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Equilibrium structure and energetics of CHNO isomers: steps towards ab initio

rovibrational spectra of quasi-linear molecules
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We report large-scale electronic structure calculations for fulminic acid, HCNO, isocyanic acid,
HNCO, and cyanic acid, HOCN, in their ground electronic states. The coupled cluster CCSD(T)
method including all single and double excitations and a perturbative term for connected triple sub-
stitutions is used in conjunction with large correlation consistent polarized valence basis sets of the
form cc-pVXZ (X=2-6) and cc-pCVXZ (X=2-5). Our results show the importance of including all
electrons in the correlation treatment to obtain a converged molecular structure for the extremely
floppy HCNO molecule and the correct energetics of the three isomers. All electron correlation
calculations and frozen core calculations with very large basis sets clearly converge towards a lin-
ear electronic minimum for HCNO surrounded by a very large flat region of the potential energy
surface for hydrogen bending motions. For each of the three isomers we have computed the barrier
to linearity along the respective minimum energy path and several spectroscopic parameters and
equilibrium rotational constants.
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I. INTRODUCTION

Molecules with a non-linear electronic minimum but
a low barrier to linearity allowing a large amplitude
bending motion may exhibit rovibrational spectra with
level patterns reminiscent of molecules with a rigid lin-
ear skeleton and are usually referred to as quasi-linear
molecules.1–3 The large amplitude bend contributes a
vibrational angular momentum which couples with the
overall rotational angular momentum. Furthermore the
bending motion is frequently coupled with the high-
frequency stretch modes. The combination of these
features leads to particularly complicated rovibrational
spectra, exhibiting many fascinating features, such as
Fermi and l-type resonances, Coriolis coupling, and large
centrifugal distortion.

Fulminic acid, HCNO, is one of the most impor-
tant representatives of this class of molecules and has
been subjected to extensive previous experimental2,4–9

and theoretical10–16 analyses. Winnewisser and
Winnewisser4 were the first to propose in 1971 a quasi-
linear molecular model for the fulminic acid molecule.
An unreasonably short rs(HC) distance of 1.0266 Å was
initially derived from the microwave data within a lin-
ear molecule model for HCNO.4 A deviation from Bern-
stein’s rule17 for CH stretching fundamentals motivated
Winnewisser et al. to suggest a non-linear equilibrium
structure, possessing an HCN angle of ca. 162◦. The
classification of quasi-linear molecules proposed in Ref. 6
places HCNO rather close to the linear molecule limit. A
semirigid bender study of Bunker et al.10 led to the con-
clusion that HCNO has a linear equilibrium structure and

bent vibrationally averaged structures. A small barrier
to linearity of 11.5 cm−1 was determined for the effective
ground-state potential energy profile along the HCN an-
gle. Such a structure was actually called quasi-bent in
Ref. 10.

The electronic structure problem of HCNO has turned
out to be particularly hard, leading to strongly basis set
and correlation method dependent results, such that the
equilibrium geometry and the size of the barrier to lin-
earity, if there is any, are still unclear. Whereas MP2,
MP4, and MCSCF calculations favour a nonlinear struc-
ture, a linear equilibrium was found at the SCF, MP3,
CISD, and CCSD levels of theory,11,14 and also with
CCSD(T)/TZ2P.12 Koput et al.14 deduced a small bar-
rier to linearity of 7 cm−1 by means of CCSD(T)/cc-
pVQZ. Several ab initio studies have additionally re-
ported harmonic vibrational frequencies and/or energet-
ics for the system [H,C,N,O].13,15,16,18 So far, there is,
however, only a single study providing variational results
for rovibrational states of HCNO. In that study, Pin-
navaia et al.13 developed and employed a six-dimensional
MP2/DZP potential enery surface, on which the opti-
mized bent HCNO configuration is ca. 330 cm−1 more
stable than the optimized linear configuration.

High-quality rovibrational calculations are the ulti-
mate means to clarify the characteristic rovibrational
spectral patterns by theoretical means. The starting
point for such calculations is an accurate potential en-
ergy surface (PES), which samples large portions of the
available configuration space, covering at least those de-
grees of freedom which are essential for understanding the
internal molecular dynamics. The quasi-linear species



2

HXYZ with a hydrogen atom attached to a (nearly lin-
ear) chain of heavy atoms pose a very demanding com-
putational task from both the electronic structure and
rovibrational point of view because of the strongly an-
harmonic large amplitude HXY bending vibration.

With the ultimate goal to develop a full-dimensional
potential energy surface for the fulminic acid molecule
in its electronic ground state, our initial purpose was to
study the equilibrium structure with a high level of accu-
racy and to identify the best trade-off between accuracy
and expense of computer time. However, our calculations
beyond the frozen-core approximation showed a promi-
nent contribution of core correlation at the equilibrium
internuclear geometry of HCNO. Since this quantity is
relevant for the calculation of energetics of the [H,C,N,O]
system, we have extended our work to include HNCO and
HOCN, too.

Isocyanic acid, HNCO, is the most stable among all
CHNO isomers.19 It is energetically followed by cyanic
acid, HOCN, and fulminic acid, HCNO. From the his-
torical point of view, the isomers are important because
of the first experimental evidence of isomerism in 1826,
when Liebig and Wöhler agreed that HNCO and HCNO
possess the same chemical composition, but are struc-
turally distinct.20 The CHNO isomers (most prominently
HNCO) are expected to participate in interstellar chem-
istry and to play a major role in the RAPRENOx pro-
cess for NO reduction in combustion.18,21–23 HNCO is
considered also to be quasi-linear, exhibiting a barrier
to linearity of 1899 cm−1 according to a semirigid ben-
der analysis of Niedenhoff et al.24 Whereas both HCNO
and HNCO possess very rich rovibrational spectra in the
gas phase,2,4–9 HOCN could be studied solely under ma-
trix conditions.20,25 For HNCO and HOCN, Pinnavaia
et al. reported only perturbational results.13 We refer to
Refs.13,14,16 for an overview of the previous experimen-
tal and theoretical work on the CHNO isomers.

Energy levels associated with a large amplitude bend-
ing vibration may develop a pattern typical for linear
molecules, even for a bent equilibrium structure.1,26 This
was found in our recent study27 on cyanocarbene, HCCN.
In spite of a nonlinear equilibrium structure, characte-
rized by ∠(HCC)e of 147◦ and ∠(CCN)e of 175◦ for a
MR-ACPF PES, the rovibrational energy levels of the
radical were easily assigned following the conventional
linear molecule notation. This phenomenon hinges on
the barrier to linearity, determined to be 287 cm−1 for
HCCN. Numerically exact rovibrational states of HCCN
were calculated for J = 0−4, using the method described
in Ref. 28. This type of treatment is the next logical step
of our HCNO project.

In the present work, extensive ab initio calculations
of the electronic ground state with coupled cluster tech-
niques and large basis sets have been performed for each
of the three isomers studied. Two families of basis sets
were employed to approach the one-particle basis-set
limit, including valence and all-electron correlation (Sec-
tion II). The geometries of the minima have been opti-

mized via numerical gradient techniques (Section III A).
The barriers to linearity and isomerization energies have
been derived (Section III B). The harmonic vibrational
frequencies have been computed in order to character-
ize the stationary points (Section III C). The minimum
energy paths along the bending angle HXY have been ob-
tained for planar HCNO, HNCO, and HOCN by relaxing
the other coordinates (Section III C).

II. ELECTRONIC STRUCTURE
CALCULATIONS

The ab initio calculations presented below have been
carried out by means of the coupled-cluster method,
which explicitly includes all single and double excitations,
as well as an noniterative perturbative treatment of con-
nected triple substitutions. Dunning’s correlation con-
sistent double (X=2), triple (X=3), quadruple (X=Q),
quintuple (X=5), and sextuple (X=6) polarized valence
basis sets, commonly termed cc-pVXZ, have been used.29

Initially only valence electrons were correlated (the
frozen-core approximation). Our test calculations for
all-electron correlation, however, quickly showed that
inclusion of the three 1s-like core orbitals located on
carbon, nitrogen, and oxygen into the active space has
an important influence on the geometrical parameters
of HCNO. We have, thus, decided to study in detail
also the correlation consistent polarized core-valence ba-
sis sets, usually called cc-pCVXZ, employing X=2-5.
The cc-pCVXZ basis set family was developed by Woon
and Dunning,30 by augmenting the original cc-pVXZ
sets with supplementary functions especially designed for
core-core and core-valence correlations. In the case of
cc-pCV5Z, representing the highest quality cc-pCVXZ
basis set employed in the current work, the standard cc-
pV5Z set is extended by adding (4s, 4p, 3d, 2f, 1g), lead-
ing to (18s, 12p, 7d, 5f, 3g, 1h) → [10s, 9p, 7d, 5f, 3g, 1h]
for carbon, nitrogen, and oxygen, whereas we have
(8s, 4p, 3d, 2f, 1g) → [5s, 4p, 3d, 2f, 1g] for hydrogen. For
[H,C,N,O], the basis sets cc-pV5Z and cc-pCV5Z contain
328 and 490 contracted Gaussian-type orbitals, respec-
tively.

Full geometry optimizations were performed for each of
the basis sets employed. To characterize the nature of the
stationary points, Hessian matrices were computed and
diagonalized. All calculations were performed with the
MOLPRO quantum chemistry program package,31 with
the implementations of the CCSD method due to Ham-
pel et al.32 and of the perturbative triple corrections due
to Deegan and Knowles33. Numerical derivatives were
used in the geometry optimization and harmonic vibra-
tional frequency computations, following the procedure
of Eckert et al.34 and of Rauhut et al.,35 respectively.

The coordinate space was parametrized in terms
of bond-distance-bond-angle coordinates, described by
three bond lengths, r(HX), r(XY), and r(YZ), two in-
plane bending angles, ∠(HXY) and ∠(XYZ), and one
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dihedral angle for a HXYZ molecule.

III. RESULTS

HCNO, HNCO, and HOCN belong to the class of
molecules with sixteen valence electrons, which in-
cludes e.g. CO2 and HN3.

36 Previous studies indi-
cated that the three isomers studied here possess pla-
nar equilibrium structures of trans type.13 In Cs sym-
metry, the reference (SCF) electronic configuration is
given by (same) (1a′′)2(8a′)2(2a′′)2(9a′)2 for HCNO
and by (same) (1a′′)2(8a′)2(9a′)2(2a′′)2 for HNCO and
HOCN, where the common contribution (same) reads
(1a′)2(2a′)2(3a′)2(4a′)2(5a′)2(6a′)2(7a′)2. In the A′

ground electronic state, the highest occupied orbital
of HNCO and HOCN is thus the nonbonding out-
of-plane 2a′′ orbital. One may note that the or-
bitals (8a′, 1a′′) and (9a′, 2a′′) of HCNO at the non-
linear CCSD(T) equilibrium geometry (see Tab. I) have
nearly degenerate RHF/cc-pV5Z energies of respectively
(−0.6786Eh,−0.6798Eh) and (−0.4094Eh,−0.4096Eh),
resembling a linear molecule situation (π orbitals).

The RHF/cc-pV5Z dipole moment vector for the
CCSD(T)/cc-pV5Z equilibrium structures has magni-
tudes of 4.225 D, 2.245 D, and 4.053 D for HCNO,
HNCO, and HOCN, respectively and magnitudes of 4.290
D, 3.260 D, and 2.164 D at the lowest energy linear ge-
ometries. The components (| µa |, | µb |) of the dipole
moment vector are (0.234 D, 4.218 D) for HCNO, (1.569
D, 1.619 D) for HNCO, and (1.642 D, 3.715 D) for
HOCN.

The quality of coupled cluster results with respect to
a single reference electron correlation procedure may be
assessed by means of the T1 diagnostic,37 which gives the
norm of the t1 amplitude. It is believed that CCSD may
cope with nondynamical correlation up to a T1 diagnos-
tic of 0.02, as recommended in Refs. 37,38. In the case of
the CHNO isomers, the highest T1 diagnostic value of ca.
0.02 is found for cc-pVXZ with only valence correlation,
dropping to ca. 0.018 in the case of all-electron correla-
tion. Beyond the frozen core approximation, we obtained
T1 of ca. 0.016 and 0.013 for HNCO and HOCN, re-
spectively. Our result for HNCO is compatible with the
finding of East et al.18 who reported the T1 diagnostic
for the valence correlation case, and concluded that the
multireference character is not very high in HNCO.

In the following text, (all) following a basis set iden-
tification indicates that all electrons are included in the
correlation treatment.

A. Equilibrium structures

Tables I, II, and III contain the geometrical parameters
for planar and linear conformations of HCNO, HNCO,
and HOCN, respectively. The geometries were optimized
at the CCSD(T) level of theory employing two families

of basis sets, cc-pVXZ and cc-pCVXZ. Valence and all
electron correlations were evaluated. In Tables I, II, and
III structural parameters obtained for the basis set of
highest quality are highlighted by bold numbers. Equi-
librium rotational constants Ae, Be, Ce were determined
and are collected in Table IV for selected basis sets. Ta-
ble V provides an overview of the relative energies of
the isomers. Our results for cc-pVDZ, cc-pVTZ, and cc-
pVQZ basis sets displayed in Table I for HCNO agree
perfectly with the values previously reported by Koput
et al.14 The equilibrium CCSD(T)/cc-pVQZ geometry
obtained for HOCN by Schuurman et al.16 differs how-
ever in re(CN)=2.1923 a0 by 0.0025 a0 from our value
re(CN)=2.1948 a0 reported in Table III. On the other
hand, our cc-pVXZ results for X = 2−4 and all electron
correlation show excellent agreement with those obtained
by Demaison et al.39 for planar HNCO and the optimized
geometries at cc-pVTZ level calculated in Refs. 40 and
41.

The results for HCNO constrained to planar geome-
tries with the cc-pVXZ series of basis sets and valence
correlation only (upper part of Table I), clearly show
convergence to better than [0.0003 a0, 0.0015 a0, 0.0003
a0, 2.2◦, 0.5◦] for [re(HC), re(CN), re(NO), ∠(HCN)e,
∠(CNO)e] at the final cc-pV6Z level. For the cc-pVXZ
series in the all-electron situation, the convergence of the
cc-pV5Z(all) results is better than [0.0027 a0, 0.0040 a0,
0.0011 a0, 0.8◦, 0.2◦], whereas we have [0.0007 a0, 0.0036
a0, 0.0013 a0, 4.4◦, 0.9◦] for the cc-pCV5Z(all) values
in the cc-pCVXZ(all) series. For HCNO constrained to
linear arrangements (lower part of Table I), all three dis-
tances are converged within 0.0005 a0, 0.0040 a0, and
0.0020 a0 for cc-pV6Z, cc-pV5Z(all), and cc-pCV5Z(all),
respectively.

The data in Table I clearly indicate major difficulties
to obtain a well converged minimum energy structure,
at least in angular space. The HCN bending angle of
planar HCNO shows variations up to 30◦ upon basis set
improvement with a definite tendency towards linearity.
One may also note an abrupt change in both the HCN
and CNO angles in Fig. 1 in the cc-pVXZ(all) series. The
best equilibrium HCN bending angles are 170.8◦, 176.4◦,
and 173.1◦ (scatter of 5.6◦) with cc-pV6Z, cc-pV5Z(all),
and cc-pCV5Z(all) basis sets, and equilibrium CNO an-
gles of 177.9◦, 179.2◦, and 178.4◦ (scatter of 1.4◦), respec-
tively. Inspection of the lower part of Table I with results
for linear HCNO reveals that the HCNO molecule is in
reality linear at the CCSD(T)/cc-pV6Z, CCSD(T)/cc-
pV5Z(all), and CCSD(T)/cc-pCV5Z(all) levels of the-
ory, the linear form being more stable by a fraction of
a cm−1. The failure of the unconstrained optimization
to reach this structure indicates a large and exceedingly
flat region of the potential energy surface with energy
changes near the numerical accuracy limit of standard
total energy calculations. One may note that the op-
timized planar and linear HCNO conformations possess
very similar bond lengths. The convergence to the linear
arrangement as the electronic minimum is clearly bet-
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TABLE I: Total energies Emin and Elin at optimized planar and linear configurations, bond lengths (in a0), and bond angles
(in degrees) for fulminic acid, HCNO, obtained at the CCSD(T) level of theory for cc-pVXZ (X=2-6) and cc-pCVXZ (X=2-5)
basis sets. The height of the barrier to linearity is calculated as Ebar=Elin-Emin. All electron results for the basis sets cc-pVXZ
and cc-pCVXZ are denoted by cc-pVXZ(all) and cc-pCVXZ(all), respectively.

planar HCNO re(HC) re(CN) re(NO) ∠(HCN)e ∠(CNO)e Emin /Eh

cc-pVDZ 2.0433 2.2601 2.2750 146.24 171.96 -168.158163
cc-pVTZ 2.0085 2.2152 2.2722 157.61 174.83 -168.321390
cc-pVQZ 2.0059 2.2012 2.2724 165.14 176.58 -168.372212
cc-pV5Z 2.0051 2.1971 2.2742 168.65 177.35 -168.388547
cc-pV6Z 2.0048 2.1956 2.2745 170.84 177.88 -168.394263

cc-pVDZ(all) 2.0415 2.2581 2.2736 146.71 172.11 -168.164556
cc-pVTZ(all) 1.9981 2.2074 2.2636 158.97 175.39 -168.365137
cc-pVQZ(all) 1.9998 2.1918 2.2690 175.64 179.02 -168.463134
cc-pV5Z(all) 1.9971 2.1878 2.2701 176.45 179.23 -168.498786

cc-pCVDZ(all) 2.0398 2.2548 2.2736 147.00 172.21 -168.278027
cc-pCVTZ(all) 2.0069 2.2077 2.2636 159.98 175.43 -168.484504
cc-pCVQZ(all) 2.0030 2.1945 2.2693 168.76 177.44 -168.546525
cc-pCV5Z(all) 2.0023 2.1909 2.2706 173.13 178.36 -168.565759

linear HCNO re(HC) re(CN) re(NO) Elin /Eh Ebar /cm−1

cc-pVDZ 2.0318 2.2326 2.2855 -168.156973 261.34
cc-pVTZ 2.0042 2.2034 2.2777 -168.321197 42.38
cc-pVQZ 2.0041 2.1959 2.2750 -168.372179 7.44
cc-pV5Z 2.0041 2.1940 2.2757 -168.388542 0.81
cc-pV6Z 2.0042 2.1935 2.2757 -168.394264 -0.33

cc-pVDZ(all) 2.0304 2.2315 2.2839 -168.163439 245.13
cc-pVTZ(all) 1.9950 2.1976 2.2684 -168.364961 38.68
cc-pVQZ(all) 1.9997 2.1914 2.2692 -168.463134 -0.03
cc-pV5Z(all) 1.9969 2.1875 2.2702 -168.498788 -0.44

cc-pCVDZ(all) 2.0287 2.2286 2.2832 -168.276957 234.42
cc-pCVTZ(all) 2.0036 2.1983 2.2727 -168.484389 23.44
cc-pCVQZ(all) 2.0019 2.1916 2.2708 -168.546515 2.19
cc-pCV5Z(all) 2.0017 2.1896 2.2713 -168.565763 -0.87
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FIG. 1: Variation of the equilibrium HXY and XYZ angles with the cardinal number X of the cc-pVXZ, cc-pVXZ(all), and
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TABLE II: Optimized structural parameters of isocyanic acid, HNCO. For more details, see Table I.

planar HNCO re(HN) re(NC) re(CO) ∠(HNC)e ∠(NCO)e Emin /Eh

cc-pVDZ 1.9240 2.3376 2.2266 119.10 171.82 -168.268465
cc-pVTZ 1.9004 2.3083 2.2106 121.95 172.13 -168.432782
cc-pVQZ 1.8982 2.3015 2.2040 122.72 172.28 -168.484107
cc-pV5Z 1.8983 2.3004 2.2029 122.91 172.29 -168.500436
cc-pV6Z 1.8984 2.2999 2.2025 122.96 172.30 -168.506138

cc-pVDZ(all) 1.9224 2.3357 2.2257 119.29 171.85 -168.274865
cc-pVTZ(all) 1.8948 2.2987 2.2051 123.14 172.27 -168.475476
cc-pVQZ(all) 1.8932 2.2942 2.1997 123.62 172.39 -168.574631
cc-pV5Z(all) 1.8934 2.2914 2.1969 123.78 172.46 -168.610519

cc-pCVDZ(all) 1.9218 2.3336 2.2238 119.27 171.86 -168.388591
cc-pCVTZ(all) 1.8978 2.3023 2.2059 122.37 172.28 -168.595999
cc-pCVQZ(all) 1.8958 2.2955 2.2000 123.27 172.39 -168.658308
cc-pCV5Z(all) 1.8956 2.2943 2.1988 123.50 172.40 -168.677463

linear HNCO re(HN) re(NC) re(CO) Elin /Eh Ebar /cm−1

cc-pVDZ 1.8836 2.2587 2.2471 -168.257037 2508
cc-pVTZ 1.8655 2.2347 2.2298 -168.423660 2002
cc-pVQZ 1.8654 2.2302 2.2231 -168.475344 1923
cc-pV5Z 1.8658 2.2295 2.2220 -168.491746 1907
cc-pV6Z 1.8659 2.2292 2.2216 -168.497487 1899

cc-pVDZ(all) 1.8824 2.2576 2.2460 -168.263635 2465
cc-pVTZ(all) 1.8609 2.2287 2.2239 -168.467642 1721
cc-pVQZ(all) 1.8617 2.2258 2.2181 -168.566668 1748
cc-pV5Z(all) 1.8622 2.2230 2.2155 -168.602508 1758

cc-pCVDZ(all) 1.8812 2.2549 2.2442 -168.377392 2458
cc-pCVTZ(all) 1.8643 2.2302 2.2251 -168.587091 1952
cc-pCVQZ(all) 1.8639 2.2262 2.2188 -168.649892 1847
cc-pCV5Z(all) 1.8641 2.2254 2.2176 -168.669183 1817

ter in the all electron calculations. A linear equilibrium
structure is compatible with the results of Bunker et al.10

who used the semirigid bender model to study the rovi-
brational spectra of HCNO and concluded that HCNO
is likely linear with an equilibrium geometry of [re(HN),
re(NC), re(CO)] equal to [2.0031 a0, 2.2091 a0, 2.2658
a0]. These values exhibit, however, noticeable deviations
(up to 0.02 a0) from our results (Table I) for both linear
and planar conformations.

The equilibrium heavy atom XYZ bending angle found
in planar arrangement optimizations is larger than 170◦

for all three isomers, i.e. ca. 178◦ for HCNO, 177◦ for
HOCN, and 172◦ for HNCO. A quick glance at Tables II
and III reveals that the equilibrium bending angles of
HNCO and HOCN are, unlike HCNO, very stable during
the geometry optimization within each series of basis sets,
showing only minor and monotonic changes. Going from
triple to quintuple ζ basis set quality, the HXY and XYZ
angles vary by at most 1◦ and 0.2◦, respectively, and con-
verge to very similar values (bold numbers). This is also
evident from Fig. 1, which shows the equilibrium HXY
and XYZ angles as functions of the basis set cardinal
number X . Excellent and almost universally monotonic
convergence within each series is observed for interatomic
distances with, however, somewhat different final values.

Experimental determinations of the equilibrium struc-
ture of HOCN are not available due to the absence of

gas phase observations. For HNCO East et al. derived18

an empirical equilibrium structure of [re(HN), re(NC),
re(CO), ∠(HNC)e, ∠(NCO)e] equal to [1.8954 a0, 2.2953
a0, 2.1985 a0, 123.34◦, 172.22◦] from the known experi-
mental rotational constants A0, B0, C0 and theoretical
rotation-vibration coupling constants (αe). Among our
HNCO results of Table II, the CCSD(T)/cc-pCV5Z(all)
values show the best agreement within [0.0002 a0, -0.0010
a0, 0.0003 a0, 0.16◦, 0.18◦] with the finding from Ref. 18.
This is a very encouraging result because this should be
the most consistent combination of basis set and corre-
lation approach. The importance of the core correlation
effect for the prediction of the HNCO angles was previ-
ously pointed out by Demaison et al.39

The variation of the absolute equilibrium energy of
HCNO (Table I) with the basis set cardinal number X is
graphically presented in Fig. 2. Only the planar case is
shown, since energies of planar and linear HCNO appear
identical on the scale of the figure. The absolute differ-
ence between the X = 4 and X = 5 results in Fig. 2 is ca.
0.016, 0.036, and 0.019 Eh for cc-pVXZ, cc-pVXZ(all),
and cc-pCVXZ(all), respectively.

The equilibrium rotational constants calculated from
the structural parameters of Tables I, II, and III are sum-
marized in Table IV. For these evaluations, the atomic
masses for 1H, 12C, 14N, and 16O are taken from Ref. 42.
For each of the three CHNO isomers, the constants Be,
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TABLE III: Optimized structural parameters of cyanic acid, HOCN. For more details, see Table I.

planar HOCN re(HO) re(OC) re(CN) ∠(HOC)e ∠(OCN)e Emin /Eh

cc-pVDZ 1.8371 2.4907 2.2294 107.12 177.54 -168.231416
cc-pVTZ 1.8247 2.4713 2.2016 108.76 176.84 -168.394918
cc-pVQZ 1.8213 2.4632 2.1948 109.34 176.79 -168.445427
cc-pV5Z 1.8213 2.4614 2.1935 109.49 176.81 -168.461521
cc-pV6Z 1.8214 2.4607 2.1931 109.54 176.81 -168.467105

cc-pVDZ(all) 1.8361 2.4887 2.2283 107.18 177.54 -168.237624
cc-pVTZ(all) 1.8217 2.4625 2.1947 109.02 176.84 -168.436786
cc-pVQZ(all) 1.8181 2.4563 2.1896 109.53 176.81 -168.535393
cc-pV5Z(all) 1.8180 2.4542 2.1865 109.71 176.84 -168.571113

cc-pCVDZ(all) 1.8358 2.4879 2.2255 107.16 177.55 -168.351416
cc-pCVTZ(all) 1.8226 2.4665 2.1954 108.88 176.94 -168.558021
cc-pCVQZ (all) 1.8199 2.4581 2.1898 109.49 176.83 -168.619465
cc-pCV5Z(all) 1.8195 2.4561 2.1884 109.66 176.83 -168.638383

linear HOCN re(HO) re(OC) re(CN) Elin /Eh Ebar /cm−1

cc-pVDZ 1.7910 2.3897 2.2366 -168.181592 10935
cc-pVTZ 1.7821 2.3699 2.2081 -168.349713 9921
cc-pVQZ 1.7807 2.3641 2.2016 -168.401664 9605
cc-pV5Z 1.7814 2.3631 2.2003 -168.418284 9489
cc-pV6Z 1.7817 2.3627 2.1999 -168.424029 9453

cc-pVDZ(all) 1.7902 2.3883 2.2353 -168.187964 10901
cc-pVTZ(all) 1.7784 2.3616 2.2008 -168.393175 9571
cc-pVQZ(all) 1.7779 2.3583 2.1961 -168.492441 9427
cc-pV5Z(all) 1.7785 2.3567 2.1930 -168.528489 9355

cc-pCVDZ(all) 1.7896 2.3870 2.2327 -168.301688 10914
cc-pCVTZ(all) 1.7803 2.3662 2.2021 -168.513099 9859
cc-pCVQZ(all) 1.7795 2.3601 2.1965 -168.576113 9515
cc-pCV5Z(all) 1.7799 2.3590 2.1951 -168.595591 9392
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FIG. 2: Absolute CCSD(T) energy of optimized planar
HCNO as a function of the cardinal number X of the cc-
pVXZ, cc-pVXZ(all), and cc-pCVXZ(all) basis set families.

TABLE IV: Rotational constants (in cm−1) of HCNO,
HNCO, and HOCN, calculated using the structural param-
eters reported in Tables I, II, and III. Here, Blin stands for
the rotational constant at the optimum linear arrangement.

HCNO Ae Be Ce Blin

cc-pV6Z 793 0.38250 0.38232 0.38214
cc-pCV5Z(all) 1410 0.38374 0.38364 0.38352
cc-pV5Z(all) 5315 0.38419 0.38417 0.38416

HNCO Ae Be Ce Blin

cc-pV6Z 27.659 0.36932 0.36445 0.36390
cc-pCV5Z(all) 28.138 0.37060 0.36578 0.36515
cc-pV5Z(all) 28.415 0.37128 0.36649 0.36588

HOCN Ae Be Ce Blin

cc-pV6Z 22.382 0.35256 0.34709 0.35108
cc-pCV5Z (all) 22.467 0.35393 0.34844 0.35235
cc-pV5Z(all) 22.520 0.35448 0.34899 0.35303

Ce, and Blin in Table IV agree within ca. 0.002 cm−1 (0.5
%). The scatter of rotational Ae constants is 0.8 cm−1

(2.7%) and 0.1 cm−1 (0.6%) for HNCO and HOCN, re-
spectively. One may note that the two Ae values obtained
by correlating all electrons agree within 1 % for HNCO
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TABLE V: Energies (in cm−1) of optimized planar and linear HCNO and HOCN measured relative to the energy of the
respective equilibrium HNCO configuration.

planar HOCN linear HOCN planar HCNO linear HCNO

cc-pVDZ 8131 19066 24208 24470
cc-pVTZ 8310 18231 24448 24490
cc-pVQZ 8489 18094 24558 24565
cc-pV5Z 8541 18030 24557 24558
cc-pV6Z 8567 18020 24554 24554

cc-pVDZ(all) 8173 19073 24210 24455
cc-pVTZ(all) 8491 18063 24217 24255
cc-pVQZ(all) 8612 18039 24471 24471
cc-pV5Z(all) 8647 18004 24523 24522

cc-pCVDZ(all) 8159 19073 24266 24500
cc-pCVTZ(all) 8335 18194 24471 24496
cc-pCVQZ(all) 8525 18040 24534 24536
cc-pCV5Z(all) 8577 17969 24516 24515

and 0.2% for HOCN. Since optimized HCNO possesses
two very nearly linear bond angles, the calculated Ae

constant is rather large.

B. Relative energies

The barriers to linearity, Ebar, for HCNO, HNCO, and
HOCN are given in the lower parts of Tables I, II, and
III, respectively. For all three isomers, Ebar decreases as
X increases, due to a somewhat faster lowering of the to-
tal energy at the linear arrangements upon increasing X .
Planar HNCO and planar HOCN are 1907 and 9489 cm−1

more stable than their linear forms in the CCSD(T)/cc-
pV5Z calculation. The inclusion of core correlation low-
ers the barrier to linearity by 149 cm−1 (ca. 8%) to 1758
cm−1 and by 134 cm−1 (ca. 1.4%) to 9355 cm−1, respec-
tively. The cc-pV5Z(all) and cc-pCV5Z(all) results agree
within 3% for Ebar(HNCO) and 0.4% for Ebar(HNCO),
Table II. This sensitivity of the barrier height to the
level of correlation treatment is somewhat surprising if
one considers the excellent consistency of equilibrium
structures. A focal-point analysis by Császár at al.40

carried out at the optimized CCSD(T)/cc-pVTZ(all) ge-
ometry of HNCO gave a barrier to linearity of 1864
cm−1. The optimized CCSD(T)/cc-pVTZ(all) geometry
[re(HN), re(NC), re(CO), ∠(HNC)e, ∠(NCO)e] for planar
HNCO deviates, however, by [0.0014 a0, 0.0073 a0, 0.0082
a0, -0.64◦, -0.19◦] from the corresponding CCSD(T)/cc-
pV5Z(all) value, as seen in Table II. Niedenhoff at al.24

derived a semirigid bender result of Ebar(HNCO)=1899
cm−1. This result probably includes some effects due
to vibrational averaging. Beyond the present treatment
other effects on the HNCO barrier to linearity were found
in the systematic study of relativistic corrections41.

The relative energies of the CHNO isomers are sum-
marized in Table V. Two of the entries in Table V can

be compared with values obtained in a frozen-core focal-
point study by Schuurman et al.16, in which the em-
pirical geometry of East et al.18 was used for HNCO,
the linear geometry of Koput et al.14 for HCNO, and a
CCSD(T)/cc-pVQZ optimized geometry for HOCN. Iso-
merization energies of 8621 cm−1 and 24717 cm−1 were
reported for HOCN→HNCO and HCNO→HNCO, re-
spectively, in the complete basis set (CBS) limit.16 These
results are 54 and 163 cm−1 larger than our values of 8567
cm−1 and 24554 cm−1, listed for cc-pV6Z in Table V.
This discrepancy is solely due to contributions of explicit
triple substitutions, which amounts to 56 cm−1 and 130
cm−1 for CCSDT [see Table V of Ref.16]. The influence
of core correlation on the two isomerization energies can
be estimated from our Table V, which provides a value
of 106 and 36 cm−1, respectively, from the cc-pV5Z and
cc-pV5Z(all) data.

C. Vibrational structures

The variation of the electronic (potential) energy along
the minimum energy path (MEP) for the HCN bending
angle of HCNO is displayed in Fig. 3. For the basis sets
cc-pVXZ, cc-pVXZ(all), and cc-CVXZ(all) with X=2-4,
the MEPs were calculated by relaxing the four coordi-
nates r(HC), r(CN), r(NO), and ∠(CNO) for preselected
values of ∠(HCN) in planar HCNO. In Fig. 3, one may
note that the ordering of the MEPs for a given cardi-
nal number X changes in going from X = 2 to X = 4.
Whereas the CCSD(T)/cc-pVDZ(all) values lie between
the other two sets of results for X = 2, the cc-pCVQZ(all)
curve falls between cc-VQZ and cc-VQZ(all) for X = 4.
The cc-pVQZ(all) values display the highest curvature in
Fig. 3. The inclusion of core correlation effects leads to a
visible stiffening of the bending profiles.

Figure 4 shows the CCSD(T)/cc-pVQZ(all) minimum
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all electron correlation. Each of the curves shown is mea-
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configuration.

energy paths for planar HCNO, HNCO, and HOCN.
Their common feature is a pronounced deviation from
harmonic behaviour and a significant angular width.
The variation of the optimum bond lengths ropt(HX),
ropt(XY), and ropt(YZ) along the MEPs of Fig. 4 is graph-
ically presented in Fig. 5. For the MEP in the direc-
tion of the HCN bending angle of HCNO, the optimum
triplet [ropt(HC), ropt(CN), ropt(NO)] assumes the value

of [2.032 a0, 2.262 a0, 2.243 a0] for ∠(HCN)=120◦ and
[2.000 a0, 2.191 a0, 2.269 a0] for ∠(HCN)=180◦, exhibit-
ing changes of -0.032, -0.071, and +0.026 a0, respec-
tively. The decrease in ropt(HX) and ropt(XY), accom-
panied by an increase of ropt(YZ), is also observed for
HNCO and HOCN upon straightening of the HXY bend-
ing angle. These important changes of radial coordinates
upon bending have strong effects on the bending dynam-
ics through the reduced mass and typically lead to pro-
nounced coupling between angular and radial vibrational
modes in spite of widely differing frequency scales43,44.
The variation of the CN bond length of HOCN is, how-
ever, rather weak, exhibiting changes of only 0.006 a0

over the angular range explored in Fig. 5.

In Fig. 6, we compare the CCSD(T)/cc-pVQZ(all)
MEP of HCNO with the MEPs of HCCH and HCCN. In
addition to the MEP for the HCN angle, the MEP along
the CNO angle is also displayed for HCNO. The poten-
tial energy surface of Strey and Mills45 is used for HCCH
only for the purpose of illustration. A MR-ACPF PES27

is employed for HCCN. The small-amplitude CNO bend-
ing vibration in HCNO clearly resembles the stiff HCC
bending mode of acetylene, a textbook example for linear
molecules. The HCN bending mode, on the other side,
is similar to the quasi-linear large amplitude HCC mode
of HCCN, with the important difference that HCNO ex-
hibits no barrier to linearity.

Coplanar atom arrangements of tetratomic molecules
may have either trans or cis form. All the geometry op-
timizations starting at cis conformations of the CHNO
isomers led to ”hockey-stick” structures, arrangements
with a strictly linear heavy-atom skeleton (we adopt here
the terminology of East et al.18). There appear to be no
local minima for cis arrangements. For HCNO, HNCO,
and HOCN, the ”hockey-stick” structures optimized at
the cc-pVQZ(all) level are listed in Table VI. As seen
there, the geometry optimization carried out by freezing
the CNO subunit of HCNO to be linear led to the lin-
ear minimum of Table I. The optimum ”hockey-stick”
structures of HNCO and HOCN lie 339 and 31 cm−1

above their respective global minima, respectively. In
the previous study on HCCN,27 this structure was found
84 cm−1 above the minimum. It may be noted that the
”hockey-stick” structures are relevant for the descrip-
tion of the torsional (out-of-plane bending) motion in
tetratomic molecules.

Harmonic vibrational frequencies are collected in Table
VII. The frequencies were evaluated numerically at the
geometries optimized for the cc-pVXZ and cc-pVXZ(all)
series with X = 2 − 4. For HCNO, which has a bar-
rier to linearity of 7.44 and -0.03 cm−1 for the cc-pVQZ
and cc-pVQZ(all) treatments, respectively, the force field
analysis was carried out for both the planar and lin-
ear configurations of Table I. Two degenerate imagi-
nary frequencies were found for linear HCNO and cc-
pVQZ. For the two geometrically distinct, but energeti-
cally extremely close, HCNO configurations identified at
the cc-pVQZ(all) level, harmonic vibrational frequencies
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TABLE VI: Geometrical parameters for the ”hockey-stick” structure of HCNO, HNCO, and HOCN at the CCSD(T)/cc-
pVQZ(all) level. Bond lengths are given in a0 and angles in degrees.

HCNO HNCO HOCN

r(HC)e 1.9997 r(HN)e 1.8923 r(HO)e 1.8181
r(CN)e 2.1914 r(NC)e 2.2895 r(OC)e 2.4566
r(NO)e 2.2692 r(CO)e 2.2004 r(CN)e 2.1896
∠(HCN)e 180.0 ∠(HNC)e 123.34 ∠(HOC)e 109.26
∠(CNO)e 180.0 ∠(NCO)e 180.0 ∠(OCN)e 180.0
E / Eh -168.463134 E / Eh -168.573087 E / Eh -168.535252

are identical, with the exception of the quasi-linear HCN
mode. A clear correlation can be seen between the ω4(a’)
and ω6(a”) modes for planar HCNO on one side and the
doubly degenerate CNO mode of linear HCNO on the
other side. These harmonic estimates only give a first
overview and will be replaced by a fully coupled anhar-
monic vibration-rotation treatment.

D. Computational perspectives

Since our main interest lies in the development of
an accurate full-dimensional potential energy surface for
HCNO, we address here several aspects of the ab ini-

tio treatment relevant from the computational point of
view. An appropriate choice of one-electron basis func-
tions and correlation method(s) is required to minimize
the necessarily expensive electronic structure computa-
tions for several thousands of geometrical arrangements
entering the construction of a full dimensional analytical
representation.

The results presented in the preceeding sections have

shown the importance of core correlation for the accu-
rate description of all three CHNO isomers. The ex-
plicit inclusion of core electrons in correlated electronic
structure calculations significantly increases the compu-
tational cost due to a larger one-electron basis set and
a much larger number of many-electron configurations.
For the basis sets of quadruple ζ quality, the number
of primitive (contracted) Gaussian-type orbitals for the
CHNO isomers is 286 (195) and 388 (282) for cc-pVQZ
and cc-pCVQZ, respectively. The number of singly and
doubly external configuration state functions (CSFs) in
Cs symmetry increases from 552481 and 1 199 875 for
cc-pVQZ and cc-pCVQZ to 1 054 561 and 2 293 741 for
cc-pVQZ(all) and cc-pCVQZ(all), respectively.

Single-point CCSD(T)/cc-pVQZ calculations in the
frozen-core approximation take approximately 150, 500,
and 1450 s for linear, planar, and general arrangements
on a 2GHz clock rate dual-core computer and all-electron
calculations with cc-pVQZ(all) approximately double the
execution times. Replacement of the cc-pVQZ(all) treat-
ment by a cc-pCVQZ(all) treatment increases the timing
for a single-point all-electron CCSD(T) calculation by a
factor of ca. 4 to 1400, 4000, and 12 000 s for a linear,
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TABLE VII: Harmonic wavenumbers (in cm−1) of HCNO, HNCO, and HOCN, computed at the optimized geometries reported
in Tables I, II, and III. For ease of visualization, we abbreviate with VXZ the basis set cc-pVXZ. The symmetry labels of the
Cs point group are used here.

HCNO VDZ VTZ VQZ VQZ VDZ(all) VTZ(all) VQZ(all) VQZ(all) normal mode
linear linear

ω1(a’) 3426 3467 3479 3493 3434 3486 3504 3505 C-H stretch
ω2(a’) 2217 2250 2267 2280 2223 2273 2295 2296 C-N-O as.stretch
ω3(a’) 1288 1274 1273 1269 1290 1287 1279 1279 C-N-O s.stretch
ω4(a’) 542 553 554 555,555 544 566 565 565,565 C-N-O bend
ω5(a’) 459 301 194 128ı,128ı 454 299 85 33,33 H-C-N bend
ω6(a”) 545 554 554 547 567 565 torsion

HNCO VDZ VTZ VQZ VDZ(all) VTZ(all) VQZ(all) normal mode

ω1(a’) 3660 3688 3693 3667 3713 3711 N-H stretch
ω2(a’) 2299 2307 2307 2304 2329 2324 N-C-O as.stretch
ω3(a’) 1292 1304 1311 1295 1319 1321 N-C-O s.stretch
ω4(a’) 855 825 818 854 809 805 H-N-C bend
ω5(a’) 547 562 567 549 566 568 N-C-O bend
ω6(a”) 609 625 631 610 633 634 torsion

HOCN VDZ VTZ VQZ VDZ(all) VTZ(all) VQZ(all) normal mode

ω1(a’) 3793 3805 3809 3796 3823 3817 H-O stretch
ω2(a’) 2305 2320 2325 2309 2341 2338 C-N stretch
ω3(a’) 1288 1275 1270 1288 1269 1273 H-O-C bend
ω4(a’) 1063 1074 1079 1066 1086 1086 C-O stretch
ω5(a’) 407 427 432 409 431 435 O-C-N bend
ω6(a”) 462 484 489 464 497 494 torsion
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FIG. 6: Minimum energy paths along the bending angle for
the HCNO, HCCN, and HCCH molecules. The angle HXY
denotes the HCN angle θ1 of HCNO and the HCC angle
of HCCN and HCCH, respectively. An additional profile is
shown for the CNO angle θ2 in HCNO. For more details, see
the text.

planar, and spatial geometry, respectively. CCSD(T)/cc-
pV5Z computations in the frozen-core approximation
took approximately 1350, 3500, and 11 000 s, largely ex-
cluding a basis set of quintuple ζ quality for the scanning
of the PES in the computationally even more expensive
all-electron approach.

Since the cc-pCVXZ basis set family is specifically
designed for core-core and core-valence correlation, we
also tested the performance of cc-pCVQZ in combination
with the frozen-core approximation. These calculations
yielded an equilibrium structure of [2.0060 a0, 2.2009 a0,
2.2721 a0, 164.91◦, 176.53◦] at an energy of -168.375308
Eh for planar HCNO and of [2.0042 a0, 2.1956 a0, 2.2748
a0, 180.0◦, 180.0◦] at an energy of -168.375271 Eh for lin-
ear HCNO, yielding a barrier to linearity of 6.70 cm−1.
Due to the striking similarity of these results with the
cc-pVQZ values from Table I, we have not pursued fur-
ther the cc-pCVXZ calculations with valence correlations
only.

Two basis sets emerge from our current study as can-
didates for the development of the full PES, namely cc-
pVQZ(all) and cc-pCVQZ(all). Inspection of Tables I, II,
and III, together with Figs. 1 and 3, clearly shows a more
balanced performance for cc-pCVXZ(all), accompanied
with a monotonic convergence behaviour for the quanti-
ties studied here. In view of much higher CPU require-
ments of the cc-pCVQZ calculation, we however con-
sider developing a PES based only on the cc-pVQZ(all)
points. This cc-pVQZ(all) PES may subsequently be im-



11

TABLE VIII: RHF barrier to linearity and correlation energy
contribution to the CCSD(T) barrier to linearity obtained
for HCNO at the optimized cc-pV6Z, cc-pV5Z(all), and cc-
pCV5Z(all) geometries (first three rows) and the optimized
frozen core cc-pV5Z geometry denoted here by geo5 (last five
rows). The latter series of calculations, cc-pVXZ(geo5), is
carried out at the geometry geo5 with the cc-pVXZ basis set
for X = 2 − 6. The optimized geometries are taken from
Table I. All quantities are given in cm−1. For more details,
see the text.

RHF Correlation
contribution

cc-pV6Z -123.6 123.3
cc-pV5Z(all) -20.3 19.9
cc-pCV5Z(all) -70.0 69.1

cc-pVDZ(geo5) -163.5 219.7
cc-pVTZ(geo5) -182.5 201.7
cc-pVQZ(geo5) -185.7 191.5
cc-pV5Z(geo5) -186.7 187.6
cc-pV6Z(geo5) -186.7 185.4

proved through a fractional inclusion of higher quality
cc-pCVQZ(all) points or alternatively adjusted to repro-
duce selected experimental data, as previously done in
the study on HCCN27.

IV. CONCLUSION

Rovibrational calculations with exact hamiltonians re-
quire reliable potential energy surfaces covering large re-
gions of configuration space. Checking the convergence
of available electronic structure methods is a mandatory
initial step for the identification of a strategy which com-
bines sufficient accuracy with acceptable computational
cost. Our systematic investigation of the impact of ba-
sis set size and level of correlation treatment have con-
firmed the previously observed difficulties to arrive at a
converged equilibrium geometry for the HCNO molecule
whose rovibrational spectrum is particularly rich and
complicated. We believe, however, to have shown be-
yond reasonable doubt that HCNO is indeed linear at
electronic equilibrium. The inclusion of core correlation
and high angular momentum basis functions proved to
be essential to arrive at this result. Similar, but less
pronounced, effects of core correlation were found for the
isomers HNCO and HOCN, the most notable being a sur-
prising sensitivity of the barrier to linearity. It remains
an open question if the difficulty of converging to the lin-
ear arrangement reflects merely the intrinsic physics of

the HCNO molecule or some subtle symmetry breaking
effects in the electronic structure methodology.

To demonstrate and rationalize the difficulties encoun-
tered in the present study, we finally summarize in Table
VIII the RHF barriers to linearity for HCNO, obtained
at several selected CCSD(T) geometries. The barrier
Ebar to linearity is calculated as common, Ebar=Elin-
Emin, such that a negative Ebar corresponds to a sit-
uation of a more stable linear configuration (lin). In
the correlation treatment, the zero-order RHF solution is
improved by adding the correlation energy contribution.
The CCSD(T) correlation contribution to Ebar increases
the barrier to linearity of HCNO, i.e. it favours its non-
linear coplanar arrangement, as seen in Table VIII. The
final CCSD(T) result for Ebar appears to be the result
of a very subtle interplay between the two energy parts,
the dominant RHF energy and the small correlation en-
ergy contribution, whose effects on Ebar are varying in
the opposite sense.

The analysis of minimum energy paths on the HCNO
surface indicates an extreme flatness of the surface upon
bending and the presence of strong angular-radial cou-
pling. The latter effect can easily lead to the appear-
ance of an adiabatic barrier at the linear arrangement,
such that the molecule effectively behaves as slightly
non-linear, as previously proposed by Bunker et al.10.
A distinct advantage of progressive subspace diagonal-
isation and truncation discrete variable approaches46,47

over alternative techniques48 is the possibility to visu-
alise the dynamics of large amplitude motions through
the construction of effective adiabatic potentials for low
frequency modes at given excitations of other vibrational
modes. The application of this type of analysis to the po-
tential energy surface and rovibrational dynamics of the
quasi-linear molecule HCCN indicated very strong varia-
tions of the effective barrier to linearity upon excitation
of stretching modes.27 The structure of the minimum en-
ergy paths on the HCNO surface lets us expect similar
coupling effects between high and low frequency modes.
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