation study and the treatment of a real dataset. Finally, the proofs of the theoretical results are postponed to section 4.

Functional regression estimation

Notations and assumptions

Let (X , Y ) be a pair of random variables defined in (Ω, A, P ) , with values on E ×R, where E is a Banach space endowed with a semi-norm • . Assume that (X i , Y i ) i=1,...,n is a sample of n random variables independent and identically distributed, having the same distribution as (X , Y ). The model (1) is then rewritten as

Y i = r(X i ) + ε i , i = 1, . . . , n,
where for any i = 1, . . . , n, ε i is a random variable such that E(ε

i |X i ) = 0 and E(ε 2 i |X i ) = σ 2 ε (X i ) < ∞.
Nonparametric regression aims to estimate the functional r(χ) := E (Y |X = χ) , for χ ∈ E. To this end, let us consider the family of recursive estimators indexed by a parameter ∈ [0, 1], and defined by

r [ ] n (χ) := n i=1 Y i F (h i ) K χ-X i h i n i=1 1 F (h i ) K χ-X i h i ,
where K is a kernel, (h n ) a sequence of bandwidths and F the cumulative distribution function of the random variable χ -X . Our family of estimators is a recursive modification of the estimate defined in (2) and can be computed recursively by

r [ ] n+1 (χ) = n i=1 F (h i ) 1-ϕ [ ] n (χ) + n+1 i=1 F (h i ) 1-Y n+1 K [ ] n+1 ( χ -X n+1 ) n i=1 F (h i ) 1-f [ ] n (χ) + n+1 i=1 F (h i ) 1-K [ ] n+1 ( χ -X n+1 ) , with ϕ [ ] n (χ) = n i=1 Y i F (h i ) K χ-X i h i n i=1 F (h i ) 1- , f [ ] n (χ) = n i=1 1 F (h i ) K χ-X i h i n i=1 F (h i ) 1- , (3) 
and χ) is the adaption to the functional model of the finitedimensional recursive family of estimators introduced by [Amiri(2012)], which includes the famous ones, say recursive ( = 0) and semi recursive ( = 1) estimators. The recursive property of this class of estimators is clearly useful in sequential investigations and also for large sample size, since addition of a new observation means the non-recursive estimators must be entirely recomputed. Besides, we are required to store extensive data in order to calculate them.

K [ ] i (•) := 1 F (h i ) i j=1 F (h j ) 1- K • h i . More precisely, r [ ] n ( 
We will assume that the following assumptions hold.

H1

The operators r and σ 2 ε are continuous on a neighborhood of χ, and F (0) = 0. Moreover, the function ϕ(t) := E [{r(X ) -r(χ)}| X -χ = t] is assumed to be derivable at t = 0. H2 K is nonnegative bounded kernel with support on the compact [0, 1] such that inf

t∈[0,1] K(t) > 0. H3 For any s ∈ [0, 1], τ h (s) := F (hs) F (h) → τ 0 (s) < ∞ as h → 0. H4 (i) h n → 0, nF (h n ) → ∞ and A n, := 1 n n i=1 h i h n F (h i ) F (h n ) 1- → α [ ] < ∞ as n → ∞. (ii) ∀r ≤ 2, B n,r := 1 n n i=1 F (h i ) F (h n ) r → β [r] < ∞, as n → ∞.
Assumptions H1, H2 and the first part of H4 are classical in nonparametric regression. They have been used by [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]] and are the same as those classically used in the finite-dimensional setting. The conditions and H4(ii) are particular to the recursive problem and they are also the same as the ones used in the finite-dimensional case. Note that F plays a crucial role in our calculus, its limit at zero, and for a fixed χ is known as 'small ball' probability. Then, before announcing our results, let us give typical examples of bandwidths and small ball probabilities satisfying H3 and H4 (see [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]] for more details). If X is fractal (or geometric) process, then the small ball probabilities are of the form F (t) ∼ c χ t κ , where c χ and κ are positive constants, and • may be a supremum norm, an L p norm or a Besov norm. In this case, the choice of bandwidth h n = An -δ with A > 0 and 0 < δ < 1 implies that

A n, → α [ ] < ∞
F (h n ) = c χ n -δκ , c χ > 0.
Then, H3 and H4 hold as soon as δκ < 1. Indeed, assumption H3 and the first part of H4 are clearly unrestrictive, since they are the same as those used in the non-recursive case. Concerning H4(ii), if

δκr < 1, then n i=1
i -δκr ∼ n 1-δκr 1-δκr , so that, the condition is satisfied as soon as

β [r] = 1 1-δκr . The same argument is also valid for A n, , if max{κr, 1 + κ(1 - )} < 1/δ.

Main results

As in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]], let us introduce the following notations:

M 0 = K(1) - 1 0 (sK(s)) τ 0 (s)ds, M 1 = K(1) - 1 0 K (s)τ 0 (s)ds, M 2 = K 2 (1) - 1 0 (K 2 (s)) τ 0 (s)ds.
Now, we can establish the asymptotic mean square error of our recursive estimate.

Theorem 1 Under the assumptions H1 -H4,

E r [ ] n (χ) -r(χ) = ϕ (0) α [ ] β [1-] M 0 M 1 h n [1 + o(1)] + O 1 nF (h n ) , V ar r [ ] n (χ) = β [1-2 ] β 2 [1-] M 2 M 2 1 σ 2 ε (χ) 1 nF (h n ) [1 + o(1)] .
Theorem 1 is an extension of the work of [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]] to the class of recursive estimators. Using the bias-variance representation, with the help of an additional condition, the asymptotic mean square error of our estimators is established in the following result.

Corollary 1 Assume that the assumptions of Theorem 1 hold. If there exists a constant c > 0 such that nF

(h n )h 2 n → c, as n → ∞, then lim n→∞ nF (h n )E r [ ] n (χ) -r(χ) 2 = β [1-2 ] β 2 [1-] M 2 σ 2 ε (χ) M 2 1 + cα 2 [ ] β 2 [1-] ϕ (0) 2 M 2 0 M 2 1 .
In particular, if X is fractal (or geometric process) with F (t) ∼ c χ t κ , then the choice h n = An -1 κ+2 , A, κ > 0, implies that

lim n→∞ n 2 2+κ E r [ ] n (χ) -r(χ) 2 = β [1-2 ] β 2 [1-] M 2 σ 2 ε (χ) c χ A κ M 2 1 + α 2 [ ] β 2 [1-] ϕ (0) 2 M 2 0 A 2 M 2 1 .
In the finite-dimensional setting and for continuous time processes, a similar result was established by [START_REF] Bosq | Optimal asymptotic quadratic error of nonparametric regression function estimates for a continuous-time process from sampled-data[END_REF].] for the Nadaraya-Watson estimator.

To get the almost sure convergence rate of our estimator, we will assume that the following additional assumptions hold.

H5 There exist λ > 0 and µ > 0 such that E [exp (λ|Y | µ )] < ∞. H6 lim n→+∞ nF (hn)(ln n) -1-2 µ (ln ln n) 2(α+1)
= ∞ for some α ≥ 0 and lim n→+∞

(ln n) 2 µ F (h n ) = 0. Assumption H5 is clearly checked if Y is bounded and implies that E max 1≤i≤n |Y i | p = O[(ln n) p/µ ], ∀p ≥ 1, n ≥ 2. (4) Indeed, if we set M = p-µ λµ 1/µ if p > µ 0 else
, one may write:

E max 1≤i≤n |Y i | p ≤ M p + E max 1≤i≤n |Y i | p 1 {|Y i |>M } .
Since for all p ≥ 1, the function x → (ln x) p/µ is concave down on the set ] max{1, exp( p µ -1)}, +∞[, then Jensen's inequality, with the help of assumption H5, imply that:

E max 1≤i≤n |Y i | p 1 {|Y i |>M } ≤ ln E exp λ max 1≤i≤n |Y i | µ 1 {|Y i |>M } p/µ ≤ ln n i=1 E exp (λ|Y i | µ ) p/µ = O[(ln n) p/µ ],
and (4) follows. An example of sequence of random variables Y i satisfying H5 (and then ( 4)) is the standard gaussian, with λ = 1 and µ = 2. Relation (4) have been used in the multivariate framework by [START_REF] Bosq | Optimal asymptotic quadratic error of nonparametric regression function estimates for a continuous-time process from sampled-data[END_REF].] in order to establish the optimal quadratic error of the Nadaraya-Watson estimator. Assumption H6 is satisfied as soon as X is fractal or non smooth, while the condition

lim n→∞ F (h n )(ln n)
2 µ = 0 is not necessary when µ ≥ 2. Now, we can write the following theorem for our estimator of the regression operator.

Theorem 2 Assume that H1 -H6 hold. If lim

n→+∞ nh 2 n = 0, then lim sup n→∞ nF (h n ) ln ln n 1/2 r [ ] n (χ) -r(χ) = 2β [1-2 ] σ 2 ε (χ)M 2 1/2 β [1-] M 1 a.s.
The choices of bandwidths and small ball probabilities given previously are typical examples satisfying the condition lim n→+∞ nh 2 n = 0. The case = 1 of Theorem 2 is an extension to the functional setting of the result of [Roussas(1992)] concerning the almost sure convergence of Devroye-Wagner's estimator. Note that in the non recursive framework, the rate of convergence

obtained is of the form nF (h n ) ln n 1/2
(see Lemma 6.3 in [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]]).

Also conversely to the non recursive case, the rate of convergence of the recursive estimators are obtained with exact upper bounds.

To get the asymptotic normality, we will suppose the following additional assumption, which is clearly verified by the choices of bandwidths and small ball probabilities given above.

H7 For any δ > 0, lim n→∞ (ln n) δ nF (h n ) = 0.
Theorem 3 Assume that H1 -H5 and H7 hold. If there exists c ≥ 0 such that lim

n→∞ h n nF (h n ) = c, then nF (h n ) r [ ] n (χ) -r(χ) D → N c α [ ] β [1-] M 0 M 1 ϕ (0), β [1-2 ] β 2 [1-] M 2 M 2 1 σ 2 ε (χ) .
This result is similar to the one obtained by [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]] in the non recursive case. Let us mention that, the choices of bandwidths and small ball probabilities given above imply that

β [1-2 ] β 2 [1-]
< 1. Then, the recursive estimators are more efficient than classical estimators, in the sense that their asymptotic variance is small. In practice, if we need to construct confidence bands for the regression function r, the constants involved in Theorem 3 need to be estimated. In particular, as mentioned in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]], if we choose the simple uniform kernel, we can find explicit values of the constants M 1 and M 2 . About conditional variance σ 2 ε (χ) it may be estimated by mean of the functional kernel regression technique since it can be rewritten as

σ 2 ε (χ) = E(Y 2 |X = χ) -(E(Y |X = χ)) 2 .
3 Simulation study and real dataset example

In order to see the behavior of our recursive estimator in practice, we consider in this section a simulation study. We simulate our data in the following way. The curves X 1 , . . . , X n are standard Brownian motions on [0, 1], with n = 100. Each curve is discretized into p = 100 equidistant points on [0, 1].

The operator r is defined by r(χ) = 1 0 χ(s) 2 ds. The error ε is simulated as a gaussian random variable with mean 0 and standard deviation 0.1. The simulations are repeated 500 times in order to compute the prediction errors for a new curve χ, also simulated as a standard Brownian motion on [0, 1].

In our functional context, our estimator depends on the choice of many parameters: the semi-norm • of the functional space E, the sequence of bandwidths (h n ), the kernel K, the parameter and the distribution function F in the case = 0. Since the choice of the kernel K is not crucial, we use the quadratic kernel, defined by K(u) = 1 -u 2 1 [0,1] (u) for all u ∈ R, which is known to behave correctly in practice, and easy to implement. About the distribution function F, we estimate it by the empirical distribution function, which is known to be uniformly convergent.

Choice of the bandwidth

In this simulation, the semi-norm is based on the principal components analysis of the curves, keeping 3 principal components (see [ Besse et al.(1997)] for a description of this semi-norm), while is fixed equal to 0. We will see below that this parameter is not much influent in the behavior of the estimator. We choose to take a sequence of bandwidths

h i = C max i=1,...,n X i -χ i -ν , for i = 1, . . . , n, with C ∈ {0.5, 1, 2, 10} and ν ∈ 1 10 , 1 8 , 1 6 , 1 5 , 1 4 , 1 3 , 1 2 , 1 .
At the same time, we also compute the estimator (2) introduced by [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]]. Following [START_REF] Rachdi | Nonparametric regression for functional data: automatic smoothing parameter selection[END_REF]], we introduce an automatic selection of the bandwidth, with a cross validation procedure. We use this procedure for the estimator of [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]]. For our recursive estimator, we denote

h i = h i (C, ν) with C ∈ {0.5, 1, 2, 10} and ν ∈ 1 10 , 1 8 , 1 6 , 1 5 , 1 4 , 1 3 , 1 2
, 1 , and we consider the cross validation criterion

CV (C, ν) = 1 n n i=1 Y i -r [ ],[-i] n (X i ) 2 , where r [ ],[-i] n
represents the recursive estimator of r using the (n -1)-sample corresponding to the initial sample without the i th observation (X i , Y i ), for i = 1, . . . , n. Then we select the values C CV and ν CV of C and ν that minimize CV (C, ν), and our estimator is r [ ] n using these selected values of C and ν.

Table 1 presents the mean and standard deviations of the prediction error over 500 repeated simulations, for the optimal values of C and ν with respect to the CV criterion (these optimal values are C CV = 1 and ν CV = 1/10 for our estimator). More precisely, denoting Y

[j] = r [ ],[j] n
(χ [j] ) the predicted value at the j th iteration of the simulation (j = 1, . . . , 500) for a new curve χ [j] , we give the mean (M SP E) and the standard deviations of the quantities

Y [j] -Y [j] 2
. The errors are computed for our estimator (label (1) in the table) and the estimator from [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]] (label (2) in the table), both adapted with [START_REF] Rachdi | Nonparametric regression for functional data: automatic smoothing parameter selection[END_REF]] procedure. We can see on these results that the estimator from [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]] is a little better than our estimator for the M SP E criterion. As we will see later (see subsection 3.4), the advantage of our estimator is from the point of view of computational time. We also look at the behaviour of the prediction errors when the sample size increases: we took n = 100, n = 200 and n = 500: as expected, the errors decrease when the sample size increases. 

Choice of the semi-norm

In this simulation, the parameter is fixed equal to 0 and we choose to take a bandwidth h i = max i=1,...,n X i -χ i -1/10 . The aim is now to compare the influence of the choice of the semi-norm, considering the following ones:

• the semi-norm [P CA] based on the principal components analysis of the curves, keeping q = 3 principal components, more precisely

X i -χ P CA = q j=1 X i -χ, ν j 2 ,
where ., . is the usual inner product of the space of square integrable functions and (ν j ) is the sequence of eigenfunctions of the empirical covariance operator Γ n defined by

Γ n u := 1 n n i=1 X i , u u,
• the semi-norm [F OU ] based on a decomposition of the curves in a Fourier basis, with b = 8 basis functions, more precisely

X i -χ F OU = b j=1 (a X i ,j -a χ,j ) 2 ,
where (a X i ,j ) and (a χ,j ) are the coefficients sequences of respective Fourier approximations of the curves X i and χ,

• the semi-norm [DERIV ] based on a comparison of cubic splines apporximations of the second derivatives of the curves, (with a number of interior knots k = 8 for the cubic splines), more precisely

X i -χ DERIV = X i -χ, X i -χ ,
where X i and χ are the spline approximations of the curves X i and χ,

• the semi-norm [P LS] where the data are projected on a space determined by a PLS regression on the curves, taking K = 5 PLS basis functions, more precisely

X i -χ P LS = K j=1 X i -χ, p j 2 ,
where (p j ) is the sequence of PLS basis functions.

The results are given in Table 2. For these simulated data, the seminorms [P CA] and [P LS] show better results. However, as pointed out in [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]], there is no universal norm that would overcome the others. The choice of the semi-norm depends on the data to be treated. 

Choice of the parameter

In this simulation, we choose to take h i = max i=1,...,n X i -χ i -1/10 and the semi-norm based on the principal components analysis of the curves, keeping 3 principal components. The parameter is varying into 0, 1 4 , 1 2 , 3 4 , 1 . The results are given in Table 3. We can see that the values of the M SP E criterion are really close, so this parameter does not seem to have an important influence on the quality of the prediction, even if we observe as in the multivariate setting the decreasing of the mean square error according . 

Computational time

In this subsection, we highlight an important advantage of the recursive estimator compared to the initial one, from [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]]. This concerns the gain of computational time in the prediction of the response, when new values of the explanatory variable are sequentially added to the database. Indeed, when a new observation (X n+1 , Y n+1 ) appears, the computation of the recursive estimator r [ ] n+1 just asks another iteration of the algorithm, by using its value computed with the sequence (X i , Y i ) i=1,...,n , while the initial estimator from [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]] must be recomputed on the whole sample (X i , Y i ) i=1,...,n+1 . This explains the computation time difference between both estimators in this kind of situations, as illustrated in the following. From an initial sample (X i , Y i ) i=1,...,n with size n = 100, we consider N additional observations, for different values of N . We compare the cumulated computational times to obtain the recursive and the non recursive estimators, when adding these N new observations. The characteristics of the computer on which the computations have been done are: CPU: Duo E4700 2.60 GHz, HD: 149 Go, Memory: 3.23 Go. The simulation is done in the following conditions: the curves X 1 , . . . , X n , as well as the new observations X n+1 , . . . , X n+N , are standard Brownian motions on [0, 1], with n = 100 and N ∈ {1, 50, 100, 200, 500}. The semi-norm, the sequence of bandwidths and the parameter are chosen as each particular previous case.

The computational times are collected in Table 4. Here, our estimator shows its clear advantage in terms of computational time compared to the estimator from [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]].

A real dataset example

In this subsection, we use our estimator in a situation of a real dataset. Functional data are particularly adapted when one wants to study a time Table 4: Cumulated computational times in seconds for the recursive and [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]] estimators when adding N new observations, for different values of N .

series. We illustrate this fact with El Niño time series1 which gives the monthly sea surface temperature from January, 1982 up to December, 2011 (360 months) and plotted on Figure 1. From this time series, we extract the 30 yearly curves X 1 , . . . , X 30 from 1982 to 2011, discretized into p = 12 points. These yearly curves are plotted on Figure 2. The observation of the variable of interest at a certain month j of the year i is the value of the sea temperature X i+1 for the month j, in other words, for j = 1, . . . , 12 and for i = 1, . . . , 29, Y We predict the values of Y [12] 29 (in other words, the values of the curve X 30 ). The recursive estimator and the estimator from [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]] are computed by choosing the semi-norm, the sequence of bandwidths and the parameter as each particular previous case. We analyze the results by computing the mean square prediction error over the year 2011, given by

[j] i = X i+1 (j).
M SP E = 1 12 12 j=1 Y [j] 29 -Y [j] 29 2 ,
where Y

[j]

29 is computed either with the recursive estimator (result: 0.5719) or the estimator from [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]] (result: 0.2823). The corresponding true curve and predicted curves over the year 2011 are plotted on Figure 3. The estimator from [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]] shows again its advantage in terms of prediction, while our estimator behaves quite well and has the advantage of computational time as highlighted in previous subsection.

Here, for the prediction of twelve values (the final year), the computational time (in seconds) for our estimator is 0.128 while the computational time for the estimator from [START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]] is 0.487.

Proofs

Throughout the proofs, we denote by γ i a sequence of real numbers going to zero as i tends to ∞. The kernel estimate r [ ] n can be written as 

r [ ] n (χ) = ϕ [ ] n (χ) f [ ] n (χ)

Proof of Theorem 1

To prove the first assertion of Theorem 1, we use the following decomposition

E r [ ] n (χ) = E ϕ [ ] n (χ) E f [ ] n (χ) - E ϕ [ ] n (χ) f [ ] n (χ) -Ef [ ] n (χ) E f [ ] n (χ) 2 + E r [ ] n (χ) f [ ] n (χ) -Ef [ ] n (χ) 2 E f [ ] n (χ) 2 .
The first part of Theorem 1 is then a direct consequence of the following lemmas.

Lemma 1 Under assumptions H1-H4, we have

E ϕ [ ] n (χ) E f [ ] n (χ) -r(χ) = h n ϕ (0) α [ ] β [1-] M 0 M 1 [1 + o(1)] .
Lemma 2 Under assumptions H1-H4, we have

E ϕ [ ] n (χ) f [ ] n (χ) -Ef [ ] n (χ) = O 1 nF (h n ) , E r [ ] n (χ) f [ ] n (χ) -Ef [ ] n (χ) 2 = O 1 nF (h n ) .
Lemma 3 Under assumptions H1-H4, we have

E f [ ] n (χ) = M 1 [1 + o(1)] and E ϕ [ ] n (χ) = r(χ)M 1 [1 + o(1)] .
To study the variance term in Theorem 1, we use the following decomposition which can be found in [Collomb(1976)].

Var

r [ ] n (χ) = Var ϕ [ ] n (χ) E f [ ] n (χ) 2 -4 E ϕ [ ] n (χ) Cov f [ ] n (χ), ϕ [ ] n (χ) E f [ ] n (χ) 3 +3Var f [ ] n (χ) E ϕ [ ] n (χ) 2 E f [ ] n (χ) 4 + o 1 nF (h n ) . (5) 
The second assertion of Theorem 1 follows from ( 5) and Lemma 4 below.

Lemma 4 Under assumptions H1-H4, we have

Var f [ ] n (χ) = β [1-2 ] β 2 [1-] M 2 1 nF (h n ) [1 + o(1)] . Var ϕ [ ] n (χ) = β [1-2 ] β 2 [1-] r 2 (χ) + σ 2 (χ) M 2 1 nF (h n ) [1 + o(1)] . Cov f [ ] n (χ), ϕ [ ] n (χ) = β [1-2 ] β 2 [1-] r(χ)M 2 1 nF (h n ) [1 + o(1)] .
Now let us prove Lemmas 1-4.

Proof of Lemma 1

Observe that

E ϕ [ ] n (χ) E f [ ] n (χ) -r(χ) = n i=1 1 F (h i ) E (Y i -r(χ)) K χ-X i h i n i=1 1 F (h i ) E K χ-X i h i . Noting that E (Y i -r(χ)) K χ -X i h i = E (r(X ) -r(χ)) K X -χ h i = E ϕ ( X -χ ) K X -χ h i = 1 0 ϕ(h i t)K(t)dP X -χ /h i (t), a Taylor's expansion of ϕ around 0 ensures that E ϕ ( X -χ ) K X -χ h i = h i ϕ (0) 1 0 tK(t)dP X -χ /h i (t) + o(h i ).
From the proof of Lemma 2 in [START_REF] Ferraty | Nonparametric regression on functional data: Inference and practical aspects[END_REF]], it follows from H2 and Fubini's Theorem that

1 0 tK(t)dP X -χ /h i (t) = F (h i ) K(1) - 1 0 (sK(s)) τ h i (s)ds , (6) and EK 
X -χ h i = h i 0 K t h i dP X -χ (t) = F (h i ) K(1) - 1 0 K (s)τ h i (s)ds . (7) 
Combining ( 6) and ( 7), we have

E ϕ [ ] n (χ) E f [ ] n (χ) -r(χ) = n i=1 h i F (h i ) 1-ϕ (0) K(1) - 1 0 (sK(s)) τ h i (s)ds + γ i n i=1 F (h i ) 1-K(1) - 1 0 K (s)τ h i (s)ds := D 1 D 2 .
By virtue of H3 we get from Toeplitz's lemma (see [Masry(1986)]) that

D 1 nh n F (h n ) 1-= α [ ] ϕ (0)M 0 [1 + o(1)], D 2 nF (h n ) 1-= β [1-] M 1 [1 + o(1)],
and Lemma 1 follows.

Proof of Lemma 3

From ( 7), we can write

E f [ ] n (χ) = 1 n i=1 F (h i ) 1- n i=1 1 F (h i ) E K χ -X i h i = n i=1 F (h i ) 1- nF (hn) 1-K(1) - 1 0 K (s)τ h i (s)ds B n,1- = M 1 [1 + o(1)],
where the last equality follows from assumptions H3, H4 and Toeplitz's lemma. Now, conditioning by X , we have

E Y i K χ -X i h i = E [r(X ) -r(χ) + r(χ)] K χ -X i h i =: A i + B i ,
where

A i := E [r(X ) -r(χ)] K χ -X i h i ≤ sup χ ∈B(χ,h i ) r(χ ) -r(χ) EK χ -X i h i ,
and

B i := r(χ)EK χ-X i h i . Since r is continuous (H1), then E Y i K χ -X i h i = [r(χ) + γ i ] EK χ -X i h i = F (h i )M 1 [r(χ) + γ i ] . (8) 
We deduce from (8), with the help of assumptions H3 and H4, by applying again Toeplitz's lemma, that

E ϕ [ ] n (χ) = 1 n i=1 F (h i ) 1- n i=1 1 F (h i ) E Y i K χ -X i h i = r(χ)M 1 [1 + o(1)] ,
that proves Lemma 3.

Proof of Lemma 4

First, notice that as in (7), we have

E K 2 χ -X h i = F (h i ) K 2 (1) - 1 0 (K 2 ) (s)τ h i (s)ds . (9)
The relation (7) and assumption H3 ensure that

E 2 K χ -X h i = O F (h i ) 2 , then we get Var K χ -X h i = M 2 F (h i ) [1 + γ i ] .
We obtain that

Var f [ ] n (χ) = 1 n i=1 F (h i ) 1- 2 n i=1 F (h i ) 1-2 M 2 [1 + γ i ] = β [1-2 ] β 2 [1-] 1 nF (h n ) M 2 [1 + o(1)] ,
and the first step of Lemma 4 follows. In a similar manner, for the second one, we write

Var ϕ [ ] n (χ) = 1 n i=1 F (h i ) 1- 2 n i=1 F (h i ) -2 Var Y i K χ -X i h i .
Next, one obtains by conditioning on X ,

E Y 2 i K 2 χ -X i h i = E r 2 (X )K 2 χ -X i h i + E σ 2 ε (X )K 2 χ -X i h i .
Assumption H1 and ( 9) ensure that

E Y 2 i K 2 χ -X i h i = r 2 (χ) + σ 2 ε (χ) E K 2 χ -X i h i [1 + γ i ] = r 2 (χ) + σ 2 ε (χ) M 2 F (h i ) [1 + γ i ] ,
and then from Toeplitz's lemma, with H3 and H4, it follows that

Var ϕ [ ] n (χ) = 1 n i=1 F (h i ) 1- 2 n i=1 F (h i ) 1-2 r 2 (χ) + σ 2 ε (χ) M 2 [1 + γ i ] = β [1-2 ] β 2 [1-] r 2 (χ) + σ 2 ε (χ) M 2 1 nF (h n ) [1 + o(1)] ,
which proves the second assertion of Lemma 4. For the covariance term, this can be written as

Cov f [ ] n (χ), ϕ [ ] n (χ) = 1 n i=1 F (h i ) 1- 2 E   n i=1 n j=1 Y i K χ-X i h i K χ-X j h j F (h i ) F (h j )   - n i=1 E Y i K χ-X i h i F (h i ) n j=1 EK χ-X j h j F (h j ) = 1 n i=1 F (h i ) 1- 2 n i=1 E Y i K 2 χ-X i h i F (h i ) 2 - 1 n i=1 F (h i ) 1- 2 n i=1 E Y i K χ-X i h i EK χ-X i h i F (h i ) 2 := I -II.
Notice that from ( 6) and ( 8), we have

II = O 1 n (B n,1-) -2 B n,2(1-) = O 1 nF (h n ) .
Next, from assumption H1 and conditioning on X , we have

E Y i K 2 χ -X i h i = M 2 F (h i ) [r(χ) + γ i ] ,
it follows that

I = (B n,1-) -2 nF (h n ) n i=1 F (h i ) 1-2 nF (h n ) 1-2 M 2 r(χ) [1 + γ i ] ,
and the third assertion of Lemma 4 follows again by applying Toeplitz's lemma.

Proof of Lemma 2

Lemma 2 is a direct consequence of Lemmas 3 and 4.

Proof of Theorem 2

We have the following decomposition

r [ ] n (χ) -r(χ) = φ[ ] n (χ) -r(χ)f [ ] n (χ) f [ ] n (χ) + ϕ [ ] n (χ) - φ[ ] n (χ) f [ ] n (χ) , (10) 
where

φ[ ] n (χ) is a truncated version of ϕ [ ] n (χ) defined by φ[ ] n (χ) = 1 n i=1 F (h i ) 1- n i=1 Y i F (h i ) 1 {|Y i |≤bn} K χ -X i h i , (11) 
b n being a sequence of real numbers which goes to +∞ as n → ∞. Next, for any ε > 0, we have for the residual term of (10)

P ϕ [ ] n (χ) -φ[ ] n (χ) > ε ln ln n nF (h n ) 1 2 ≤ P n i=1 {|Y i | > b n } ≤ E e λ|Y | µ n 1-λδ ,
where the last inequality follows by setting b n = (δ ln n) 1 µ , with the help of Markov's inequality. Assumption H5 ensures that for any ε > 0,

∞ n=1 P ϕ [ ] n (χ) -φ[ ] n (χ) > ε ln ln n nF (h n ) 1 2 < ∞ if δ > 2 λ ,
and by Borel-Cantelli's lemma we get

nF (h n ) ln ln n 1/2 ϕ [ ] n (χ) -φ[ ] n (χ) → 0 a.s, as n → ∞. ( 12 
)
For the principal term in (10), we can write

φ[ ] n (χ) -r(χ)f [ ] n (χ) = φ[ ] n (χ) -r(χ)f [ ] n (χ) -E φ[ ] n (χ) -r(χ)f [ ] n (χ) + E φ[ ] n (χ) -r(χ)f [ ] n (χ) := N 1 + N 2 . ( 13 
)
Theorem 2 will therefore be completely proved if we show Lemmas 5 and 6 below. Indeed, from Lemma 3 we have E f

[ ] n (χ) = M 1 [1 + o(1)
] and it can be shown as the same lines of the proof of Lemma 5 below that

f [ ] n (χ) -Ef [ ] n (χ) = O ln ln n nF (h n ) a.s.
Lemma 5 Under assumptions H1 -H6, we have

lim n→∞ nF (h n ) ln ln n 1/2 N 1 = 2β [1-2 ] σ 2 ε (χ)M 2 1/2 β [1-] a.s. Lemma 6 Assume that H1 -H5 hold. If lim n→+∞ nh 2 n = 0, then lim n→∞ nF (h n ) ln ln n 1/2 N 2 = 0.

Proof of Lemma 5

Let us set

W n,i = 1 F (h i ) K χ -X i h i Y i 1 {|Y i |≤bn} -r(χ) and Z n,i = W n,i -EW n,i ,
and define

S n = n i=1 Z n,i and V n = n i=1 EZ 2 n,i .
Observe that

V n = n i=1 F (h i ) -2 E K 2 χ -X h i [Y -r(χ)] 2 +E K 2 χ -X h i Y [2r(χ) -Y ] 1 {|Y |>bn} - n i=1 F (h i ) -2 E 2 K χ -X h i Y 1 {|Y |≤bn} -r(χ) := A 1 + A 2 -A 3 . (14) 
We can write

A 1 = n i=1 F (h i ) -2 E K 2 χ -X h i E (Y -r(χ)) 2 |X = n i=1 σ 2 ε (χ)EK 2 χ-X h i F (h i ) 2 + E K 2 χ-X h i {σ 2 ε (X ) -σ 2 ε (χ)} F (h i ) 2 := A 11 + A 12 .
From H2, by applying Fubini's theorem, we have

A 11 = n i=1 F (h i ) 1-2 σ 2 ε (χ) K 2 (1) - 1 0 (K 2 (s)) τ h i (s)ds ,
and from Toeplitz's Lemma, by virtue of H3 and H4, we get

A 11 nF (h n ) 1-2 → β [1-2 ] σ 2 ε (χ)M 2 , as n → +∞. (15) 
For the second term of the decomposition of A 1 , from (9) we have

A 12 ≤ n i=1 F (h i ) 1-2 sup χ ∈B(χ,h i ) |σ 2 ε (χ ) -σ 2 ε (χ)| K 2 (1) - 1 0 (K 2 (s)) τ h i (s)ds .
The continuity of σ 2 ε (H1) with again Toeplitz's lemma ensure that A 12 nF (h n ) 1-2 → 0, as n → +∞.

(16)

Now, let us study the term A 2 appearing in the decomposition of V n . Using Cauchy-Schwartz's inequality, and denoting K ∞ := sup t∈[0,1] K(t), we get

A 2 ≤ K 2 ∞ n i=1 F (h i ) -2 E Y 2 [2r(χ) -Y ] 2 P (|Y | > b n ) 1 2 ≤ 3Q n K 2 ∞ n i=1 F (h i ) -2 ,
where

Q n = max E Y 4 , 4|r(χ)|E|Y | 3 , 4r 2 (χ)E Y 2 P (|Y | > b n ) 1 2 .
We deduce from H4 and H5, again with the choice b n = (δ ln n) 1/µ , that

A 2 nF (h n ) 1-2 = O   e -λb µ n 2 (ln n) 2 µ F (h n )   → 0, as n → +∞ with δ > 2 λ . (17) 
Next, for the last term A 3 , we have

|A 3 | ≤ b 2 n [1 + o(1)] n i=1 F (h i ) 2-2 K(1) - 1 0 (K (s))τ h i (s)ds 2 .
It follows from H6 that

A 3 nF (h n ) 1-2 = O F (h n )(ln n) 2 µ → 0, as n → +∞. (18) 
We deduce from ( 15), ( 16), ( 17) and ( 18) that

V n ∼ nF (h n ) 1-2 β [1-2 ] σ 2 ε (χ)M 2 , as n → +∞. (19) 
Next, since ln F (hn) ln n → 0 as n → +∞, then the first part of H6 implies that

nF (h n )(ln n) -2 µ ln [nF (h n ) 1-2 ] {ln ln [nF (h n ) 1-2 ]} 2(α+1) → ∞, as n → +∞. Setting b n = (δ ln n) 1 µ
, it follows that there exists n 0 ≥ 1 such that for any i ≥ n 0 , we have

iF (h i )(ln i) -2 µ ln [iF (h i ) 1-2 ] {ln ln [iF (h i ) 1-2 ]} 2(α+1) > 2 K 2 ∞ max |r(χ)| 2 , (δ ln i) 2 µ F (h i ) 2 ≥ Z 2 n,i . So, the event Z 2 n,i > iF (h i ) 1-2 ln[iF (h i ) 1-2 ]{ln ln[iF (h i ) 1-2 ]} 2(α+1)
is empty for i ≥ n 0 .

We deduce from (19) that

∞ i=1 (ln ln V i ) α V i E   Z 2 n,i 1 Z 2 n,i > V i ln V i (ln ln V i ) 2(α+1)   < ∞.
Let S be a random function defined on [0, +∞[ such that for any t ∈ [V n , V n+1 [, S(t) = S n . Using Theorem 3.1 in [START_REF] Jain | Upper and lower functions for martingales and mixing processes[END_REF]], there exists a Brownian motion ξ such that

S(t) -ξ(t) (2t ln ln t) 1 2 = o (ln ln t) -α 2 a.s., as t → ∞, for any t ∈ [V n , V n+1 [. It follows that lim t→∞ S(t) (2t ln ln t) 1 2 = lim t→∞ S(t) -ξ(t) (2t ln ln t) 1 2 + ξ(t) (2t ln ln t) 1 2 = 1 a.s.
and then we have

S n √ 2V n ln ln V n → 1 a.s., as n → ∞, (20) 
by virtue of the definition of S and the fact that V n+1 Vn → 1 as n → ∞. From (19), we have

lim n→∞ nF (h n ) 1-2 ln ln nF (h n ) 1-2 1/2 B n,1- (2V n ln ln V n ) 1 2 = β [1-] 2β [1-2 ] σ 2 ε (χ)M 2 1/2 .
Lemma 5 follows from the last convergence and the fact that

S n = N 1 n i=1 F (h i ) 1-,
with the help of (20).

Proof of Lemma 6

We have

N 2 = 1 n i=1 F (h i ) 1- n i=1 F (h i ) -E K χ -X h i (r(X ) -r(χ)) -E K χ -X h i Y 1 {|Y |>bn} := A + B.
As in the proof of Lemma 1, we can write

A = h n α [ ] β [1-] ϕ (0)M 0 [1 + o(1)] , (22) 
and then,

nF (h n ) ln ln n 1/2 A = nF (h n ) ln ln n 1/2 h n α [ ] β [1-] ϕ (0)M 0 [1 + o(1)] = o(1),
where the last equality follows from the condition nh 2 n → 0. For the second term of the right-hand-side in (21), using Cauchy-Schwartz's inequality and the boundness of the kernel K, we get

|B| ≤ K ∞ n i=1 F (h i ) 1- n i=1 F (h i ) -E Y 2 i P [|Y i | > b n ] 1/2 .
From Markov's inequality combined with (4), it follows that

|B| ≤ K ∞ n i=1 F (h i ) 1- n i=1 F (h i ) -E Y 2 i E e λ|Y i | µ e -λb µ n 1/2 = O 1 nF (h n ) B n,- B n,1- n 1-λδ (ln n) 2/µ , (23) 
which gives nF (h n ) ln ln n

1/2 B = O 1 √ ln ln n 1 nF (h n ) n 1-λδ (ln n) 2/µ = o(1) if δ > 1 λ ,
and Lemma 6 is proved.

Proof of Theorem 3

Using the decomposition (10), we have to show that

nF (h n ) ϕ [ ] n (χ) -φ[ ] n (χ) → 0 a.s. ( 24 
)
and gives the desired results. About (25), using the decomposition (13), it remains to prove Lemmas 7 and 8 below.

nF (h n ) φ[ ] n (χ) -r(χ)f [ ] n (χ) D → N cM 0 ϕ (0)α [ ] β [1-] , β [1-2 ] M 2 σ 2 ε (χ) β 2 [1-] , ( 
Lemma 7 Assume that Assumptions H1 -H5 and H7 hold. Then

nF (h n )N 1 D → N 0, β [1-2 ] β 2 [1-] σ 2 ε (χ)M 2 .
Lemma 8 Assume that Assumptions H1 -H5 hold. If there exists c ≥ 0 such that lim n→∞ h n nF (h n ) = c, then

lim n→∞ nF (h n )N 2 = c α [ ] β [1-] ϕ ( 
0)M 0 .

Proof of Lemma 7

Setting W n,i = nF (h n ) n i=1 F (h i ) 1-W n,i and Z n,i = W n,i -EW n,i , where W n,i is defined in the proof of Theorem 2, then

nF (h n )N 1 = n i=1
Z n,i .

To prove Lemma 7, we first prove that

lim n→∞ n i=1 E(Z 2 n,i ) = β [1-2 ] β 2 [1-] σ 2 ε (χ)M 2 , (26) 
and then check that W n,i satisfies the Lyapounov's condition. Next, from (19) we have

n i=1 E(Z 2 n,i ) = nF (h n ) ( n i=1 F (h i ) 1-) 2 V n = 1 nF (h n ) 1-2 1 B 2 n,1- V n = β [1-2 ] β 2 [1-] σ 2 ε (χ)M 2 [1 + o(1)]
which proves (26). To check the Lyapounov's condition, set p > 2, we have

n i=1 E |Z n,i | p = n i=1 E |Z n,i | p-2 Z 2 n,i . Since W n,i ≤ K ∞ nF (h n ) n i=1 F (h i ) 1-F (h i ) -|b n -r(χ)|, it follows that n i=1 E |Z n,i | p ≤ (nF (h n )) p 2 n i=1 F (h i ) -p V ar K χ-X i h i Y i 1 {|Y i |≤bn} -r(χ) 2 2-p K 2-p ∞ |b n -r(χ)| 2-p n i=1 F (h i ) 1- p .
Using the same decomposition as in ( 14), we have

n i=1 F (h i ) -p V ar K χ -X i h i Y i 1 {|Y i |≤bn} -r(χ) = n i=1 F (h i ) -p E K 2 χ -X h i [Y -r(χ)] 2 +E K 2 χ -X h i Y [2r(χ) -Y ] 1 {|Y |>bn} - n i=1 E 2 K χ-X h i Y 1 {|Y |≤bn} -r(χ) F (h i ) p := B 1 + B 2 -B 3 . (27)

  Mean and standard deviation of the square prediction error, computed on 500 repeated simulations, for different values of n, with the optimal values of bandwidth given from C CV and ν CV .

  comp. time for r n+1 , . . . , r n+N 0.0471.922 5.594 21.938 152.719 

Figure 1 :

 1 Figure 1: El Niño monthly temperature time series from January, 1982 up to December, 2011.

Figure 2 :

 2 Figure 2: El Niño yearly curves temperatures from 1982 up to 2011.

Figure 3 :

 3 Figure 3: El Niño true and predicted temperature curves for the year 2011.The solid line is the true curve. The dashed line is the predicted curve with the recursive estimator. The dotted line is the predicted curve with the estimator from Ferraty and Vieu[START_REF] Ferraty | Nonparametric Modelling for Functional Data[END_REF]].

→ M 1 .

 1 25)whereφ[ ] n is defined in (11) and c is such thatlim n→∞ nF (h n )h n = c, sincef This later follows from the first parts of Lemmas 3 and 4. For (24), following the same lines of proof of (12) with substituting ln ln n nF (h n )

Table 2 :

 2 Mean and standard deviation of the square prediction error, computed on 500 repeated simulations, for different choices of norms.

	norm	[P CA]	[F OU ] [DERIV ]	[P LS]
	MSPE 0.3936	0.4506	0.4527	0.3887
		(1.5190) (1.5624) (1.5616) (1.5098)

Table 3 :

 3 Mean and standard deviation of the square prediction error, computed on 500 repeated simulations, for different values of .

available online at http://www.math.univ-toulouse.fr/staph/npfda/

Setting b n = (δ ln n) 1 µ for some δ, µ > 0 and following the same lines as in the proof of ( 15), ( 16), ( 17) and ( 18) with substituting the exponent 2 by p in all the expressions, we have

so that from Toeplitz's lemma, we can write

Next, for the second expression B 2 of ( 27), we get

It follows again from Toeplitz's lemma that

In the same manner from ( 18), we have

which concludes the proof of Lemma 7.

Proof of Lemma 8

We go back to the decomposition of ( 21) in the proof of lemma 6. On one hand, from ( 22), we write

On the other hand from (23), we get

and Lemma 8 follows from the combination of ( 28) and ( 29).