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Equilibrium structure and energetics of CHNO isomers:

Steps towards ab initio rovibrational spectra of quasi-linear molecules

I. INTRODUCTION

Molecules with a non-linear electronic minimum but a low barrier to linearity allowing a large amplitude bending motion may exhibit rovibrational spectra with level patterns reminiscent of molecules with a rigid linear skeleton and are usually referred to as quasi-linear molecules. [1][2][3] The large amplitude bend contributes a vibrational angular momentum which couples with the overall rotational angular momentum. Furthermore the bending motion is frequently coupled with the highfrequency stretch modes. The combination of these features leads to particularly complicated rovibrational spectra, exhibiting many fascinating features, such as Fermi and l-type resonances, Coriolis coupling, and large centrifugal distortion. Fulminic acid, HCNO, is one of the most important representatives of this class of molecules and has been subjected to extensive previous experimental 2, [4][5][6][7][8][9] and theoretical [10][11][12][13][14][15][16] analyses.

Winnewisser and Winnewisser 4 were the first to propose in 1971 a quasilinear molecular model for the fulminic acid molecule. An unreasonably short r s (HC) distance of 1.0266 Å was initially derived from the microwave data within a linear molecule model for HCNO. 4 A deviation from Bernstein's rule 17 for CH stretching fundamentals motivated Winnewisser et al. to suggest a non-linear equilibrium structure, possessing an HCN angle of ca. 162 • . The classification of quasi-linear molecules proposed in Ref. 6 places HCNO rather close to the linear molecule limit. A semirigid bender study of Bunker et al. 10 led to the conclusion that HCNO has a linear equilibrium structure and bent vibrationally averaged structures. A small barrier to linearity of 11.5 cm -1 was determined for the effective ground-state potential energy profile along the HCN angle. Such a structure was actually called quasi-bent in Ref. 10.

The electronic structure problem of HCNO has turned out to be particularly hard, leading to strongly basis set and correlation method dependent results, such that the equilibrium geometry and the size of the barrier to linearity, if there is any, are still unclear. Whereas MP2, MP4, and MCSCF calculations favour a nonlinear structure, a linear equilibrium was found at the SCF, MP3, CISD, and CCSD levels of theory, 11,14 and also with CCSD(T)/TZ2P. 12 Koput et al. 14 deduced a small barrier to linearity of 7 cm -1 by means of CCSD(T)/cc-pVQZ. Several ab initio studies have additionally reported harmonic vibrational frequencies and/or energetics for the system [H,C,N,O]. 13,15,16,18 So far, there is, however, only a single study providing variational results for rovibrational states of HCNO. In that study, Pinnavaia et al. 13 developed and employed a six-dimensional MP2/DZP potential enery surface, on which the optimized bent HCNO configuration is ca. 330 cm -1 more stable than the optimized linear configuration.

High-quality rovibrational calculations are the ultimate means to clarify the characteristic rovibrational spectral patterns by theoretical means. The starting point for such calculations is an accurate potential energy surface (PES), which samples large portions of the available configuration space, covering at least those degrees of freedom which are essential for understanding the internal molecular dynamics. The quasi-linear species HXYZ with a hydrogen atom attached to a (nearly linear) chain of heavy atoms pose a very demanding computational task from both the electronic structure and rovibrational point of view because of the strongly anharmonic large amplitude HXY bending vibration.

With the ultimate goal to develop a full-dimensional potential energy surface for the fulminic acid molecule in its electronic ground state, our initial purpose was to study the equilibrium structure with a high level of accuracy and to identify the best trade-off between accuracy and expense of computer time. However, our calculations beyond the frozen-core approximation showed a prominent contribution of core correlation at the equilibrium internuclear geometry of HCNO. Since this quantity is relevant for the calculation of energetics of the [H,C,N,O] system, we have extended our work to include HNCO and HOCN, too.

Isocyanic acid, HNCO, is the most stable among all CHNO isomers. 19 It is energetically followed by cyanic acid, HOCN, and fulminic acid, HCNO. From the historical point of view, the isomers are important because of the first experimental evidence of isomerism in 1826, when Liebig and Wöhler agreed that HNCO and HCNO possess the same chemical composition, but are structurally distinct. 20 The CHNO isomers (most prominently HNCO) are expected to participate in interstellar chemistry and to play a major role in the RAPRENO x process for NO reduction in combustion. 18,[21][22][23] HNCO is considered also to be quasi-linear, exhibiting a barrier to linearity of 1899 cm -1 according to a semirigid bender analysis of Niedenhoff et al. 24 Whereas both HCNO and HNCO possess very rich rovibrational spectra in the gas phase, 2,4-9 HOCN could be studied solely under matrix conditions. 20,25 For HNCO and HOCN, Pinnavaia et al. reported only perturbational results. 13 We refer to Refs. 13,14,16 for an overview of the previous experimental and theoretical work on the CHNO isomers.

Energy levels associated with a large amplitude bending vibration may develop a pattern typical for linear molecules, even for a bent equilibrium structure. 1,26 This was found in our recent study 27 on cyanocarbene, HCCN. In spite of a nonlinear equilibrium structure, characterized by ∠(HCC) e of 147 • and ∠(CCN) e of 175 • for a MR-ACPF PES, the rovibrational energy levels of the radical were easily assigned following the conventional linear molecule notation. This phenomenon hinges on the barrier to linearity, determined to be 287 cm -1 for HCCN. Numerically exact rovibrational states of HCCN were calculated for J = 0-4, using the method described in Ref. 28. This type of treatment is the next logical step of our HCNO project.

In the present work, extensive ab initio calculations of the electronic ground state with coupled cluster techniques and large basis sets have been performed for each of the three isomers studied. Two families of basis sets were employed to approach the one-particle basis-set limit, including valence and all-electron correlation (Section II). The geometries of the minima have been opti-mized via numerical gradient techniques (Section III A). The barriers to linearity and isomerization energies have been derived (Section III B). The harmonic vibrational frequencies have been computed in order to characterize the stationary points (Section III C). The minimum energy paths along the bending angle HXY have been obtained for planar HCNO, HNCO, and HOCN by relaxing the other coordinates (Section III C).

II. ELECTRONIC STRUCTURE CALCULATIONS

The ab initio calculations presented below have been carried out by means of the coupled-cluster method, which explicitly includes all single and double excitations, as well as an noniterative perturbative treatment of connected triple substitutions. Dunning's correlation consistent double (X=2), triple (X=3), quadruple (X=Q), quintuple (X=5), and sextuple (X=6) polarized valence basis sets, commonly termed cc-pVXZ, have been used. 29 Initially only valence electrons were correlated (the frozen-core approximation). Our test calculations for all-electron correlation, however, quickly showed that inclusion of the three 1s-like core orbitals located on carbon, nitrogen, and oxygen into the active space has an important influence on the geometrical parameters of HCNO. We have, thus, decided to study in detail also the correlation consistent polarized core-valence basis sets, usually called cc-pCVXZ, employing X=2-5. The cc-pCVXZ basis set family was developed by Woon and Dunning, 30 by augmenting the original cc-pVXZ sets with supplementary functions especially designed for core-core and core-valence correlations. In the case of cc-pCV5Z, representing the highest quality cc-pCVXZ basis set employed in the current work, the standard cc-pV5Z set is extended by adding (4s, 4p, 3d, 2f, 1g), leading to (18s, 12p, 7d, 5f, 3g, 1h) → [10s, 9p, 7d, 5f, 3g, 1h] for carbon, nitrogen, and oxygen, whereas we have (8s, 4p, 3d, 2f, 1g) → [5s, 4p, 3d, 2f, 1g] for hydrogen. For [H,C,N,O], the basis sets cc-pV5Z and cc-pCV5Z contain 328 and 490 contracted Gaussian-type orbitals, respectively.

Full geometry optimizations were performed for each of the basis sets employed. To characterize the nature of the stationary points, Hessian matrices were computed and diagonalized. All calculations were performed with the MOLPRO quantum chemistry program package, [START_REF] Molpro | package of ab initio programs[END_REF] with the implementations of the CCSD method due to Hampel et al. [START_REF] Hampel | [END_REF] and of the perturbative triple corrections due to Deegan and Knowles 33 . Numerical derivatives were used in the geometry optimization and harmonic vibrational frequency computations, following the procedure of Eckert et al. 34 and of Rauhut et al., 35 respectively.

The coordinate space was parametrized in terms of bond-distance-bond-angle coordinates, described by three bond lengths, r(HX), r(XY), and r(YZ), two inplane bending angles, ∠(HXY) and ∠(XYZ), and one dihedral angle for a HXYZ molecule.

III. RESULTS

HCNO, HNCO, and HOCN belong to the class of molecules with sixteen valence electrons, which includes e.g. CO 2 and HN 3 . 36 Previous studies indicated that the three isomers studied here possess planar equilibrium structures of trans type. 13 In C s symmetry, the reference (SCF) electronic configuration is given by (same) (1a ′′ ) 2 (8a ′ ) 2 (2a ′′ ) 2 (9a ′ ) 2 for HCNO and by (same) (1a ′′ ) 2 (8a ′ ) 2 (9a ′ ) 2 (2a ′′ ) 2 for HNCO and HOCN, where the common contribution (same) reads

(1a ′ ) 2 (2a ′ ) 2 (3a ′ ) 2 (4a ′ ) 2 (5a ′ ) 2 (6a ′ ) 2 (7a ′ ) 2 .
In the A ′ ground electronic state, the highest occupied orbital of HNCO and HOCN is thus the nonbonding outof-plane 2a ′′ orbital.

One may note that the orbitals (8a ′ , 1a ′′ ) and (9a ′ , 2a ′′ ) of HCNO at the nonlinear CCSD(T) equilibrium geometry (see Tab. I) have nearly degenerate RHF/cc-pV5Z energies of respectively (-0.6786E h , -0.6798E h ) and (-0.4094E h , -0.4096E h ), resembling a linear molecule situation (π orbitals).

The RHF/cc-pV5Z dipole moment vector for the CCSD(T)/cc-pV5Z equilibrium structures has magnitudes of 4. The quality of coupled cluster results with respect to a single reference electron correlation procedure may be assessed by means of the T 1 diagnostic, 37 which gives the norm of the t 1 amplitude. It is believed that CCSD may cope with nondynamical correlation up to a T 1 diagnostic of 0.02, as recommended in Refs. 37,38. In the case of the CHNO isomers, the highest T 1 diagnostic value of ca. 0.02 is found for cc-pVXZ with only valence correlation, dropping to ca. 0.018 in the case of all-electron correlation. Beyond the frozen core approximation, we obtained T 1 of ca. 0.016 and 0.013 for HNCO and HOCN, respectively. Our result for HNCO is compatible with the finding of East et al. 18 who reported the T 1 diagnostic for the valence correlation case, and concluded that the multireference character is not very high in HNCO.

In the following text, (all) following a basis set identification indicates that all electrons are included in the correlation treatment.

A. Equilibrium structures

Tables I, II, and III contain the geometrical parameters for planar and linear conformations of HCNO, HNCO, and HOCN, respectively. The geometries were optimized at the CCSD(T) level of theory employing two families of basis sets, cc-pVXZ and cc-pCVXZ. Valence and all electron correlations were evaluated. In Tables I, II, and III structural parameters obtained for the basis set of highest quality are highlighted by bold numbers. Equilibrium rotational constants A e , B e , C e were determined and are collected in Table IV for selected basis sets. Table V provides an overview of the relative energies of the isomers. Our results for cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets displayed in Table I for HCNO agree perfectly with the values previously reported by Koput et al. 14 The equilibrium CCSD(T)/cc-pVQZ geometry obtained for HOCN by Schuurman et al. 16 differs however in r e (CN)=2.1923 a 0 by 0.0025 a 0 from our value r e (CN)=2.1948 a 0 reported in Table III. On the other hand, our cc-pVXZ results for X = 2 -4 and all electron correlation show excellent agreement with those obtained by Demaison et al. [START_REF] Demaison | [END_REF] for planar HNCO and the optimized geometries at cc-pVTZ level calculated in Refs. 40 and 41.

The results for HCNO constrained to planar geometries with the cc-pVXZ series of basis sets and valence correlation only (upper part of Table I), clearly show convergence to better than [0.0003 a 0 , 0.0015 a 0 , 0.0003 a 0 , 2.2 • , 0.5 • ] for [r e (HC), r e (CN ), r e (N O), ∠(HCN) e , ∠(CNO) e ] at the final cc-pV6Z level. For the cc-pVXZ series in the all-electron situation, the convergence of the cc-pV5Z(all) results is better than [0.0027 a 0 , 0.0040 a 0 , 0.0011 a 0 , 0.8 • , 0.2 • ], whereas we have [0.0007 a 0 , 0.0036 a 0 , 0.0013 a 0 , 4.4 • , 0.9 • ] for the cc-pCV5Z(all) values in the cc-pCVXZ(all) series. For HCNO constrained to linear arrangements (lower part of Table I), all three distances are converged within 0.0005 a 0 , 0.0040 a 0 , and 0.0020 a 0 for cc-pV6Z, cc-pV5Z(all), and cc-pCV5Z(all), respectively.

The data in Table I clearly indicate major difficulties to obtain a well converged minimum energy structure, at least in angular space. The HCN bending angle of planar HCNO shows variations up to 30 • upon basis set improvement with a definite tendency towards linearity. One may also note an abrupt change in both the HCN and CNO angles in Fig. 1 in the cc-pVXZ(all) series. The best equilibrium HCN bending angles are 170.8 • , 176.4 • , and 173.1 • (scatter of 5.6 • ) with cc-pV6Z, cc-pV5Z(all), and cc-pCV5Z(all) basis sets, and equilibrium CNO angles of 177.9 • , 179.2 • , and 178.4 • (scatter of 1.4 • ), respectively. Inspection of the lower part of Table I with results for linear HCNO reveals that the HCNO molecule is in reality linear at the CCSD(T)/cc-pV6Z, CCSD(T)/cc-pV5Z(all), and CCSD(T)/cc-pCV5Z(all) levels of theory, the linear form being more stable by a fraction of a cm -1 . The failure of the unconstrained optimization to reach this structure indicates a large and exceedingly flat region of the potential energy surface with energy changes near the numerical accuracy limit of standard total energy calculations. One may note that the optimized planar and linear HCNO conformations possess very similar bond lengths. The convergence to the linear arrangement as the electronic minimum is clearly bet-TABLE I: Total energies Emin and E lin at optimized planar and linear configurations, bond lengths (in a0), and bond angles (in degrees) for fulminic acid, HCNO, obtained at the CCSD(T) level of theory for cc-pVXZ (X=2-6) and cc-pCVXZ (X=2-5) basis sets. The height of the barrier to linearity is calculated as E bar =E lin -Emin. All electron results for the basis sets cc-pVXZ and cc-pCVXZ are denoted by cc-pVXZ(all) and cc-pCVXZ(all), respectively. ter in the all electron calculations. A linear equilibrium structure is compatible with the results of Bunker et al. 10 who used the semirigid bender model to study the rovibrational spectra of HCNO and concluded that HCNO is likely linear with an equilibrium geometry of [r e (HN), r e (NC), r e (CO)] equal to [2.0031 a 0 , 2.2091 a 0 , 2.2658 a 0 ]. These values exhibit, however, noticeable deviations (up to 0.02 a 0 ) from our results (Table I) for both linear and planar conformations. The equilibrium heavy atom XYZ bending angle found in planar arrangement optimizations is larger than 170 • for all three isomers, i.e. ca. 178 • for HCNO, 177 • for HOCN, and 172 • for HNCO. A quick glance at Tables II and III reveals that the equilibrium bending angles of HNCO and HOCN are, unlike HCNO, very stable during the geometry optimization within each series of basis sets, showing only minor and monotonic changes. Going from triple to quintuple ζ basis set quality, the HXY and XYZ angles vary by at most 1 • and 0.2 • , respectively, and converge to very similar values (bold numbers). This is also evident from Fig. 1, which shows the equilibrium HXY and XYZ angles as functions of the basis set cardinal number X. Excellent and almost universally monotonic convergence within each series is observed for interatomic distances with, however, somewhat different final values.

Experimental determinations of the equilibrium structure of HOCN are not available due to the absence of gas phase observations. For HNCO East et al. derived 18 an empirical equilibrium structure of [r e (HN), r e (NC), r e (CO), ∠(HNC) e , ∠(NCO) e ] equal to [1.8954 a 0 , 2.2953 a 0 , 2.1985 a 0 , 123.34 • , 172.22 • ] from the known experimental rotational constants A 0 , B 0 , C 0 and theoretical rotation-vibration coupling constants (α e ). Among our HNCO results of Table II, the CCSD(T)/cc-pCV5Z(all) values show the best agreement within [0.0002 a 0 , -0.0010 a 0 , 0.0003 a 0 , 0.16 • , 0.18 • ] with the finding from Ref. 18. This is a very encouraging result because this should be the most consistent combination of basis set and correlation approach. The importance of the core correlation effect for the prediction of the HNCO angles was previously pointed out by Demaison et al. [START_REF] Demaison | [END_REF] The variation of the absolute equilibrium energy of HCNO (Table I) with the basis set cardinal number X is graphically presented in Fig. 2. Only the planar case is shown, since energies of planar and linear HCNO appear identical on the scale of the figure. The absolute difference between the X = 4 and X = 5 results in Fig. 2 is ca. 0.016, 0.036, and 0.019 E h for cc-pVXZ, cc-pVXZ(all), and cc-pCVXZ(all), respectively.

The equilibrium rotational constants calculated from the structural parameters of Tables I, II, and III are summarized in Table IV. For these evaluations, the atomic masses for 1 H, 12 C, 14 N, and 16 O are taken from Ref. 42. For each of the three CHNO isomers, the constants B e , FIG. 2: Absolute CCSD(T) energy of optimized planar HCNO as a function of the cardinal number X of the cc-pVXZ, cc-pVXZ(all), and cc-pCVXZ(all) basis set families. 

B. Relative energies

The barriers to linearity, E bar , for HCNO, HNCO, and HOCN are given in the lower parts of Tables I, II, and III, respectively. For all three isomers, E bar decreases as X increases, due to a somewhat faster lowering of the total energy at the linear arrangements upon increasing X. Planar HNCO and planar HOCN are 1907 and 9489 cm -1 more stable than their linear forms in the CCSD(T)/cc-pV5Z calculation. The inclusion of core correlation lowers the barrier to linearity by 149 cm -1 (ca. 8%) to 1758 cm -1 and by 134 cm -1 (ca. 1.4%) to 9355 cm -1 , respectively. The cc-pV5Z(all) and cc-pCV5Z(all) results agree within 3% for E bar (HNCO) and 0.4% for E bar (HNCO), Table II. This sensitivity of the barrier height to the level of correlation treatment is somewhat surprising if one considers the excellent consistency of equilibrium structures. A focal-point analysis by Császár at al. 40 carried out at the optimized CCSD(T)/cc-pVTZ(all) geometry of HNCO gave a barrier to linearity of 1864 cm -1 . The optimized CCSD(T)/cc-pVTZ(all) geometry [r e (HN), r e (NC), r e (CO), ∠(HNC) e , ∠(NCO) e ] for planar HNCO deviates, however, by [0.0014 a 0 , 0.0073 a 0 , 0.0082 a 0 , -0.64 • , -0.19 • ] from the corresponding CCSD(T)/cc-pV5Z(all) value, as seen in Table II. Niedenhoff at al. 24 derived a semirigid bender result of E bar (HNCO)=1899 cm -1 . This result probably includes some effects due to vibrational averaging. Beyond the present treatment other effects on the HNCO barrier to linearity were found in the systematic study of relativistic corrections 41 .

The relative energies of the CHNO isomers are summarized in Table V. Two of the entries in Table V can be compared with values obtained in a frozen-core focalpoint study by Schuurman et al. 16 , in which the empirical geometry of East et al. 18 was used for HNCO, the linear geometry of Koput et al. 14 for HCNO, and a CCSD(T)/cc-pVQZ optimized geometry for HOCN. Isomerization energies of 8621 cm -1 and 24717 cm -1 were reported for HOCN→HNCO and HCNO→HNCO, respectively, in the complete basis set (CBS) limit. 16 These results are 54 and 163 cm -1 larger than our values of 8567 cm -1 and 24554 cm -1 , listed for cc-pV6Z in Table V. This discrepancy is solely due to contributions of explicit triple substitutions, which amounts to 56 cm -1 and 130 cm -1 for CCSDT [see Table V of Ref.16]. The influence of core correlation on the two isomerization energies can be estimated from our Table V, which provides a value of 106 and 36 cm -1 , respectively, from the cc-pV5Z and cc-pV5Z(all) data.

C. Vibrational structures

The variation of the electronic (potential) energy along the minimum energy path (MEP) for the HCN bending angle of HCNO is displayed in Fig. 3. For the basis sets cc-pVXZ, cc-pVXZ(all), and cc-CVXZ(all) with X=2-4, the MEPs were calculated by relaxing the four coordinates r(HC), r(CN), r(NO), and ∠(CNO) for preselected values of ∠(HCN) in planar HCNO. In Fig. 3, one may note that the ordering of the MEPs for a given cardinal number X changes in going from X = 2 to X = 4. Whereas the CCSD(T)/cc-pVDZ(all) values lie between the other two sets of results for X = 2, the cc-pCVQZ(all) curve falls between cc-VQZ and cc-VQZ(all) for X = 4. The cc-pVQZ(all) values display the highest curvature in Fig. 3. The inclusion of core correlation effects leads to a visible stiffening of the bending profiles.

Figure 4 shows the CCSD(T)/cc-pVQZ(all) minimum energy paths for planar HCNO, HNCO, and HOCN. Their common feature is a pronounced deviation from harmonic behaviour and a significant angular width. The variation of the optimum bond lengths r opt (HX), r opt (XY), and r opt (YZ) along the MEPs of Fig. 4 is graphically presented in Fig. 5. For the MEP in the direction of the HCN bending angle of HCNO, the optimum triplet [r opt (HC), r opt (CN), r opt (NO)] assumes the value of [2.032 a 0 , 2.262 a 0 , 2.243 a 0 ] for ∠(HCN)=120 • and [2.000 a 0 , 2.191 a 0 , 2.269 a 0 ] for ∠(HCN)=180 • , exhibiting changes of -0.032, -0.071, and +0.026 a 0 , respectively. The decrease in r opt (HX) and r opt (XY), accompanied by an increase of r opt (YZ), is also observed for HNCO and HOCN upon straightening of the HXY bending angle. These important changes of radial coordinates upon bending have strong effects on the bending dynamics through the reduced mass and typically lead to pronounced coupling between angular and radial vibrational modes in spite of widely differing frequency scales [START_REF] Mills | [END_REF]44 . The variation of the CN bond length of HOCN is, however, rather weak, exhibiting changes of only 0.006 a 0 over the angular range explored in Fig. 5. In Fig. 6, we compare the CCSD(T)/cc-pVQZ(all) MEP of HCNO with the MEPs of HCCH and HCCN. In addition to the MEP for the HCN angle, the MEP along the CNO angle is also displayed for HCNO. The potential energy surface of Strey and Mills 45 is used for HCCH only for the purpose of illustration. A MR-ACPF PES 27 is employed for HCCN. The small-amplitude CNO bending vibration in HCNO clearly resembles the stiff HCC bending mode of acetylene, a textbook example for linear molecules. The HCN bending mode, on the other side, is similar to the quasi-linear large amplitude HCC mode of HCCN, with the important difference that HCNO exhibits no barrier to linearity.

Coplanar atom arrangements of tetratomic molecules may have either trans or cis form. All the geometry optimizations starting at cis conformations of the CHNO isomers led to "hockey-stick" structures, arrangements with a strictly linear heavy-atom skeleton (we adopt here the terminology of East et al. 18 ). There appear to be no local minima for cis arrangements. For HCNO, HNCO, and HOCN, the "hockey-stick" structures optimized at the cc-pVQZ(all) level are listed in Table VI. As seen there, the geometry optimization carried out by freezing the CNO subunit of HCNO to be linear led to the linear minimum of Table I. The optimum "hockey-stick" structures of HNCO and HOCN lie 339 and 31 cm -1 above their respective global minima, respectively. In the previous study on HCCN, 27 this structure was found 84 cm -1 above the minimum. It may be noted that the "hockey-stick" structures are relevant for the description of the torsional (out-of-plane bending) motion in tetratomic molecules.

Harmonic vibrational frequencies are collected in Table VII. The frequencies were evaluated numerically at the geometries optimized for the cc-pVXZ and cc-pVXZ(all) series with X = 2 -4. For HCNO, which has a barrier to linearity of 7.44 and -0.03 cm -1 for the cc-pVQZ and cc-pVQZ(all) treatments, respectively, the force field analysis was carried out for both the planar and linear configurations of Table I. Two degenerate imaginary frequencies were found for linear HCNO and cc-pVQZ. For the two geometrically distinct, but energetically extremely close, HCNO configurations identified at the cc-pVQZ(all) level, harmonic vibrational frequencies are identical, with the exception of the quasi-linear HCN mode. A clear correlation can be seen between the ω 4 (a') and ω 6 (a") modes for planar HCNO on one side and the doubly degenerate CNO mode of linear HCNO on the other side. These harmonic estimates only give a first overview and will be replaced by a fully coupled anharmonic vibration-rotation treatment.

D. Computational perspectives

Since our main interest lies in the development of an accurate full-dimensional potential energy surface for HCNO, we address here several aspects of the ab initio treatment relevant from the computational point of view. An appropriate choice of one-electron basis functions and correlation method(s) is required to minimize the necessarily expensive electronic structure computations for several thousands of geometrical arrangements entering the construction of a full dimensional analytical representation.

The results presented in the preceeding sections have shown the importance of core correlation for the accurate description of all three CHNO isomers. The explicit inclusion of core electrons in correlated electronic structure calculations significantly increases the computational cost due to a larger one-electron basis set and a much larger number of many-electron configurations.

For the basis sets of quadruple ζ quality, the number of primitive (contracted) Gaussian-type orbitals for the CHNO isomers is 286 (195) and 388 (282) for cc-pVQZ and cc-pCVQZ, respectively. The number of singly and doubly external configuration state functions (CSFs) in C s symmetry increases from 552 481 and 1 199 875 for cc-pVQZ and cc-pCVQZ to 1 054 561 and 2 293 741 for cc-pVQZ(all) and cc-pCVQZ(all), respectively. Single-point CCSD(T)/cc-pVQZ calculations in the frozen-core approximation take approximately 150, 500, and 1450 s for linear, planar, and general arrangements on a 2GHz clock rate dual-core computer and all-electron calculations with cc-pVQZ(all) approximately double the execution times. Replacement of the cc-pVQZ(all) treatment by a cc-pCVQZ(all) treatment increases the timing for a single-point all-electron CCSD(T) calculation by a factor of ca. 4 to 1400, 4000, and 12 000 s for a linear, planar, and spatial geometry, respectively. CCSD(T)/cc-pV5Z computations in the frozen-core approximation took approximately 1350, 3500, and 11 000 s, largely excluding a basis set of quintuple ζ quality for the scanning of the PES in the computationally even more expensive all-electron approach.

Since the cc-pCVXZ basis set family is specifically designed for core-core and core-valence correlation, we also tested the performance of cc-pCVQZ in combination with the frozen-core approximation. These calculations yielded an equilibrium structure of [2.0060 a 0 , 2.2009 a 0 , 2.2721 a 0 , 164.91 • , 176.53 • ] at an energy of -168.375308 E h for planar HCNO and of [2.0042 a 0 , 2.1956 a 0 , 2.2748 a 0 , 180.0 • , 180.0 • ] at an energy of -168.375271 E h for linear HCNO, yielding a barrier to linearity of 6.70 cm -1 . Due to the striking similarity of these results with the cc-pVQZ values from Table I, we have not pursued further the cc-pCVXZ calculations with valence correlations only.

Two basis sets emerge from our current study as candidates for the development of the full PES, namely cc-pVQZ(all) and cc-pCVQZ(all). Inspection of Tables I, II, and III, together with Figs. 1 and3, clearly shows a more balanced performance for cc-pCVXZ(all), accompanied with a monotonic convergence behaviour for the quantities studied here. In view of much higher CPU requirements of the cc-pCVQZ calculation, we however consider developing a PES based only on the cc-pVQZ(all) points. This cc-pVQZ(all) PES may subsequently be im-TABLE VIII: RHF barrier to linearity and correlation energy contribution to the CCSD(T) barrier to linearity obtained for HCNO at the optimized cc-pV6Z, cc-pV5Z(all), and cc-pCV5Z(all) geometries (first three rows) and the optimized frozen core cc-pV5Z geometry denoted here by geo5 (last five rows). The latter series of calculations, cc-pVXZ(geo5), is carried out at the geometry geo5 with the cc-pVXZ basis set for X = 2 -6. The optimized geometries are taken from Table I proved through a fractional inclusion of higher quality cc-pCVQZ(all) points or alternatively adjusted to reproduce selected experimental data, as previously done in the study on HCCN 27 .

IV. CONCLUSION

Rovibrational calculations with exact hamiltonians require reliable potential energy surfaces covering large regions of configuration space. Checking the convergence of available electronic structure methods is a mandatory initial step for the identification of a strategy which combines sufficient accuracy with acceptable computational cost. Our systematic investigation of the impact of basis set size and level of correlation treatment have confirmed the previously observed difficulties to arrive at a converged equilibrium geometry for the HCNO molecule whose rovibrational spectrum is particularly rich and complicated. We believe, however, to have shown beyond reasonable doubt that HCNO is indeed linear at electronic equilibrium. The inclusion of core correlation and high angular momentum basis functions proved to be essential to arrive at this result. Similar, but less pronounced, effects of core correlation were found for the isomers HNCO and HOCN, the most notable being a surprising sensitivity of the barrier to linearity. It remains an open question if the difficulty of converging to the linear arrangement reflects merely the intrinsic physics of the HCNO molecule or some subtle symmetry breaking effects in the electronic structure methodology.

To demonstrate and rationalize the difficulties encountered in the present study, we finally summarize in Table VIII the RHF barriers to linearity for HCNO, obtained at several selected CCSD(T) geometries. The barrier E bar to linearity is calculated as common, E bar =E lin -E min , such that a negative E bar corresponds to a situation of a more stable linear configuration (lin). In the correlation treatment, the zero-order RHF solution is improved by adding the correlation energy contribution. The CCSD(T) correlation contribution to E bar increases the barrier to linearity of HCNO, i.e. it favours its nonlinear coplanar arrangement, as seen in Table VIII. The final CCSD(T) result for E bar appears to be the result of a very subtle interplay between the two energy parts, the dominant RHF energy and the small correlation energy contribution, whose effects on E bar are varying in the opposite sense.

The analysis of minimum energy paths on the HCNO surface indicates an extreme flatness of the surface upon bending and the presence of strong angular-radial coupling. The latter effect can easily lead to the appearance of an adiabatic barrier at the linear arrangement, such that the molecule effectively behaves as slightly non-linear, as previously proposed by Bunker et al. 10 . A distinct advantage of progressive subspace diagonalisation and truncation discrete variable approaches 46,47 over alternative techniques 48 is the possibility to visualise the dynamics of large amplitude motions through the construction of effective adiabatic potentials for low frequency modes at given excitations of other vibrational modes. The application of this type of analysis to the potential energy surface and rovibrational dynamics of the quasi-linear molecule HCCN indicated very strong variations of the effective barrier to linearity upon excitation of stretching modes. 27 The structure of the minimum energy paths on the HCNO surface lets us expect similar coupling effects between high and low frequency modes.

  225 D, 2.245 D, and 4.053 D for HCNO, HNCO, and HOCN, respectively and magnitudes of 4.290 D, 3.260 D, and 2.164 D at the lowest energy linear geometries. The components (| µ a |, | µ b |) of the dipole moment vector are (0.234 D, 4.218 D) for HCNO, (1.569 D, 1.619 D) for HNCO, and (1.642 D, 3.715 D) for HOCN.

  FIG. 1: Variation of the equilibrium HXY and XYZ angles with the cardinal number X of the cc-pVXZ, cc-pVXZ(all), and cc-pCVXZ(all) basis sets for planar HCNO, HNCO, and HOCN.
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 34 FIG.3: Minimum energy path along the HCN angle of HCNO, calculated at the CCSD(T) level of theory for the cc-pVXZ and cc-pCVXZ basis sets using X=2-4. Both valence electron correlation and all electron correlation results are shown. For easier comparison, all profiles are drawn to a common scale.

FIG. 5 :

 5 FIG. 5: Variation of the optimum bond lengths ropt(HX), ropt(XY), and ropt(YZ) of HXYZ along the minimum energy path in the direction of the HXY angle from CCSD(T)/cc-pVQZ(all) calculations. The results are shown for HCNO (left), HNCO (center), and HOCN (right).
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 6 FIG.6: Minimum energy paths along the bending angle for the HCNO, HCCN, and HCCH molecules. The angle HXY denotes the HCN angle θ1 of HCNO and the HCC angle of HCCN and HCCH, respectively. An additional profile is shown for the CNO angle θ2 in HCNO. For more details, see the text.

TABLE II :

 II Optimized structural parameters of isocyanic acid, HNCO. For more details, see TableI.

	planar HNCO	re(HN)	re(NC)	re(CO)	∠(HNC)e	∠(NCO)e	Emin /E h
	cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z	1.9240 1.9004 1.8982 1.8983	2.3376 2.3083 2.3015 2.3004	2.2266 2.2106 2.2040 2.2029	119.10 121.95 122.72 122.91	171.82 172.13 172.28 172.29	-168.268465 -168.432782 -168.484107 -168.500436
	cc-pV6Z	1.8984	2.2999	2.2025	122.96	172.30	-168.506138
	cc-pVDZ(all)	1.9224	2.3357	2.2257	119.29	171.85	-168.274865
	cc-pVTZ(all)	1.8948	2.2987	2.2051	123.14	172.27	-168.475476
	cc-pVQZ(all)	1.8932	2.2942	2.1997	123.62	172.39	-168.574631
	cc-pV5Z(all)	1.8934	2.2914	2.1969	123.78	172.46	-168.610519
	cc-pCVDZ(all)	1.9218	2.3336	2.2238	119.27	171.86	-168.388591
	cc-pCVTZ(all)	1.8978	2.3023	2.2059	122.37	172.28	-168.595999
	cc-pCVQZ(all)	1.8958	2.2955	2.2000	123.27	172.39	-168.658308
	cc-pCV5Z(all)	1.8956	2.2943	2.1988	123.50	172.40	-168.677463
	linear HNCO	re(HN)	re(NC)	re(CO)	E lin /E h	E bar /cm -1	
	cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z	1.8836 1.8655 1.8654 1.8658	2.2587 2.2347 2.2302 2.2295	2.2471 2.2298 2.2231 2.2220	-168.257037 -168.423660 -168.475344 -168.491746	2508 2002 1923 1907	
	cc-pV6Z	1.8659	2.2292	2.2216	-168.497487	1899	
	cc-pVDZ(all)	1.8824	2.2576	2.2460	-168.263635	2465	
	cc-pVTZ(all)	1.8609	2.2287	2.2239	-168.467642	1721	
	cc-pVQZ(all)	1.8617	2.2258	2.2181	-168.566668	1748	
	cc-pV5Z(all)	1.8622	2.2230	2.2155	-168.602508	1758	
	cc-pCVDZ(all)	1.8812	2.2549	2.2442	-168.377392	2458	
	cc-pCVTZ(all)	1.8643	2.2302	2.2251	-168.587091	1952	
	cc-pCVQZ(all)	1.8639	2.2262	2.2188	-168.649892	1847	
	cc-pCV5Z(all)	1.8641	2.2254	2.2176	-168.669183	1817	

TABLE III :

 III Optimized structural parameters of cyanic acid, HOCN. For more details, see TableI.

	planar HOCN	re(HO)		re(OC)	re(CN)	∠(HOC)e	∠(OCN)e	Emin /E h
	cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z	1.8371 1.8247 1.8213 1.8213		2.4907 2.4713 2.4632 2.4614	2.2294 2.2016 2.1948 2.1935	107.12 108.76 109.34 109.49	177.54 176.84 176.79 176.81	-168.231416 -168.394918 -168.445427 -168.461521
	cc-pV6Z	1.8214		2.4607	2.1931	109.54	176.81	-168.467105
	cc-pVDZ(all)	1.8361		2.4887	2.2283	107.18	177.54	-168.237624
	cc-pVTZ(all)	1.8217		2.4625	2.1947	109.02	176.84	-168.436786
	cc-pVQZ(all)	1.8181		2.4563	2.1896	109.53	176.81	-168.535393
	cc-pV5Z(all)	1.8180		2.4542	2.1865	109.71	176.84	-168.571113
	cc-pCVDZ(all)	1.8358		2.4879	2.2255	107.16	177.55	-168.351416
	cc-pCVTZ(all)	1.8226		2.4665	2.1954	108.88	176.94	-168.558021
	cc-pCVQZ (all)	1.8199		2.4581	2.1898	109.49	176.83	-168.619465
	cc-pCV5Z(all)	1.8195		2.4561	2.1884	109.66	176.83	-168.638383
	linear HOCN	re(HO)		re(OC)	re(CN)	E lin /E h	E bar /cm -1
	cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z	1.7910 1.7821 1.7807 1.7814		2.3897 2.3699 2.3641 2.3631	2.2366 2.2081 2.2016 2.2003	-168.181592 -168.349713 -168.401664 -168.418284	10935 9921 9605 9489
	cc-pV6Z	1.7817		2.3627	2.1999	-168.424029	9453
	cc-pVDZ(all)	1.7902		2.3883	2.2353	-168.187964	10901
	cc-pVTZ(all)	1.7784		2.3616	2.2008	-168.393175	9571
	cc-pVQZ(all)	1.7779		2.3583	2.1961	-168.492441	9427
	cc-pV5Z(all)	1.7785		2.3567	2.1930	-168.528489	9355
	cc-pCVDZ(all)	1.7896		2.3870	2.2327	-168.301688	10914
	cc-pCVTZ(all)	1.7803		2.3662	2.2021	-168.513099	9859
	cc-pCVQZ(all)	1.7795		2.3601	2.1965	-168.576113	9515
	cc-pCV5Z(all)	1.7799		2.3590	2.1951	-168.595591	9392
		-168.15					
					cc-pVXZ		
					cc-pVXZ (all)		
		-168.20			cc-pCVXZ (all)		
		-168.25					
		-168.30					
	E (E h )	-168.40 -168.35					
		-168.45					
		-168.50					
		-168.55					
		-168.60					
		2	3	4	5	6	
				X			

TABLE IV :

 IV Rotational constants (in cm -1 ) of HCNO, HNCO, and HOCN, calculated using the structural parameters reported in Tables I, II, and III. Here, B lin stands for the rotational constant at the optimum linear arrangement.

	HCNO	Ae	Be	Ce	B lin
	cc-pV6Z	793	0.38250	0.38232	0.38214
	cc-pCV5Z(all)	1410	0.38374	0.38364	0.38352
	cc-pV5Z(all)	5315	0.38419	0.38417	0.38416
	HNCO	Ae	Be	Ce	B lin
	cc-pV6Z	27.659	0.36932	0.36445	0.36390
	cc-pCV5Z(all)	28.138	0.37060	0.36578	0.36515
	cc-pV5Z(all)	28.415	0.37128	0.36649	0.36588
	HOCN	Ae	Be	Ce	B lin
	cc-pV6Z	22.382	0.35256	0.34709	0.35108
	cc-pCV5Z (all)	22.467	0.35393	0.34844	0.35235
	cc-pV5Z(all)	22.520	0.35448	0.34899	0.35303
	C e , and B lin in Table IV agree within ca. 0.002 cm -1 (0.5
	%). The scatter of rotational A e constants is 0.8 cm -1

(2.7 %) and 0.1 cm -1 (0.6%) for HNCO and HOCN, respectively. One may note that the two A e values obtained by correlating all electrons agree within 1 % for HNCO

TABLE V :

 V Energies (in cm -1 ) of optimized planar and linear HCNO and HOCN measured relative to the energy of the respective equilibrium HNCO configuration.

		planar HOCN	linear HOCN	planar HCNO	linear HCNO
	cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z	8131 8310 8489 8541 8567	19066 18231 18094 18030 18020	24208 24448 24558 24557 24554	24470 24490 24565 24558 24554
	cc-pVDZ(all)	8173	19073	24210	24455
	cc-pVTZ(all)	8491	18063	24217	24255
	cc-pVQZ(all)	8612	18039	24471	24471
	cc-pV5Z(all)	8647	18004	24523	24522
	cc-pCVDZ(all)	8159	19073	24266	24500
	cc-pCVTZ(all)	8335	18194	24471	24496
	cc-pCVQZ(all)	8525	18040	24534	24536
	cc-pCV5Z(all)	8577	17969	24516	24515
	and 0.2 % for HOCN. Since optimized HCNO possesses		
	two very nearly linear bond angles, the calculated A e		
	constant is rather large.				

TABLE VI :

 VI Geometrical parameters for the "hockey-stick" structure of HCNO, HNCO, and HOCN at the CCSD(T)/cc-pVQZ(all) level. Bond lengths are given in a0 and angles in degrees.

		HCNO		HNCO		HOCN
	r(HC)e	1.9997	r(HN)e	1.8923	r(HO)e	1.8181
	r(CN)e	2.1914	r(NC)e	2.2895	r(OC)e	2.4566
	r(NO)e	2.2692	r(CO)e	2.2004	r(CN)e	2.1896
	∠(HCN)e	180.0	∠(HNC)e	123.34	∠(HOC)e	109.26
	∠(CNO)e	180.0	∠(NCO)e	180.0	∠(OCN)e	180.0
	E / E h	-168.463134	E / E h	-168.573087	E / E h	-168.535252

TABLE VII :

 VII Harmonic wavenumbers (in cm -1 ) of HCNO, HNCO, and HOCN, computed at the optimized geometries reported in Tables I, II, and III. For ease of visualization, we abbreviate with VXZ the basis set cc-pVXZ. The symmetry labels of the Cs point group are used here.

	HCNO	VDZ	VTZ	VQZ	VQZ linear	VDZ(all)	VTZ(all)	VQZ(all)	VQZ(all) linear	normal mode
	ω1(a')	3426	3467	3479	3493	3434	3486	3504	3505	C-H stretch
	ω2(a')	2217	2250	2267	2280	2223	2273	2295	2296	C-N-O as.stretch
	ω3(a')	1288	1274	1273	1269	1290	1287	1279	1279	C-N-O s.stretch
	ω4(a')	542	553	554	555,555	544	566	565	565,565	C-N-O bend
	ω5(a')	459	301	194	128ı,128ı	454	299	85	33,33	H-C-N bend
	ω6(a")	545	554	554		547	567	565		torsion
	HNCO	VDZ	VTZ	VQZ		VDZ(all)	VTZ(all)	VQZ(all)		normal mode
	ω1(a')	3660	3688	3693		3667	3713	3711		N-H stretch
	ω2(a')	2299	2307	2307		2304	2329	2324		N-C-O as.stretch
	ω3(a')	1292	1304	1311		1295	1319	1321		N-C-O s.stretch
	ω4(a')	855	825	818		854	809	805		H-N-C bend
	ω5(a')	547	562	567		549	566	568		N-C-O bend
	ω6(a")	609	625	631		610	633	634		torsion
	HOCN	VDZ	VTZ	VQZ		VDZ(all)	VTZ(all)	VQZ(all)		normal mode
	ω1(a')	3793	3805	3809		3796	3823	3817		H-O stretch
	ω2(a')	2305	2320	2325		2309	2341	2338		C-N stretch
	ω3(a')	1288	1275	1270		1288	1269	1273		H-O-C bend
	ω4(a')	1063	1074	1079		1066	1086	1086		C-O stretch
	ω5(a')	407	427	432		409	431	435		O-C-N bend
	ω6(a")	462	484	489		464	497	494		torsion

  . All quantities are given in cm -1 . For more details, see the text.

		RHF	Correlation contribution
	cc-pV6Z	-123.6	123.3
	cc-pV5Z(all)	-20.3	19.9
	cc-pCV5Z(all)	-70.0	69.1
	cc-pVDZ(geo5)	-163.5	219.7
	cc-pVTZ(geo5)	-182.5	201.7
	cc-pVQZ(geo5)	-185.7	191.5
	cc-pV5Z(geo5)	-186.7	187.6
	cc-pV6Z(geo5)	-186.7	185.4
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