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Abstract In this paper, we propose a parametric model for multivariate distributions. The model is
based on distortion functions, i.e. some transformations of a multivariate distribution which permit to
generate new families of multivariate distribution functions. We derive some properties of considered
distortions. A suitable proximity indicator between level curves is introduced in order to evaluate the
quality of candidate distortion parameters. Using this proximity indicator and properties of distorted
level curves, we give a specific estimation procedure. The estimation algorithm is mainly relying on
straightforward univariate optimizations, and we finally get parametric representations of both mul-
tivariate distribution functions and associated level curves. Our results are motivated by applications
in multivariate risk theory. The methodology is illustrated on real examples.

Keywords Multivariate probability distortions · Level sets estimation · Iterated compositions ·
Hyperbolic conversion functions · Multivariate risk measures.

Introduction

Multivariate distributions can be modeled using parametric marginal distribution functions and para-
metric copulas, or directly by some specific parametric expressions of the multivariate cumulative
distribution function. However some problems of such parametric forms can arise. We underline, for
instance, the difficulty (see for example Bienvenüe and Rullière, 2012, in the univariate case)

- to fit non-regular or multimodal distributions using classical unimodal distributions;
- to change the number of parameters and to improve a fit to observed data;
- to estimate the parameters when their number is large;
- to get analytical expressions for level curves of the distribution functions.

In order to overcome these shortcomings, in this paper we will define multivariate distributions by
using probability distortions. We show that using distortions has several advantages compared to
using classical parametric multivariate distributions. In particular we focus on:

- the possibility to get analytical expressions both for the multivariate distribution function and for
the associated level-curves;

- the huge variety of reachable distributions (multimodal, etc.), with the possibility to improve the fit
by adding parameters (via distortions composition), and the possibility to converge to any target
in dimension 1;
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- some estimation facilities, with the possibility to get very good initial values for parameters even
with a large number of parameters.

Using parametric distortions will also have some advantages compared to nonparametric fitting proced-
ures like multivariate splines (e.g. see Awanou et al., 2005) or kernel estimation (e.g. see Charpentier
et al. 2006). Among advantages of the considered distortions, one can cite the possibility to ensure
regular conditions (like monotonicity and positiveness of density function), and the possibility to get
analytical expressions for both cumulative distribution function and for level curves.

Applications in multivariate risk theory:

Our results are motivated by applications in multivariate risk theory. In the following we detail the
connection between the multivariate level-curves and the recent developments of risk theory.

During the last decades, researchers joined efforts to properly quantify and manage risks. Traditionally,
risk measures are thought of as mappings from a set of real-valued random variables to the real
numbers. However, it is often insufficient to consider a single real measure to quantify risks created by
business activities, especially if the latter are affected by other external risk factors. Consequently we
need a generalization of univariate classical risk measures in dimension higher than one. In the recent
literature, an intuitive and immediate generalization of the Value-at-Risk measure in the case of a
d-dimensional loss distribution function F is represented by its α-quantile curves, i.e. the boundary of
its α-level set. More precisely, let F be a d-dimensional distribution function, then we define:

VaRα(F ) = {x ∈ Rd+ : F (x) = α}, for α ∈ (0, 1).

This generalization of the Value-at-Risk may be useful to quantify dependent risks: dependent environ-
mental risks factors in same geographic area, several dependent business lines of a financial institution
(e.g. see Chebana and Ouarda, 2011; Cousin and Di Bernardino, 2012). The interest reader is also
referred to Tibiletti (1993), Belzunce et al. (2007) , Embrechts and Puccetti (2006), Nappo and Spiz-
zichino (2009), Di Bernardino et al. (2011).

Starting from these considerations, we are interested in parametric representations of multivariate dis-
tribution function F and associated multivariate Value-at-Risk VaRα(F ) (i.e. level curves of F ). They
may be of great importance in many practical studies of multivariate risks because they analytically
describe a multivariate risk-area (see Embrechts and Puccetti, 2006).

Some effort has been made in recent literature to estimate the level-curves of a multivariate distribution
function. A non-parametric plug-in estimation of VaRα(F ) is given by Di Bernardino et al. (2011).
de Haan and Huang (1995) model a risk-problem of flood, in the bivariate setting, using an extremal
estimator of VaRα(F ), for F a bivariate distribution function. In this paper we provide an estima-
tion algorithm to estimate multivariate distribution function F and associated VaRα(F ). Differently
from the literature cited above, our procedure gives explicit parametric-analytical representations for
estimated F and VaRα(F ). This feature can be relevant from a practical point of view.

Organization of the paper:

The paper is organized as follows. In Section 1, we introduce some notations, tools and technical
assumptions. In Section 2, we present some transformations of a multivariate distribution function F
which permit to generate new families of multivariate distribution functions. In particular, we introduce
external distortions (see Section 2.1), and internal ones (see Section 2.2). In Section 3 we propose an
estimation procedure in the case of piecewise linear distortions. In Section 4, we deal with estimation in
the case of differentiable distortions. Numerical applications are presented in Section 5 using hyperbolic
distortion functions. Finally, two real case studies are illustrated in Sections 5.2 and 5.3.



Distortions of multivariate risk measures: a level-sets based approach 3

1 Basic notions and preliminaries

Assume that we have d underlying risks described by a d−dimensional nonnegative real-valued random
vector X = (X1, . . . , Xd). Denote its multivariate distribution function by F : Rd+ → [0, 1] with
univariate margins Fi(xi) = P (Xi ≤ xi), for i = 1, . . . , d. Sklar’s Theorem (1959) is a well-known result
which states that for any random vector X, its multivariate distribution function has the representation

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),

where C is called the copula function. Effectively, it is a distribution function on the d−cube [0, 1]d

with uniform margins and it links the univariate margins to their full multivariate distribution. In the
case where we have a continuous random vector, we know that Ui = Fi(Xi) is an uniform random
variable so that we can write

C(u1, . . . , ud) = F (F−11 (u1), . . . , F−1d (ud)),

to be the unique copula associated with X, with quantile functions F−1i defined by:

F−1i (p) = inf{x ∈ R+ : Fi(x) ≥ p}, for p ∈ (0, 1).

Denote F the class of d−dimensional distribution functions F such that F : Rd+ → [0, 1] be a
continuous partially increasing function1 of a non-negative absolutely-continuous random vector2

X = (X1, . . . , Xd) (with respect to Lebesgue measure λ on Rd). In the following, F ∈ F will be
said to satisfy regularity conditions.

Let L(α) = {x ∈ Rd+ : F (x) ≥ α} be the upper α-level set of F , for α ∈ (0, 1) and d ≥ 2. Furthermore,
for any set A ⊂ Rd+ we denote by ∂A its boundary.

Note that, under the regularity conditions, ∂L(α) = {x ∈ Rd+ : F (x) = α} has Lebesgue-measure zero
in Rd+ (e.g., see Property 3 in Tibiletti, 1990). We call ∂L(α) the α-level curve of distribution F . For
instance, if d = 2, each ∂L(α) for α ∈ (0, 1), is identified by a decreasing curve in the plane R2

+ (e.g.,
see Theorem 2 in Rossi, 1973; Section 2 in Tibiletti, 1991).

We now recall the notion of absolutely monotonic function that will be useful later. The interested
reader is referred also to Valdez and Xiao (2011). Assume that n is a non-negative integer.

Definition 1 (Absolute monotony). A real function g(t) is said to be absolutely monotonic, of order
n, on an interval I if the following conditions are satisfied:

· g is continuous on I; and
· g has non-negative derivatives of orders up to, and including, n, i.e., g(k)(t) ≥ 0, for all t on the

interior of I and for k = 0, 1, . . . , n.

Remark 1. If g and h are both absolutely monotonic of order n on an interval I and h is defined on I
such that h(t) is on the interior of I for all t on the interior of I, then the composite function g ◦ h(t)
is also absolutely monotonic of order n on I.

1 A function F (x1, . . . , xd) is partially increasing on Rd+ \ (0) if the functions of one variable g(·) =
F (x1, . . . , xj−1, ·, xj+1, . . . , xd) are increasing. About properties of partially increasing multivariate distribution functions
we refer the interested reader to Rossi (1973) and Tibiletti (1991).

2 We restrict ourselves to Rd+ because, in our applications, components of d−dimensional vectors correspond to random
losses and are then valued in R+. However extensions of our results in the case of multivariate distribution function on
the entire space Rd are possible.
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2 Considered distortions

The aim of this section is to introduce some simple transformations of a multivariate distribution func-
tion F which permit to generate new families of multivariate distribution functions. Firstly we will be
interested in distortion applied to the function F (called external distortions and leading to a distorted

function F̃ ext), secondly we will include also the distortions of marginal components of F . In this last

case we will finally obtain a global distorted function F̃ . The interested reader is referred, for instance,
to Christian Genest in the conference “Distributions with Given Marginals and Statistical Modeling”
(Barcelona, July 17-20, 2000) and Durrleman et al. (2000).

Definition 2 (Regular external distortions). Let T : [0, 1] → [0, 1] be a continuous and increasing
function on the interval [0, 1], with T (0) = 0, T (1) = 1, such that ∀F ∈ F , T ◦ F ∈ F . Denote by T
the set of such functions T .

Proposition 1 (A sufficient regular condition). If T is an absolutely monotonic function of order d
on the interval [0, 1], such that T (0) = 0 and T (1) = 1, then T ∈ T .

Proof : Let F ∈ F . If T is absolutely monotonic function on the interval [0, 1] then in particular T is
continuous and increasing. So from Definition 3.6 (using the absolutely monotonic property) and 3.4
(using the continuous and increasing property) in Valdez and Xiao (2011) we obtain that T ◦ F ∈ F .
2

We remark that assumptions of Proposition 1 are sufficient, but not necessary.

2.1 External distortion

In this section we introduce the external distorted multivariate distribution function F̃ ext.

Definition 3 (Externally distorted distribution). Let F ∈ F a d−dimensional distribution function
that satisfies the regularity conditions. If T ∈ T we define the external distorted multivariate distribu-
tion function by F̃ ext(x) = T ◦ F (x) with x ∈ Rd+.

Furthermore we introduce the following distortion for the upper α-level set of F .

Proposition 2 (External distortion for upper α-level set). Let α ∈ (0, 1) and L(α) = {x ∈ Rd+ :
F (x) ≥ α}. If T ∈ T , it holds that:

L̃ext(α) = {x ∈ Rd+ : F̃ ext(x) ≥ α} = L(T−1(α)).

Proof : Since F̃ ext(x) = T ◦ F (x) and T is invertible in [0, 1] then

L̃ext(α) = {x ∈ Rd+ : T ◦ F (x) ≥ α} = {x ∈ Rd+ : F (x) ≥ T−1(α)}.

Hence the result. 2

Remark 2. If T is absolutely monotonic so that it fulfils sufficient assumptions of Proposition 1, T−1 is
a concave function. Then in particular α := T−1(β) > β, for β ∈ (0, 1). This means the transformation
T transforms the upper β-level set of F into the upper α-level set, with higher risk level α.

Furthermore, we remark that using an external distortion we are able to modify the dependence
structure of the random vector X. Indeed, for simplicity in the case d = 2, we easily obtain the
following property:

Remark 3 (Dependence impact of external distortion). Let X and Y be two independent real random

variables (i.e., F (x, y) = FX(x)FY (y)) and T be a distortion such that T ∈ T . Let (X̃, Ỹ ) be a

vector with distribution function F̃ ext(x, y) = T ◦ F (x, y). Since in general T ◦ (FX(x)FY (y)) 6=
(T ◦ FX(x)) · (T ◦ FY (y)), X̃ and Ỹ are not necessarily independent.
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2.2 Global distortion

We now include to the externally distorted distribution F̃ ext also the distortions of marginal compon-
ents of F . In this last case we will finally obtain a global distorted distribution function F̃ .

Definition 4 (Distorted distribution). Let F be a d−dimensional distribution function. Let T ∈ T
and Ti : [0, 1] → [0, 1] be a continuous non-decreasing function, such that Ti(0) = 0, Ti(1) = 1, for
i = 1, . . . , d. We introduce the global distorted distribution function F̃ of F as :

F̃ (x1, . . . , xd) = T ◦ C(T−11 F1(x1), . . . , T−1d Fd(xd)).

The interested reader is also referred to Valdez and Xiao (2011) (Definitions 3.2 and 3.6) and Char-
pentier (2008). They deal with the particular case T = T1 = . . . = Td.

Proposition 3 (Distorted margins). Denote by F̃1, . . . F̃d the marginal distributions of the joint dis-
tribution F̃ . Then,

F̃i = T ◦ T−1i ◦ Fi, for i = 1, . . . , d.

In analogy with Proposition 2, we now analyze the impact of the global distortion on the α-level curves
of F .

Proposition 4 (Distorted α-level curves). Let F be a d−dimensional distribution function and F̃ be

as in Definition 4. Let ∂L̃(α) = {x ∈ Rd+ : F̃ (x) = α}. A parametric expression for this distorted
α-level curve is:

∂L̃(α) =
{

(F−11 ◦ T1(u1), . . . , F−1d ◦ Td(ud)), (u1, . . . , ud) ∈ (0, 1)d, C(u1, . . . , ud) = T−1(α)
}
. (1)

Or equivalently, as a function of marginal distorted distributions F̃i, i = 1, . . . , d:

∂L̃(α) = ψT (∂L(T−1(α))), ∀α ∈ (0, 1), (2)

with ψT (x) = (F̃−11 ◦ T ◦ F1(x1), . . . , F̃−1d ◦ T ◦ Fd(xd)), where the function ψT : Rd → Rd and
x = (x1, . . . , xd) ∈ Rd.

Proof : It sufficient to remark that

L̃(α) = {(x1, . . . xd) : C(F1(x′1), . . . , Fd(x
′
d)) ≥ T−1(α), F1(x′1) = T−11 ◦F1(x1), . . . , Fd(x

′
d) = T−1d ◦Fd(xd)}.

Hence
∂L̃(α) = ψT1,··· ,Td(∂L(T−1(α))), ∀α ∈ (0, 1), (3)

where ψT1,··· ,Td : Rd → Rd,

x 7→ ψT1,··· ,Td(x) = (F−11 ◦ T1 ◦ F1(x1), . . . , F−1d ◦ Td ◦ Fd(xd)),

with x = (x1, . . . , xd) ∈ Rd. For Equation (1) one can write:

∂L̃(α) = ψT1,...,Td(∂L(T−1(α)))

=
{

(F−11 ◦ T1 ◦ F1(x1), . . . , F−1d ◦ Td ◦ Fd(xd)), (x1, . . . , xd) ∈ ∂L(T−1(α))
}

=
{

(F−11 ◦ T1 ◦ F1(x1), . . . , F−1d ◦ Td ◦ Fd(xd)), C(F1(x1), . . . , Fd(xd)) = T−1(α)
}

=
{

(F−11 ◦ T1(u1), . . . , F−1d ◦ Td(ud)), (u1, . . . , ud) ∈ (0, 1)d, C(u1, . . . , ud) = T−1(α)
}
.

For Equation (2), the result comes down from Propositions 3 and Equation (3). 2
If initial copula C can be inverted, that is

{
(u1, . . . , ud) ∈ (0, 1)d, C(u1, . . . , ud) = T−1(α)

}
is given, and

if F1, . . . , Fd admit analytic expressions for inverse distributions then Equation (1) can be particular
useful to get an analytic expression for α-level curves.

Proposition 5 (Distorted copula). Denote C̃(u1, . . . , ud) the distorted copula such that F̃ (x1, . . . , xd) =

C̃(F̃1(x1), . . . , F̃d(xd)). Then copula C̃ only depends on external distortion T , i.e.

C̃(u1, . . . , ud) = T (C(T−1(u1), . . . , T−1(ud))).
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Proof : The result comes down from Proposition 3.

Proposition 6 (Regular condition in bivariate case). Denote by C the initial copula. In the bivariate
case, assume C is twice differentiable w.r.t. x and y. Write Cx(x, y) = ∂

∂xC(x, y), Cy(x, y) = ∂
∂yC(x, y)

and Cxy(x, y) = ∂
∂x

∂
∂yC(x, y). Assume T is a continuous and increasing function, and that T is dif-

ferentiable with respective first and second order derivatives T ′ and T ′′. Then T ∈ T if and only if:

T ′(C(x, y))Cxy(x, y) + T ′′(C(x, y))Cx(x, y)Cy(x, y) ≥ 0, for all x, y ∈ [0, 1].

In particular, this condition is satisfied if T is absolutely monotonic of order 2. In the case C(x, y) = xy
and this condition becomes:

T ′(z) + zT ′′(z) ≥ 0, for all z ∈ [0, 1]. (4)

Proof: Write C̃(u, v) = T (C(T−1(u), T−1(v))). Asking that ∂
∂u

∂
∂v C̃(u, v) ≥ 0, the condition holds. 2

This last condition in Equation (4) obviously holds when T is absolutely monotonic of order 2, i.e.
when T ′(x) and T ′′(x) are positive functions of x. However, this condition also holds in some cases
where T (x) is a concave function of x. This theoretical aspect will be illustrated in Section 5.

3 Estimation

Here, we aim at estimating a target-level curve of a global distorted d−dimensional distribution func-
tion. Firstly we consider the estimation of the internal distortions. If target marginal distributions F̃i,
for i = 1, . . . , d, are given then the internal distortions can be easily deduced from the external one T .

3.1 Methodology

Estimation of internal distortions

As a consequence of Proposition 3, when target distorted marginal distributions F̃i are known, and
when the global distortion T is given, we have:

Ti = Fi ◦ F̃−1i ◦ T, for i = 1, . . . , d. (5)

It follows that the main problem in our procedure is to estimate the external distortion T .

Estimation of external distortion

We now aim at estimating the external distortion T . When margins are perfectly fitted to given targets
F̃i, i = 1, . . . , d, using Equation (2), the level-curves only depend on the external distortion T . For this

reason we will denote in the following ∂L̃T (β) the distorted β level-curve:

∂L̃T (β) = ψT (∂L(T−1(β))), ∀β ∈ (0, 1), (6)

where the function ψT : Rd → Rd,

x 7→ ψT (x) = (F̃−11 ◦ T ◦ F1(x1), . . . , F̃−1d ◦ T ◦ Fd(xd)),

with x = (x1, . . . , xd) ∈ Rd.

Then, we can summarize some key-points for the estimation of the external distortion T :

– The distorted β level-curve ∂L̃T (β) only depends on the external distortion T .
– Finding a good distortion T is strongly related to a good choice of level α := T−1(β).
– Then we need an indicator of the quality of a candidate level-curve.

Following these considerations, firstly we define a suitable proximity indicator (PI) (see Section 3.2),
that quantifies if a candidate level curve is good or not. An algorithm with a practical fit of these
distortions in the case of piecewise linear external distortion is given in Section 3.3.
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3.2 A suitable proximity indicator (PI)

Let X∗ a d−dimensional random vector with distribution F ∗ that satisfies regularity conditions. Let
∂L∗(α) be the α-level curve of F ∗. Frequently α-level curve ∂L∗(α) are difficult to obtain analytically.
For this reason we will try to obtain quantities relying on F ∗ rather than ∂L∗.

In order to evaluate the proximity of a “candidate set” γ to the target-curve ∂L∗(α) we introduce the
following proximity indicator:

PIF∗,α(γ) = EX∗ [(F ∗(X∗)− α)2 | X∗ ∈ γ]. (7)

Trivially, if γ ⊆ ∂L∗(α), then PIF∗,α(γ) = 0. As an interesting property we point out that the integral
expression of formula (7) only depends on the analytical expression of F ∗ and not on ∂L∗(α). For an
illustration of the proximity indicator in (7) the interested reader is remanded to Example 1 below.

Example 1 (An explicit proximity indicator in a bivariate setting). Let uniform marginal distribu-
tions in [0, 1] and the bivariate Farlie-Gumbel-Morgenstern copula structure, i.e., F ∗(x, y) = xy +
θ xy (1− x) (1− y), where θ ∈ [−1, 1] (see Nelsen, 1999, Example 3.12). Let the “candidate set” be
γα = {(x, y) ∈ [0, 1]2 : x y = α}, for α ∈ (0, 1). In this case we can obtain a closed formula for
PIF∗,α(γ), that depends only to θ ∈ [−1, 1] and α ∈ (0, 1).

Figure 1 PIF∗,α(γ), for θ = −0.99 (dashed line), θ = 0.18 (dotted line), θ = 0.85 (full line), with F ∗(x, y) =
xy + θ xy (1− x) (1− y) and γ = {(x, y) ∈ [0, 1]2 : x y = α}.

Recall that Farlie-Gumbel-Morgenstern copula reduces to the independence case when θ = 0, and it can
only model relatively weak dependence in the two extreme cases (θ = ±1) (e.g. Example 3.12, Nelsen,
1999). Then in particular PIF∗,α(γ) = 0, for θ = 0. In this sense, Figure 1 shows that PIF∗,α(γ) takes
small values for θ close to zero (θ = 0.18). Conversely for θ close to ±1 (θ = −0.99 and θ = 0.85) we
have a greater range of values of PIF∗,α(γ). Furthermore we remark that PIF∗,α(γ) = 0 for α = 0 and
α = 1, PIF∗,α(γ) > 0 for all α ∈ (0, 1) and it is a continuous function with respect to α (see Figure 1).

In the case where we do not dispose of an explicit formula for the proximity indicator of a candidate
set, we have to estimate it. If F ∗ is supposed to be unknown one can propose the estimated version of
the proximity indicator in (7) as:

P̂ IF∗,α(γ) = PI
F̂∗,α

(γ),



8 Elena Di Bernardino, Didier Rullière

where F̂ ∗ is a consistent smooth estimator of F ∗ admitting a density function. For instance given
a d−dimensional sample {x∗1, . . . , x∗n}, with corresponding empirical distribution function F ∗n, the

smooth estimator F̂ ∗ could be FK ◦ F ∗n, where FK is a suitable kernel function (e.g. see Chacón and
Rodŕıguez-Casal, 2010). Furthermore if γ is a discrete set of points, then one can write :

P̂ IF∗,α(γ) =

∑n
i=1

∑
x∈γ(F̂ ∗(x)− α)2fK

(
x−x∗

i

h

)
∑n
i=1

∑
x∈γ fK

(
x−x∗

i

h

) ,

where fK(x) = dFK(x)
dx .

In order to build a discrete candidate set from parametric level curve, we introduce following notation
that will be useful for numerical algorithms.

Definition 5 (Discretization of a level curve). Let θ1, . . . , θg, with g ∈ N∗ such that θi = π
2

i
g+1 . Define

∆θ = {(x cos(θ), x sin(θ)), x ∈ R+}. We define

∂Lg(α) := {∂L(α) ∩∆θi , i = 1, . . . , g}.

We remark that ∂Lg(α) is a discrete finite subset of g points of ∂L(α). If we know the analytical
expression of ∂L(α) then we can easily obtain ∂Lg(α). We illustrate below the construction of ∂Lg(α)
in the case of an independent level curve ∂L(α).

For instance in the independent case, i.e. ∂L(α) = {(x, y) ∈ R2 : FX(x)FY (y) = α}, for α ∈ (0, 1),

then ∂Lg(α) =
{(
FX(x), α

FX(x)

)
, x = F−1X

(√
α
θi

)
, i = 1, . . . , g

}
.

3.3 Estimation algorithm

Assume that T has a parametric form and belongs to the class of regular distortions T . The best fitted
distorted curve for level β can be defined as

∂L̃opt(β) = ∂L̃T opt(β) , with T opt = arginfT∈T PIF∗,β

[
∂L̃T (β)

]
,

and using (6), we get

∂L̃opt(β) = ψT (∂L(T−1(β))) , with T = arginfT∈T PIF∗,β

[
ψT (∂L(T−1(β)))

]
.

If T has a lot of parameters, the optimization procedure have to face a dimensionality problem (cf.
Richard E. Bellman, the curse of dimensionality). Here, the problem comes from the fact that ψT
depends on the searched distortion T .

Assume that at a step ν of the algorithm, we have a suitable approximation ψT ν of ψT , where T ν is a
known distortion. One can define at this step ν the corresponding fitted level-curve:

∂L̃ν
opt

(β) = ψT ν (∂L(T−1(β))), with T = arginfT∈T PIF∗,β

[
ψT ν (∂L(T−1(β)))

]
(8)

= ψT ν (∂L(αν)), with αν = arginfa∈(0,1) PIF∗,β [ψT ν (∂L(a))] . (9)

The optimization in Equation (9) is far more easier to solve because it is a one-dimensional optimiza-
tion, whereas optimization in Equation (8) is an optimization relying on all parameters of T .

This trick simply rely on the fact when ψT ν is known, finding the best distortion T is equivalent to find
the best level αν , simply by setting αν = T−1(β). As a consequence, the distortion T is then assumed
to pass through the point (αν , β).
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As a summary, given chosen distorted levels βj , we aim at finding optimal corresponding levels αj , and
thus the optimal distortion T passing through of all points (αj , βj), j = 1, . . . ,m. Such a distortion
passing through all points of a set Ω will be written TΩ , as detailed in following definition.

Definition 6 (Piecewise linear distortion). Let Ω = {ω1, . . . , ωm}, ωj ∈ (0, 1)2, j = 1, . . . ,m, m ∈ N∗.
We denote by TΩ(x) a given nonparametric function linking point (0, 0), points of Ω, and point (1, 1).
Typically, TΩ(x) can be piecewise linear, or piecewise linear after a change of scale.

Starting from these considerations and Equation (9), we can now introduce the procedure of estimation
of TΩ(x), detailed in Algorithm 1.

Algorithm 1 Fit of piecewise linear distortions

Let 0 < β1 < . . . < βm < 1 be a set of levels.
Set Ω0 = {(βj , βj), j = 1, . . . ,m}.
for ν varying from 1 to νmax

Compute external fitted distortion of step ν, T ν(x) = TΩν−1(x).
for j varying from 1 to m

Compute ανj = arginfa∈(0,1) P̂ IF ∗,βj [γν(a)], with γν(a) = ψT ν (∂Lg(a)).
end for

Set Ων = {(ανj , βj)}j∈{1,...,m}.
end for

Set Ω = Ωνmax .
Get external distortion T = TΩ.

Get internal distortions Ti = Fi ◦ F̃−1
i ◦ T , i ∈ {1, . . . , d}.

A necessary condition for this algorithm to be applied is that TΩ(x) is an increasing function for x,
that is for all i ∈ {1, . . . ,m}, ανi ≥ ανi−1, where αν0 = 0 and ν = νmax. This algorithm is motivated by
the following consideration. In the case where the levels of Ων converge to the respective levels of a set
Ω, then the distortion Tν converges toward a distortion T .

To summarize, Algorithm 1 gives a fitted nonparametric external distortion T , and corresponding fitted
internal distortions T1, . . . , Td.

Remark 4. We summarize here some advantages of Algorithm 1:

1. Using this procedure our d-dimensional problem is decomposed in a sequence of univariate optim-
ization problems. We just have to optimize separately m univariate parameters αi, corresponding
to the levels of the level-curves.

2. Once distortions T , T1, . . . , Td estimated, one can provide analytical expressions for both F̃ and L̃.
This is an interesting aspect of the procedure above because, frequently, the analytical expression
of L̃ is quite difficult to obtain.

3. Algorithm 1 gives a non parametric estimation of T and corresponding internal distortions T1, . . . , Td.
Smoothed parametric version of these distortions will be easy to find (see Section 4.3).

In order to get smooth fitted distortions satisfying regular conditions, we propose hereafter some
numerical applications using hyperbolic distortions.
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4 Smooth estimation

4.1 A particular class of distortion functions

We take back from Bienvenüe and Rullière (2012) the following key notion of conversion function and
distortion function :

Definition 7 (Conversion and distortion functions). Let f any bijective increasing function from R
to R. It is said to be a conversion function. Furthermore we define the function Tf : [0, 1]→ [0, 1] such
that

Tf (u) =


0 if u = 0,

logit−1(f(logit(u))) if 0 < u < 1,
1 if u = 1.

Remark that the distortions function are chosen in a way to be easily invertible. In particular in a
way such that Tf ◦ Tg = Tf◦g, T

−1
f = Tf−1 . These readily invertible distortions help simulation of the

distorted distributions (see Bienvenüe and Rullière, 2012).

4.2 Hyperbolic conversion functions

In this section we consider this particular class of conversion function, which correspond to functions
that are defined in Bienvenüe and Rullière (2012).

Definition 8 (A class of hyperbole). The considered hyperbole H is

Hm,h,ρ1,ρ2,η(x) = m− h+ (eρ1 + eρ2)
x−m− h

2
− (eρ1 − eρ2)

√(
x−m− h

2

)2

+ eη−
ρ1+ρ2

2 . (10)

with m,h, ρ1, ρ2 ∈ R, and one smoothing parameter η ∈ R.

After some calculations, one can check that

H−1m,h,ρ1,ρ2,η(x) = Hm,−h,−ρ1,−ρ2,η(x).

In the following we illustrate with some examples the hyperbolic conversion functions proposed in
Definition 8.

Example 2 (Global distortion: a bivariate case). We provide an illustration of a bivariate global
distorted distribution F̃ (x, y) (see Definition 4). As internal distortion we consider the hyperbolic
conversion functions proposed in Definition 8 with m = 0.536, h = 0, ρ1 = −ρ2 = 0.321, η = 5.

Let now C(u, v) = u v and F1(x) = F2(x) = 1 − e−x. Then F (x, y) = (1 − e−x)(1 − e−y). Using
Definition 4, we consider the bivariate distorted distribution function :

F̃ (x, y) = T ◦ C(T−1F1(x), T−1F2(y)),

where T = Tf , with f = Hm,h,ρ1,ρ2,η. We denote f̃ the associated density function to F̃ . For graphical
illustration see Figure 2.

In the following we illustrate a global distortion in the case of a 3-dimensional distribution function.

Example 3 (Global distortion: a 3-dimensional case). We provide an illustration of a 3-dimensional
global distorted distribution F̃ (x, y, z) (see Definition 4). We follow the same approach to the bivariate
example above. As internal distortion we consider the hyperbolic conversion functions proposed in
Definition 8 with m = 0.5, h = 0, ρ1 = −ρ2 = 0.91, η = 3. We remark that with this choice of
parameters we deal with an absolutely monotonic external distortion, of order 3. Using Definition 4,
we consider the 3-dimensional distorted distribution function :

F̃ (x, y, z) = T ◦ C(T−1F1(x), T−1F2(y), T−1F3(z)),

where T = Tf , with f = Hm,h,ρ1,ρ2,η. For graphical illustration see Figure 3.
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Figure 2 (Left) level curves of distorted density f̃(x, y); (Center) level curves of non-distorted independent density

f(x, y) = e−x e−y ; (Right) level curves for α = 0.2, 0.4, 0.7 of the distorted distribution F̃ (x, y) (full curves) and the
non-distorted independent distribution (i.e., F (x, y) = (1− e−x) (1− e−y)) (dashed curves). Parameters: m = 0.536, h =
0, ρ1 = −ρ2 = 0.321, η = 5.

Figure 3 (Left) level curves for α = 0.1, 0.4, 0.7 of the 3-dimensional distorted distribution F̃ (x, y, z), for parameters
m = 0.5, h = 0, ρ1 = −ρ2 = 0.91, η = 3. (Right) level curves for α = 0.1, 0.4, 0.7 of the 3-dimensional non-distorted
independent distribution with exponential marginals with parameter 1.

4.3 Smooth estimation algorithm

We consider the generic hyperbolic conversion function defined in Equation (10). First remark that
when the smoothing parameter η tends to −∞, the hyperbole H tends to the angle function:

Am,h,ρ1,ρ2(x) = m− h+ (x−m− h)
(
eρ11{x<m+h} + eρ21{x>m+h}

)
. (11)

As remarked in Bienvenüe and Rullière (2012), it thus appears that hyperbolic distortions have the
advantage of being smooth versions of angle functions. They show in their paper that initial parameters
for the estimation are easy to obtain with angle compositions.

Definition 9 (Composite distortions). Let k ∈ N. Consider η ∈ R and a given parameter vector
θ = (m,h, ρ1, ρ2, a1, r1, . . . , ak, rk) if k ≥ 1, or θ = (m,h, ρ1, ρ2) if k = 0. We define the angle
composite distortion Aθ as:

Aθ = Tfθ , with fθ =

{
Aak,0,0,rk ◦ · · · ◦Aa1,0,0,r1 ◦Am,h,ρ1,ρ2 if k ≥ 1,
Am,h,ρ1,ρ2 if k = 0,

and the hyperbolic composite distortion Hθ,η as:

Hθ,η = Tfθ,η , with fθ,η =

{
Hak,0,0,rk,η ◦ · · · ◦Ha1,0,0,r1,η ◦Hm,h,ρ1,ρ2,η if k ≥ 1,
Hm,h,ρ1,ρ2,η if k = 0,

where Am,h,ρ1,ρ2 is given in Equation (11), and where Hm,h,ρ1,ρ2,η is defined in Definition 8.
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Remark 5 (Inverse composite distortions). Let k ∈ N. Consider η ∈ R and a given parameter vector
θ = (m,h, ρ1, ρ2, a1, r1, . . . , ak, rk) if k ≥ 1, or θ = (m,h, ρ1, ρ2) if k = 0. Since T−1f = Tf−1 , the angle

composite distortion A−1θ is such that:

A−1θ = Tfθ , with fθ =

{
Am,−h,−ρ1,−ρ2 ◦Aa1,0,0,−r1 ◦ · · · ◦Aak,0,0,−rk if k ≥ 1,
Am,−h,−ρ1,−ρ2 if k = 0.

The hyperbolic inverse composite distortion Hθ,η is such that:

H−1θ,η = Tfθ,η , with fθ,η =

{
Hm,−h,−ρ1,−ρ2,η ◦Ha1,0,0,−r1,η ◦ · · · ◦Hak,0,0,−rk,η if k ≥ 1,
Hm,−h,−ρ1,−ρ2,η if k = 0,

Definition 10 (Suited parameters from Ω). Let k ∈ N. Consider one given set Ω = {ω1, . . . , ω3+k},
ωj ∈ (0, 1)2. Denote by uj and vj the two respective components of each ωj in the logit scale, such that
ωj = (logit−1uj , logit−1vj), j ∈ {1, . . . , 3 + k}. Assume that uj and vj are increasing sequences of j.
We define:

Θ(Ω) =

{
(m,h, ρ1, ρ2, a1, r1, . . . , ak, rk) if k ≥ 1,
(m,h, ρ1, ρ2) if k = 0.

where m = u2+v2
2 , h = u2−v2

2 , ρ1 = ln
(
v2−v1
u2−u1

)
, ρ2 = ln

(
v3−v2
u3−u2

)
, rk = ln

(
v3+k−v2+k
u3+k−u2+k

u2+k−u1+k

v2+k−v1+k

)
,

ak = v2+k, k ≥ 1.

Proposition 7 (Suited composite distortions). Let k ∈ N. Consider one given set Ω = {ω1, . . . , ω3+k},
ωj ∈ (0, 1)2 and a smoothing parameter η ∈ R. Set θ = Θ(Ω), then

– the distortion Aθ(x) is piecewise linear in the logit scale and will be called logit-piecewise linear. It
links point (0, 0), points of Ω, and point (1, 1), so that it fulfils conditions of Definition 6.

– the distortion Hθ,η converges pointwise to Aθ as η tends to −∞. It results that the continuous and
differentiable distortion Hθ,η can fit as precisely as desired the set of points Ω when η tends to −∞.

Proof: The first result is proved in Bienvenüe and Rullière (2012). It simply comes from the fact
that AΘ(Ω)(uj) = vj for all j ∈ {1, . . . , 3 + k}, where ωj = (logit−1uj , logit−1vj). The convergence of
the hyperbole composite distortion toward the angle composite distortion is straightforward and also
evoked in Bienvenüe and Rullière (2012). 2

Using Algorithm 1, one can find a piecewise or logit-piecewise linear distortion for the external dis-
tortion and corresponding set Ω. Furthermore, using Proposition 3, one can build the corresponding
internal distortions and easily propose suited piecewise or logit-piecewise linear internal distortions
and corresponding sets Ωi, for i = 1, . . . , d.

The corresponding parameters of these sets Ω and Ω1, . . . , Ωd are given by Definition 10. These para-
meters θ = Θ(Ω) and θ1 = Θ(Ω1), . . . , θd = Θ(Ωd) constitute initial values for distortions of smoothed
hyperbolic external and internal distortions. Choosing a convenient smoothing parameter η, one can
define a complete vector parameter:

−→
Θ = (θ1, . . . , θd, θ, η).

As seen previously, from now, the estimation of
−→
Θ relies exclusively on univariate optimizations.

From estimated vector
−→
Θ , the corresponding estimated distribution is:

F̃−→
Θ

(x1, . . . , xd) = Hθ,η ◦ C(H−1θ1,η ◦ F1(x1), . . . ,H−1θd,η ◦ Fd(xd)). (12)

and the parametric α level-curves are given by Proposition 4

∂L̃−→
Θ

(α) = {(F−11 ◦ Hθ1,η(u1), . . . , F−1d ◦ Hθ1,η(ud)), (u1, . . . , ud) ∈ (0, 1)d, C(u1, . . . , ud) = H−1θ,η(α)}.
(13)

Since initial parameters of
−→
Θ are usually close to optimal values, all these parameters can be improved

using standard local optimization algorithm, like gradient descent methods:
−→
Θ∗ = argmax−→

Θ
lnL(

−→
Θ ), (14)

with L the likelihood on the considered data.
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Remark 6. Since these initial values are usually close to optimal values, the numerical optimization
easily converges. It is important to notice that this optimization could be done directly in theory. How-
ever in practice, starting from piecewise linear distortions is necessary to ensure that the optimization
converges.

In the following we detail the algorithm-procedure to get smoothed version of distortions obtained in
Algorithm 1.

Algorithm 2 Smooth estimation algorithm

Piecewise linear external distortion

Let 0 < β1 < . . . < βm < 1 be a set of levels,
Obtain distortion levels Ω from Algorithm 1,
Obtain suited parameters θ = Θ(Ω) from Definition 10 and parametric distortion T = Aθ.

Piecewise linear internal distortions

for i varying from 1 to d

Let 0 < α
(i)
1 < . . . < α

(i)
mi < 1 be a set of levels associated to the ith-marginal Fi,

Obtain distortion levels Ωi =
{

(α
(i)
j , Ti(α

(i)
j ))

}
j=1,...,mi

, from Equation (5),

Obtain suited parameters θi = Θ(Ωi) from Definition 10 and distortions Ti = Aθi .
end for

Smoothed distortions
Choose a smoothing parameter η,
Improve all parameters including η by Equation (14),
Check validity condition T ∈ T ,

Get parametric expression for F̃ and ∂L̃ by Equations (12) and (13).

4.4 Refinements

In some particular numerical cases, the choice of the input values of the algorithms may be difficult to
do. This section presents some propositions to ease this choice.

Choice of initial levels: Concerning the choice of initial levels βj , a problem is that if T is very concave
or convex, then levels αj = T−1(βj) may be concentrated on a small interval of (0, 1), e.g. (0.90, 1),
even for values of βj spread quite uniformly on (0, 1).
Proposed solution: One can modify levels βj in order to ensure that both αj and βj are reasonably
spread over the whole interval (0,1). Let ∆ be the diagonal of equation y = x. Assuming that the
projection of (αj , βj) on ∆ is (δj , δj), one gets βj = −αj + 2δj . Given a distortion T and a set of levels
0 < δ1 < . . . < δm < 1, e.g. δj = j/(m+ 1), one can define

{
αj(T ) = a such that T (a) = −a+ 2δj ,
βj(T ) = −αj(T ) + 2δj .

Replacing initial levels βj by βj(T
ν) at the beginning of each step ν in Algorithm 1 allows to get a

better distribution of elements of the final set Ω into (0, 1)2. Similar considerations can be applied to

each internal distortion Ti: initial levels α
(i)
j can be replaced by αj(Ti) in Algorithm 2, for j = 1, . . . ,mi.
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Choice of initial smoothing parameter: Consider a given angle function Am,h,ρ1,ρ2 with apex in (m+
h,m − h). Replacing this angle by a smooth hyperbole Hm,h,ρ1,ρ2,η causes some problems. First, the
hyperbole is not passing trough the point (m+h,m−h) as the angle function. Second, when η is large,
the hyperbole gets far from the angle function. In summary, the angle is set to pass through a well
chosen point (m + h,m − h), but the hyperbole gets far from this point when smoothing parameter
η increases. In numerical illustrations, the optimization of parameter η thus leads to small values of
this parameter, high absolute derivatives of distribution functions at some points, and an insufficient
smoothing of the final distortions.
Proposed solution: Define a new hyperbole H∗ as

H∗m,h,ρ1,ρ2,η = Hm,h+δ(ρ1,ρ2,η),ρ1,ρ2,η

with δ(ρ1, ρ2, η) = eρ2−eρ1√
(1+eρ1 )(1+eρ2 )

e−
ρ1+ρ2

4 eη/2 .

One can check after some calculations that:

· H∗m,h,ρ1,ρ2,η(m+h) = m−h, so that the new hyperbole H∗ is passing trough the point (m+h,m−h).

· δ(−ρ1,−ρ2, η) = −δ(ρ1, ρ2, η), so that H∗−1m,h,ρ1,ρ2,η
= H∗m,−h,−ρ1,−ρ2,η.

Given a smoothing parameter η, the proposed improvement is to choose H∗m,h,ρ1,ρ2,η as a smooth
version of the angle Am,h,ρ1,ρ2 , instead of Hm,h,ρ1,ρ2,η. Corresponding distortion composition will be
denoted H∗ instead of H. Using H∗ instead of H, an univariate maximization of the log-likelihood on
the data leads to a good choice of the parameter η.

Choice of interpolation function T̄Ω: Piecewise linear distortion T̄Ω is used in Algorithm 1. It gives
interpolations of T , when T is passing through all points of Ω. The most simple solution is to choose
a simple linear interpolation of points of Ω. The problem is that when T is very concave or convex, a
simple linear interpolation may be quite far from the real value of T .
Proposed solution: The proposed solution consists in replacing T̄Ω by AΘ(Ω), or eventually by a
smoothed version H∗Θ(Ω),η for a given parameter η.

5 Numerical applications

5.1 A simple bivariate model

In the following numerical illustrations we consider a very basic independent exponential model where:

F (x1, x2) = F1(x1)F2(x2),

with F1(x) = F2(x) = 1− e−x, x ∈ R+. We aim at distorting this basic bivariate distribution in order

to fit real data. Once distortions T , T1, . . . , Td estimated, we obtain analytical expressions for F̃ and
∂L̃(α):

F̃ (x1, x2) = T (T−11 (1− e−x1) · T−12 (1− e−x2)), for x1, x2 ≥ 0,

and for any α ∈ (0, 1), from Proposition 4,

∂L̃(α) =
{(
− log (1− T1(u)) ,− log

(
1− T2

(
T−1(α)

u

)))
, u ∈ (T−1(α), 1)

}
. (15)

Distorted marginals in this simple bivariate model are given by:

F̃1(x) = T ◦ T−11 (1− e−x) and F̃2(x) = T ◦ T−12 (1− e−x),

and corresponding distorted copula is

C̃(u, v) = T
(
T−1(u) · T−1(v)

)
.

In this independent case the regular condition of Proposition 6 becomes:

T ′(x) + xT ′′(x) ≥ 0, for any x ∈ [0, 1]. (16)

This simple initial independent exponential multivariate distribution is very far from the data that
will be considered. It has been chosen to demonstrate the ability of the estimation procedure to fit real
data even when starting with a very poor initial distribution.
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5.2 Real case study: Loss-ALAE data

In this section we present a real case for which we illustrate the behavior of our algorithm, presen-
ted in Sections 3 and 4. We consider the uncensored Loss-ALAE data in the logarithmic scale (for
details see Frees and Valdez, 1998). The data size is n = 1500. Each claim consists of an indemnity
payment (the loss, X) and an allocated loss adjustment expense (ALAE, Y ). Examples of ALAE are
the fees paid to outside attorneys, experts, and investigators used to defend claims. We now implement
Algorithm 1 and 2 on Loss-ALAE data.

External distortion T :
From Algorithm 1 we obtain the piecewise linear external distortion TΩ(x), for x ∈ [0, 1] (see Fig-
ure 4, black line). Furthermore, from set Ω, by applying Proposition 10, the suited angle composition-
distortion is:

Aθ, with θ = Θ(Ω),

with the following vector of parameters θ = (m,h, ρ1, ρ2):

Parameters m h ρ1 ρ2

θ -0.541 -0.551 -0.467 -0.146

For a graphical representation of Aθ see Figure 4, green line.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated external distortions  T

alpha levels

Figure 4 T (x) = TΩ(x) (black line) and Aθ(x) (green line), H∗θ,η(x) (blue line), with η = 0.18. Red line is bisectrix of

the first quadrant. We get Ω = {(0.00987, 0.1), (0.24935, 0.5), (0.80883, 0.9)}
.

We check that despite the concavity of T , it satisfies the regular condition of Equation (16) on points
such that T is differentiable.

Internal distortions Ti:
From Proposition 10 we obtain that the estimated marginal distortions T1 and T2 can be represented
using angle compositions T1 = Aθ1 and T2 = Aθ2 with associated parameters:

Parameters m h ρ1 ρ2

θ1 3.901 -5.297 -0.524 -0.278

θ2 3.457 -4.961 -0.581 -0.511

Remark that T−11 = A−1θ1 and T−12 = A−1θ2 can be directly obtained by Remark 5.
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Including smoothing parameters:

We now include smoothing hyperbolic distortions indeed of angle compositions. For these data we use
the hyperbolic function:

H∗m,h,ρ1,ρ2,η = Hm,h+δ(ρ1,ρ2,η),ρ1,ρ2,η with δ(ρ1, ρ2, η) =
eρ2 − eρ1√

(1 + eρ1)(1 + eρ2)
e−

ρ1+ρ2
4 eη/2, (17)

and Hm,h,ρ1,ρ2,η as in (10). In this case we choose a smoothing parameter for the external distortion
(i.e. η) and two smoothing parameters the internal ones (i.e. η1 and η2). Using the global optimization
presented in Equation (14) we get: η = 0.18, η1 = η2 = −2. This value was chosen as the initial value

for a global maximization with respect to the whole vector
−→
Θ (see Equation (14)). In this case we

obtain:

Parameters m h ρ1 ρ2 η
θ -0.549 -0.55 -0.471 -0.145 0.18
θ1 3.912 -5.298 -0.525 -0.268 -2
θ2 3.458 -4.974 -0.594 -0.544 -2

Furthermore, from Proposition 3, we get F̃i = T ◦ T−1i ◦ Fi, for i = 1, 2,, where T , T−1i are obtained
above and Fi are the known initial marginals (in this case F1(x) = F2(x) = 1− e−x). The results are
drawn in Figure 5 below.

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Univariate parametric fit F_2

x

F
n(

x)

Figure 5 (Left) F̃1 (red) and the empirical distribution function of Loss data (black). (Right) F̃2 (red) and the empirical
distribution function of ALAE data (black).

We check that the smoothed distortion T satisfies the regular condition of Equation (16) on all points
of (0, 1). For a graphical representation of the smoothed distortion T , i.e. H∗θ,η, with η = 0.18, see
Figure 4, blue line. The log-likelihood of this model on the Loss-ALAE data is −21804.01. In the
literature the fit of Loss-Alae data has received some attention. For instance Frees and Valdez (1998)
fit on these data a Gumbel-Hougaard copula with parameter θ = 1.453; Loss ∼ Pareto with parameter
(14.036, 1.122) and ALAE ∼ Pareto with parameter (14.219, 2.118). The obtained log-likelihood on the
Loss-Alae data of the Frees and Valdez’s model is : −49075.82. Furthermore in Klugman and Parsa
(1999), they propose a fitted model on Loss-Alae data such that the log-likelihood is −31767.9. Firstly,
we remark that these results belong to the same order of magnitude. However, our model seems best
fit the considered data.

In Figure 6, we compare our method with the empirical level curves defined by {(x, y) ∈ R2
+ : Fn(x, y) =

α}, where Fn is the bivariate empirical estimator of F , for α = 0.5, 0.8. We have drawn the level curves
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∂L̃Aθ (α) obtained using a composition of angles (as described by Algorithm 1) and ∂L̃H∗
θ,η

(α), using

smoothed hyperbolic external and internal distortions in (17), (as described by Algorithm 2), see
Equation (6).

Figure 6 ALAE versus Loss data (in logarithmic scale). ∂L̃Aθ (α) (red curves); ∂L̃H∗
θ,η

(α) (green curves); Empirical

level curves {(x, y) ∈ R2
+ : Fn(x, y) = α} (blue curves); for α = 0.5, 0.8.

Note that the smoothing parameter η is not really crucial with respect to the quality of our estimation,
even if it improves the estimation of the level-curves. However it is important in order to obtain differ-
entiable representations of level curves ∂L̃(α). In Figure 7(left) we draw the final distorted distribution
F̃ (x1, x2) and its level-curves; in Figure 7(right) we present the level-curves of distorted density func-
tion f̃(x1, x2). In particular Figure 7(right) illustrates the good quality of the fit of proposed model on
the bivariate Loss-ALAE data.

Lo
ss

ALAE

F

Distorted distribution

Figure 7 Distorted distribution F̃ (x1, x2) whit associated distorted level curves (red curves) (left); Level curves of
distorted density f̃(x1, x2) and Loss-ALAE data (red points) (right).



18 Elena Di Bernardino, Didier Rullière

5.3 Real case study: Old Faithful Geyser Data

In this section we study a second real case that presents an interesting bimodal behavior. This data
concern 272 eruptions of the Old Faithful geyser in Yellowstone National Park. Each observation con-
sists of two measurements: the duration (in min) of the eruption (X), and the waiting time (in min)
before the next eruption (Y ). This waiting time has been divided by 20 in order to get the same order
of magnitude on both axis. The interested reader is referred for instance to Obereder et al. (2007),
Biernacki et al. (2007). We following the same estimation procedure presented in Section 5.2 above,
for Loss-Alae data.

From Algorithm 1 we obtain the piecewise linear external distortion TΩ(x), for x ∈ [0, 1] (see Figure 8,
black line) and the suited angle composition-distortion is:

Aa4,0,0,r4 ◦Aa3,0,0,r3 ◦Aa2,0,0,r2 ◦Aa1,0,0,r1 ◦Am,h,ρ1,ρ2 ,

with θ = Θ(Ω) the following vector of parameters:

Parameters m h ρ1 ρ2 a1 a2 a3 a4 r1 r2 r3 r4

θ -6.081 5.328 0.863 2.061 -3.915 -2.251 -0.754 0 -1.614 -1.216 -0.391 0.661

For a graphical representation of Aθ see Figure 8, green line. The estimated marginal distortions T1 and
T2 can be represented using angle compositions T1 = Aθ1 and T2 = Aθ2 with associated parameters:

Parameters m h ρ1 ρ2 a1 a2 a3 a4 r1 r2 r3 r4

θ1 2.526 0.651 -2.213 -1.169 2.314 2.317 3.808 4.556 0.115 1.039 -1.474 -0.785

θ2 2.509 -0.067 -1.683 -2.011 2.631 2.665 2.966 3.623 0.215 0.353 0.491 -1.014

As in the Loss-ALAE model (see Section 5.2) we now include the smoothing hyperbolic distortions
indeed of angle compositions. For these data we use the hyperbolic function in Equation (17). Using
the global optimization presented in Equation (14) we get: η = 1, η1 = η2 = −7.5. The log-likelihood
of our final smoothed model on the Old Faithful geyser data is −1072. In the literature the fit of Old
Faithful geyser data has received some attention (see for instance Obereder et al., 2007). Biernacki et
al. (2007) fit on these data a Gaussian mixture model. In this case, they obtain a log-likelihood equal
to −1124. As in Section 5.2, we remark that these results belong to the same order of magnitude.
However, our model seems best fit the considered data. For a graphical representation of the smoothed
distortion T , i.e. H∗θ,η, with η = 1, see Figure 8, blue line.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated external distortions  T

alpha levels

Figure 8 T (x) = TΩ(x) (black line), Aθ(x) (green line), H∗θ,η(x) (blue line). Red line is bisectrix of the first quadrant.
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Furthermore, from Proposition 3, we get F̃i = T ◦ T−1i ◦ Fi, for i = 1, 2,, where T , T−1i are obtained
above and Fi are the known initial marginals (in this case F1(x) = F2(x) = 1− e−x). The results are
drawn in Figure 9 below.
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Figure 9 (Left) F̃1 (red) and the empirical distribution function of the duration (in min) of the eruption data (black).
(Right) F̃2 (red) and the empirical distribution function of the waiting time (in min) data (black).

Finally, in Figure 10(left) we draw the final distorted distribution F̃ (x1, x2) and its level-curves; in
Figure 10(right) we present the level-curves of distorted density function f̃(x1, x2). In particular Fig-
ure 10(right) illustrates the good quality of the fit of proposed model on the bivariate Old Faithful
geyser data. We remark how our distortions can be able to capture the bimodal behavior of these data
(see Figure 10, right). Despite its observable complexity, the proposed parametric fit also allows to get
a relatively simple parametric expression for level curves, using Equation (15) (see Figure 10, left).
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Figure 10 Distorted distribution F̃ (x1, x2) whit associated distorted level curves (red curves) (left); Level curves of
distorted density f̃(x1, x2) and Old Faithful geyser data (red points) (right).
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Conclusion

Probability distortions allow to build new classes of multivariate distribution functions. Impacts of
such distortions on multivariate level curves have been studied. Among interesting properties, we
have seen that external distortions are only acting on the univariate level of a level curve. Finding
the best distorted levels on a particular data directly gives external distortion point values, and only
require univariate optimizations. Following this idea, we have proposed two algorithms: Algorithm 1
gives estimated piecewise linear distortions to fit a given data, and Algorithm 2 gives smoothed version
of these distortions by using hyperbolic compositions in the logit scale.

The theoretical properties of considered distortions are thus very helpful for fitting distorted multivari-
ate distributions. Applications on real data have emphasis the advantages of this methodology. First,
despite the variable and possibly high number of parameters, the estimation is straightforward and
only relying on univariate optimizations. Second, the methodology benefit from the theoretical (and
practical) possibility to fit marginal distributions as precisely as desired. Third, it leads to parametric
expressions of both cumulative distribution functions and level curves, which can be useful for risk
measures. Fourth, numerical results on real data easily lead to a better likelihood than other paramet-
ric representations of the same data in some recent studies.

Some interesting perspectives would be a better characterization of necessary and sufficient conditions
for regular external distortions, some work on the optimal initial levels to be chosen for the proposed
algorithms, and on how to choose or reduce the number of parameters. The use of the parametric level
curves for risk measures also opens a large research field.
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