Elena Di Bernardino 
  
José R León 
  
Some exact formulas for threshold neuron models: correlations and synchrony

Keywords: Number of crossing, Hermite polynomials, Mehler's Formula, spike correlations, synchrony, count correlations, correlation coefficient

In this paper we study some threshold neuron models with focus on specific features as correlations and synchrony input of spikes. These models have received much attention recently in neuroscience research. Our aim is in particular to provide exact formulas for these threshold neuron models in order to investigate more deeply the statistical theory behind these stochastic models. Furthermore we prove a bivariate Central Limit Theorem for a two-neurons model for an infinite horizon time, using a coupled harmonic oscillators. We also present simulated examples which illustrate our theoretical results.

Introduction

Even if, a priori, the simple threshold model used cannot be expected to completely capture the complex behavior of cortical neurons, experiments in Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF], strongly suggest that it is capable of describing spike correlations in cortical neurons with good accuracy. The simplest conceivable model of spike generation from a fluctuating voltage V (t) identifies the spike times t j with upward crossings of a threshold voltage ψ 0 . This model is presented in Section 1.

In a network, we can now suppose a two-neurons model. The aim in this case will be to calculate exactly quantities as the firing rate ν of a neuron, the temporal spike cross-correlations between neuron 1 and 2 using the conditional firing rate ν cond , the correlation coefficient ρ T between neuron 1 and 2.

In Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Signatures of synchrony in pairwise count correlations[END_REF] and Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF], they provide some approximated expressions of quantities above, essentially using a second-order truncations of the (unknown) complete formulas. The main contribution of this paper is to get the exact expressions (in form of series) in order to exactly calculate these quantities of the threshold neuron model and to evaluate accurately the error of truncation (see Section 2).

We also introduce a more involved model of two neurons by using two coupling linear harmonic oscillators (see Section 3). In this case we are capable to make the same asymptotic study as in [START_REF] Tchumatchenko | Signatures of synchrony in pairwise count correlations[END_REF] and [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF] going a step forward by showing a Central Limit Theorem for the up-crossings of these oscillators. Moreover we provide the confidence intervals depending on the coupling constant. Section 4 is devoted to this main result.

At the end our results are validated by a simulation study (see Section 5). Technical derivations and auxiliary results are postponed to Annex 1 and 2.

A first two-neurons model

Following Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF] the simplest model of a neuron spike can be built by using the crossings of a level of a differentiable stationary Gaussian process. This process is the solution of the following stochastic differential equation τ M dV (τ ) = -V (τ ) + ξ(τ ), where ξ is a stationary Gaussian process with covariance function ρ ξ (τ ) and τ M is a membrane time constant (see Tchumatchenko et al., 2010[9]). In this form if C ξ (ω) is the spectral density of process ξ the spectral density of V is given by C

V (ω) = C ξ (ω) 1+τ 2 M ω 2 .
A two-neurons model can also be modeled by using a slight generalization of the above model. Thus we can construct a vectorial stationary differentiable Gaussian process {(V 1 (t), V 2 (t))} t≥0 in such a form that the two coordinates are the solutions of the two stochastic differential equations τ M dV i (τ ) = -V i (τ ) + ξ i (τ ), i = 1, 2, where ξ i are stationary Gaussian processes with covariance function ρ ξi (τ ), cross-covariance function ρ ξ12 (τ ), (see Tchumatchenko et al., 2010[9]).

By using a normalization and a change of scale in time is easy to have EV i (0

) 2 = EV i (0) 2 = 1, for i = 1, 2. Hence the vector normalized vector (V 1 (0), V 1 (0), V 2 (τ ), V 2 (τ )), has covariance-matrix: Σ(τ ) =     1 0 ρ 13 (τ ) ρ 14 (τ ) 0 1 ρ 23 (τ ) ρ 24 (τ ) ρ 13 (τ ) ρ 23 (τ ) 1 0 ρ 14 (τ ) ρ 24 (τ ) 0 1     . (1) 
The voltage cross-correlation function is

ρ 13 (τ ) =< V 1 (0) V 2 (τ ) >, where V 1 (resp. V 2 )
is the voltage fluctuation associated to the first (resp. second) neuron. Furthermore ρ 14 (τ ) = ρ 13 (τ ), ρ 23 (τ ) = -ρ 13 (τ ) and ρ 24 (τ ) = -ρ 13 (τ ). For further details see Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF].

In order to quantify the temporal spike cross-correlations between neuron 1 and 2 we use the conditional firing rate ν cond (see Tchumatchenko et al., 2010[9]). To this aim we are interested in considering the following level functional, informally defined as:

N (V1,V2(τ +•)) t (ψ 0 ) = #{s ≤ t : V 1 (s) = ψ 0 , V 2 (s + τ ) = ψ 0 } = lim δ→0 1 (2δ) 2 t 0 1 {|V1(s)-ψ0|<δ} |V 1 (s)| 1 {|V2(s+τ )-ψ0|<δ} |V 2 (s + τ )| ds,
where ψ 0 denotes the threshold voltage in the considered neuron model (e.g., see Tchumatchenko et al., 2010[9]).

Denoting p τ (x, y) the joint Gaussian density of the vector (V 1 (0), V 2 (τ )), we must get

E[N (V1,V2(τ +•)) t (ψ 0 )] = t E[|V 1 (0)||V 2 (τ )| |V 1 (0) = V 2 (τ ) = ψ 0 ] p τ (ψ 0 , ψ 0 ).
We define the notion of the conditional window conditioning (e.g., see Zähle, 1984[11]) as:

lim ε→0 E[N (V1,V2(τ +•)) ε (ψ 0 )] ε = E[|V 1 (0)||V 2 (τ )| |V 1 (0) = V 2 (τ ) = ψ 0 ] p τ (ψ 0 , ψ 0 ).
The same type of procedure can be applied to up-crossings obtaining:

U (V1,V2(τ +•)) t (ψ 0 ) = lim δ→0 1 (2δ) 2 t 0 1 {|V1(s)-ψ0|<δ} V 1 (s)1 {V 1 (s)≥0} 1 {|V2(s+τ )-ψ0|<δ} V 2 (s + τ )1 {V 2 (s+τ )≥0} ds. Thus < s 1 (t)s 2 (t + τ ) >:= lim ε→0 E[U (V1,V2(τ +•)) ε (ψ 0 )] ε = E[V 1 (0)1 {V 1 (0)≥0} V 2 (τ )1 {V 2 (τ )≥0} |V 1 (0) = V 2 (τ ) = ψ 0 ] p τ (ψ 0 , ψ 0 ). (2)
Using the expression in (2) we can finally obtain the conditional firing rate ν cond defined by:

ν cond = < s 1 (t)s 2 (t + τ ) > √ ν 1 ν 2 , (3) 
where ν i is the firing rate of a neuron i, for i = 1, 2 (for analogous result see Tchumatchenko et al., 2010[9], Equation ( 7)). Our aim in the next section will be to calculate explicitly < s 1 (t)s 2 (t + τ ) > in (2) and then the conditional firing rate ν cond in (3).

2. Temporal spike cross-correlations: explicit formula for ν cond

In the following we provide explicit expression for < s 1 (t)s 2 (t + τ ) > using two different methods. The first one is based on a regression model and the second one essentially uses the Chaos Theory and the four-dimensional version of Melher's Formula (see Azäis and Wschebor, 2009 [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF]). In both cases we will able to provide an explicit complete formula for the conditional firing rate ν cond in (3), and to obtain a generalization of the truncated result obtained in Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF].

First method of derivation

Let φ and Φ be the standard Gaussian density and distribution respectively (Φ := 1 -Φ). Using a regression model, the Mehler's formula (see Azäis and Wschebor, 2009 [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF]; Lemma 10.7) and the Hermite polynomials we obtain the following result.

Proposition 2.1 It holds that:

< s 1 (t)s 2 (t + τ ) > = C (a,b) (τ ) φ(ψ 0 ) 2 +∞ n=0 (ρ 13 (τ )) n n! H 2 n (ψ 0 ), (4) 
where

H n (z) = (-1) n d n dz n (e -z 2 
2 ) e 

+ Φ(a)Φ(b) Cov ( 1, 2) (τ ) σ 1 (τ )σ 2 (τ ) + n≥2 φ(a)aH n-2 (b)H n-1 (a) n! (φ(b) -1) + φ(b)bH n-2 (a)H n-1 (b) n! (φ(a) -1) + φ(a)φ(b)H n-2 (a)H n-2 (b) n! Cov ( 1, 2) (τ ) σ 1 (τ )σ 2 (τ ) n , (5) 
with σ 1 (τ ) = 1 -

ρ 2 23 (τ ) 1-ρ 2 13 (τ ) 1 2 , σ 2 (τ ) = 1 - ρ 2 14 (τ ) 1-ρ 2 13 (τ ) 1 2 , Cov ( 1, 2) (τ ) = ρ 24 (τ ) + ρ13(τ ) ρ23(τ ) ρ14(τ ) 1-ρ 2 13 (τ )
,

a := -ψ0(α1+α2) σ 1 (τ ) , b := -ψ0(β1+β2) σ 2 (τ ) , (α 1 + α 2 ) = ρ23(τ ) 1+ρ13(τ ) and (β 1 + β 2 ) = ρ14(τ ) 1+ρ13(τ ) .
The reader is referred to Annex 1 for a detailed derivation of Proposition 2.1.

We remark that C (a,b) (τ ) is a uniformly convergent series. This result comes down from the following uniform inequality for the Hermite polynomials. Indeed one can proved that there exists a constant c such that, for all n ∈ N, we have:

sup x∈R H n (x) √ n! e -x 2 2 ≤ c n -1 4 .
The interested reader is referred to Imkeller et al. (1995) [START_REF] Imkeller | Chaos expansions of double intersection local time of brownian motion in and renormalization[END_REF]. Then, in particular, for A > 0 it holds that sup 0≤x≤A

H n (x) √ n! e -x 2 2 e x 2 2 = sup 0≤x≤A H n (x) √ n! √ 2π φ(x) e x 2 2 ≤ c e A 2 2 n -1 4 .
Using the threshold neuron model proposed in Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF], we have the following form for the voltage cross-correlation function ρ 13 (τ ) and for its derivatives:

ρ 13 (τ ) = r c(τ ), ρ 14 = r c (τ ), ρ 23 = -r c (τ ), ρ 24 = -r c (τ ),
with r ∈ [0, 1] (see Tchumatchenko et al., 2010[9], Equation ( 6)). Then

(α 1 + α 2 ) τ = -r c (τ ) 1+r c(τ ) , (β 1 + β 2 ) τ = rc (τ ) 1+r c(τ ) , σ 1 (τ ) = 1 -r 2 c (τ ) 2 1-r 2 c(τ ) 2 , Cov ( 1, 2) (τ ) = -r c (τ ) -r 3 c(τ ) c (τ ) 2 1-r 2 c(τ ) 2 .
In particular this choice of the voltage cross-correlation function implies that a = -b, and

σ 1 (τ ) = σ 2 (τ ).
Remark that Equations ( 4)-( 5) generalize the result obtained in Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF]. As remarked in Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF] for

ν 1 = ν 2 , ν cond (τ )
is the firing rate of neuron 2 triggered on the spikes of neuron 1. For simplicity, we will consider here the firing rate ν as

ν = 1 2 π e -ψ 2 0 2 ,
(see Equation ( 7) in Tchumatchenko et al., 2010[9]). In particular in a neuronal pair with ν 1 = ν 2 , ν cond (τ ) is a symmetrical function which approaches ν as τ increases, and maximally deviates from ν at τ = 0.

The weak correlations regime

We now calculate the cross-conditional firing rate ν cond (τ ) of two neurons, in the case with ν 1 = ν 2 . In the limit of small voltage cross-correlation, which occurs for large time lags τ or small correlation strengths r we can express ν cond (τ ) in terms of the correlation function ρ 13 (τ ) = r c(τ ). As remarked in Supplementary Material of Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Supplementary material to the manuscript[END_REF], if r = 1, this limit can be applied if τ is large (temporal decay of correlations); if r 1 then this approximation is valid for any τ . In particular, using (4)-( 5), we obtain the following second-order approximation of ν cond (τ ):

ν cond (τ ) = ν + r g(τ ) + ν r 2 2 c(τ ) 2 (ψ 2 0 -1) 2 + c (τ ) 2 -π c (τ ) c(τ )ψ 2 0 + c (τ ) 2 (ψ 2 0 (2 -π) -2) + O(r 3 ), (6) 
where

g(τ ) = ν c(τ ) ψ 2 0 - π 2 c (τ ) . (7) 
Remark that [START_REF] Tchumatchenko | Signatures of synchrony in pairwise count correlations[END_REF] represents the linear behavior of ν cond (τ ) with respect to the correlation parameter r. Then we have derived exactly Equation 2.10 in Supplementary Material of Tchumatchenko et al. (2010) [START_REF] Tchumatchenko | Supplementary material to the manuscript[END_REF]. Moreover, using ( 4)-( 5) we know the whole behavior of the series of < s 1 (t)s 2 (t + τ ) > and not only its second-order truncated version.

A second alternative method of derivation

This second method of derivation of the exact formula of ν cond (τ ) is strongly related with fourdimensional Mehler's formula (see Azäis and Wschebor, 2009 [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF]; Lemma 10.7) directly applied to the vector

(V 1 (0), V 1 (0), V 2 (τ ), V 2 (τ )
). More precisely we can compute < s 1 (t)s 2 (t + τ ) > using the following result.

Proposition 2.2 Let - → n := (n 1 , n 2 , n 3 , n 4 ), - → n ! := n 1 ! n 2 ! n 3 ! n 4 ! and (V 1 (0), V 1 (0), V 2 (τ ), V 2 (τ ))
the Gaussian four-dimensional vector with the covariance matrix in [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF]. It holds that:

< s 1 (t)s 2 (t + τ ) >= - → n 1 - → n ! E[H n1 (V 1 (0)) H n2 (V 1 (0)) H n3 (V 2 (τ )) H n4 (V 2 (τ ))] φ(ψ 0 ) 2 H n1 (ψ 0 ) H n3 (ψ 0 ) • ∞ 0 x 2 φ(x 2 ) H n2 (x 2 )dx 2 ∞ 0 x 4 φ(x 4 ) H n4 (x 4 )dx 4 . (8)
Remark that the calculus of

E[H n1 (V 1 (0)) H n2 (V 1 (0)) H n3 (V 2 (τ )) H n4 (V 2 (τ ))
] for different values of -→ n directly comes from Lemma 10.7 in Azäis and Wschebor (2009) [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF].

The series in ( 8) is uniformly convergent if the off-diagonal elements in matrix (1) satisfy the following condition:

ρ ij ≤ 1 3
, for i = j and i, j ∈ {1, . . . , 4} (see Taqqu, 1977[6]; Proposition 3.1). Because we are interesting in the behavior of < s 1 (t)s 2 (t + τ ) > for large time lags τ or small correlation strengths r then this condition will be satisfied.

Using Equation ( 8) we can easily obtain the same second-order approximation of ν cond (τ ) presented in [START_REF] Taqqu | Law of the iterated logarithm for sums of non-linear functions of gaussian variables that exhibit a long range dependence[END_REF]. This second method is even more simple to explicitly calculate < s 1 (t)s 2 (t + τ ) > than the first one, presented in (4)- [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. Indeed, in this case we can easily obtain also a third-order approximation for ν cond (τ ) in the weak correlations regime. More precisely we get:

ν cond (τ ) = ν + r g(τ ) + ν r 2 2 c(τ ) 2 (ψ 2 0 -1) 2 + c (τ ) 2 -π c (τ ) c(τ )ψ 2 0 + c (τ ) 2 (ψ 2 0 (2 -π) -2) + ν r 3 3! c(τ ) 3 (ψ 3 0 -3 ψ 0 ) 2 + 3! c(τ )c (τ ) 2 ψ 0 (ψ 3 0 -3 ψ 0 ) - π 2 (ψ 2 0 -1) 2 + 3! c (τ ) c (τ ) 2 ψ 2 0 -c 2 (τ ) π 2 (ψ 2 0 -1) 2 +O(r 4 ),
where g(τ ) is as in [START_REF] Tchumatchenko | Signatures of synchrony in pairwise count correlations[END_REF].

A two-neurons model: coupled harmonic oscillators

We now suppose that the fluctuating voltages of two neurons V 1 and V 2 are modeled by the following system of coupled harmonic oscillators:

V 1 (t) + γ V 1 (t) + ω 2 1 V 1 (t) = σ √ 1 -ε dW 1 (t) + √ ε dW 2 (t) , V 2 (t) + γ V 2 (t) + ω 2 2 V 2 (t) = σ √ 1 -ε dW 2 (t) + √ ε dW 1 (t) ,
with W 1 , W 2 two independent Brownian motions and ∈ [0, 1]. If = 0 or = 1 the two harmonic oscillators are independent. Furthermore if ω 1 = ω 2 = ω 0 , then the two fluctuating voltages are the same. The correlation between V 1 and V 2 reaches its maximum when = 1/2. This situation corresponds to the case r = 1 in Tchumatchenko et al., (2010) [START_REF] Tchumatchenko | Correlations and Synchrony in Threshold Neuron Models[END_REF].

As above we provide un explicit expression of < s 1 (t)s 2 (t + τ ) > for → 0 (i.e. a weak correlations regime) in the case of same neuron behavior (i.e. ω 1 = ω 2 = ω 0 ). To this end, we firstly consider a classical harmonic oscillator:

V (t) + γ V (t) + ω 2 0 V(t) = σ dW (t),
and we calculate

r V (τ ) = < V (t)V (t + τ ) > = 2 σ 2 π ∞ 0 cos(τ λ) (ω 2 0 -λ 2 ) 2 + γ 2 λ 2 dλ = σ 2 γ ω 2 0 e -γ τ 2 cos( ω τ ) + γ 2 ω sin( ω τ ) , (9) 
with ω 2 = ω 2 0 -γ 2 4 (see Equation (10a) in Wang and Uhlenbeck, 1945 [START_REF] Wang | On the theory of the brownian motion ii[END_REF]). Then using ( 9) we obtain

ρ 13 =< V 1 (0)V 2 (τ ) >= 2 ε (1 -ε) r V (τ ), ρ 14 = 2 ε (1 -ε) r V (τ ), ρ 23 = -2 ε (1 -ε) r V (τ ), ρ 24 = -2 ε (1 -ε) r V (τ ), with r V (τ ) = σ 2
γ ω e -γ τ 2 sin( ω τ ) and r V (τ ) = σ 2 γ e -γ τ 2 cos( ω τ ) -γ 2 ω sin( ω τ ) . Under the coupled harmonic oscillators model, and using the same method of section above we can write the second-order development for ν cond (τ ), in the case ω 1 = ω 2 = ω 0 , for → 0:

ν cond (τ ) = ν + ε (1 -ε) g(τ ) + 2 ν ε (1 -ε) r V (τ ) 2 (ψ 2 0 -1) 2 + r V (τ ) 2 -π r V (τ ) r V (τ )ψ 2 0 + 2 r V (τ ) 2 (ψ 2 0 (1 -π/2) -1) + O(r 3 ),
where

g(τ ) = ν 2 r V (τ ) ψ 2 0 -π r V (τ ) .

Bivariate Central Limit Theorem

In this section we will prove a Central Limit Theorem for the crossings of a system of coupled harmonic oscillators. Our method will be based in the one dimensional Central Limit Theorem proved in Azaïs and Wschebor (2009) [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF]. However, in the present case, we deal with the crossings of two correlated Gaussian process and this implies some modification in the proof of the cited theorem.

Theorem 4.1 Let V 1 and V 2 two processes satisfying the following system of coupled harmonic oscillators:

V 1 (t) + γ V 1 (t) + ω 2 0 V 1 (t) = σ √ 1 -ε dW 1 (t) + √ ε dW 2 (t) , V 2 (t) + γ V 2 (t) + ω 2 0 V 2 (t) = σ √ 1 -ε dW 2 (t) + √ ε dW 1 (t) , (10) 
with W 1 and W 2 two Brownian independent motions and

∈ [0, 1]. Let X 1 := γ ω 2 0 σ 2 V 1 and X 2 := γ ω 2 0 σ 2 V 2 . Let U X1 [0,T ] (ψ 0 ) = #{t ∈ [0, T ] : X 1 (t) = ψ 0 , X 1 (t) > 0} and U X2 [0,T ] (ψ 0 ) = #{t ∈ [0, T ] : X 2 (t) = ψ 0 , X 2 (t) > 0}. Then 1 √ T   U X1 [0,T ] (ψ 0 ) -E[U X1 [0,T ] (ψ 0 )] U X2 [0,T ] (ψ 0 ) -E[U X2 [0,T ] (ψ 0 )]   d ----→ T →∞ N 0 0 , a 11 a 12 a 12 a 22 ,
where a 11 , a 22 , a 12 are tree convergence series with known form.

Proof:

Firstly we proof that 1 √ T U Xi [0,T ] (ψ 0 ) -E[U Xi [0,T ] (ψ 0 )] d ----→ n→∞ N (0, a ii ).
The proof follows Corollary 10.12 in Azaïs and Wschebor (2009) [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF].

We remark that X i , for each i = 1, 2, is a centered stationary Gaussian process with covariance function

Γ(τ ) = e -γ τ 2 cos( ω τ ) + γ 2 ω sin( ω τ ) .
Then Γ(0) = 1, Γ(t) = ±1 for t = 0 and

∞ 0 |Γ(t)| dt < ∞, ∞ 0 |Γ (t)| dt < ∞, ∞ 0 |Γ (t)| dt < ∞. (11) 
To ease notation in what follows we drop the index i.

Recall

that E[U X [0,T ] (ψ 0 )] = λ2 λ0 T 2 π e -ψ 2 0 2 λ 0 , with λ 0 = σ 2 2 γ ω 2 0 and λ 2 = σ 2 2 γ . Furthermore we remark that U X [0,T ] (ψ 0 ) = U X √ Γ(0) [0,T ] ( ψ0 √ Γ(0) ) = U Y [0,T / √ -Γ (0)] ( ψ0 √ Γ(0)
), where

Y (τ ) = 1 √ Γ(0) X( 1 √ -Γ (0)
τ ). Then we can study U X [0,T ] (ψ 0 ) with λ 0 = 1 and λ 2 = 1. In this case the assumptions Γ(0) = 1 and -Γ (0) = 1 will be satisfied. Furthermore the covariance function Γ(t) satisfies the Geman condition (see Theorem 3 in Kratz and León (2010) [START_REF] Kratz | Level curves crossings and applications for gaussian models[END_REF]). As in Theorem 10.10 in Azaïs and Wschebor (2009) [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF] we write:

U X [0,T ] (ψ 0 ) = +∞ j=0 +∞ k=0 d j (ψ 0 ) a k T 0 H j (X(s)) H k (X (s))ds, a.s, ( 12 
) with d j (ψ 0 ) = 1 j! φ(ψ 0 ) H j (ψ 0 ) and a k = 1 k! +∞ 0 x H k (x) φ(x)dx. Then 0 < a 11 = a 22 = +∞ q=1 σ 2 (q) < ∞, with σ 2 (q) = q k=0 q k =0 d q-k (ψ 0 )d q-k (ψ 0 )a k a k ∞ 0 E[H q-k (X(0))H k (X (0))H q-k (X(s))H k (X (s))]ds.
The series defining a 11 (respectively a 22 ) converges as is shown in the Theorem 10.10 in Azäis and Wschebor (2009) [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF]. For the covariance we get a 12 = +∞ q=1 σ X1,X2 (q), with

σ X1,X2 (q) = q k=0 q k =0 d q-k (ψ 0 )d q-k (ψ 0 )a k a k ∞ 0 E[H q-k (X 1 (0))H k (X 1 (0))H q-k (X 2 (s))H k (X 2 (s))]ds.
To proof the convergence of a 22 the same technique of Theorem 10.10 in Azäis and Wschebor (2009) [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF] can be applied. Another equivalent expressions for the variance and covariance can be derived. By using the expression for the second factorial moment of the up-crossings (Azäis and Wschebor, 2009 [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF]; Chapter 3) we get:

lim T →∞ 1 T Var(U Xi [0,T ] (ψ 0 )) = lim T →∞ 1 T E[(U Xi [0,T ] (ψ 0 )) (U Xi [0,T ] (ψ 0 ) -1)] + E[U Xi [0,T ] (ψ 0 )] -E[U Xi [0,T ] (ψ 0 )] 2 = lim T →∞ 2 T T 0 (T -τ ) E[X i (0)1 {X i (0)≥0} X i (τ )1 {X i (τ )≥0} |X i (0) = X i (τ ) = ψ 0 ] p Xi(0), Xi(τ ) (ψ 0 , ψ 0 ) -ν 2 dτ + ν, with ν 2 = 1 4 π 2 e -ψ 2 0 2

2

. Moreover the weak dependence properties given in (11) imply lim

T →∞ 2 T T 0 (T -τ ) E[X i (0)1 {X i (0)≥0} X i (τ )1 {X (τ )≥0} |X i (0) = X i (τ ) = ψ 0 ] p Xi(0), Xi(τ ) (ψ 0 , ψ 0 ) -ν 2 dτ = 2 ∞ 0 E[X i (0)1 {X i (0)≥0} X i (τ )1 {X i (τ )≥0} |X i (0) = X i (τ ) = ψ 0 ] p Xi(0), Xi(τ ) (ψ 0 , ψ 0 ) -ν 2 dτ < +∞.
In the same form for the covariance we get lim

T →∞ 1 T Cov(U X1 [0,T ] (ψ 0 ), U X2 [0,T ] (ψ 0 )) = 2 ∞ 0 E[X 1 (0)1 {X 1 (0)≥0} X 2 (τ )1 {X 2 (τ )≥0} |X 1 (0) = X 2 (τ ) = ψ 0 ] p X1(0), X2(τ ) (ψ 0 , ψ 0 ) -ν 2 dτ < +∞.
It only remains to show the joint convergence to get the bivariate Central Limit Theorem. The expansion (12) takes place in the Wiener Chaos associated to the four-dimensional White Noise W = (W 11 , W 12 , W 21 , W 22 ). The interested reader is referred to Annex 2 for further details about Wiener Chaos. Moreover we can write

√ T U Xi [0,T ] (ψ 0 ) -E[U Xi [0,T ] (ψ 0 )] = +∞ q=1 1 √ T k+j=q d j (ψ 0 ) a k T 0 H j (X i (s)) H k (X i (s)) ds. = +∞ q=1 J i q (f T q ),
where

J i q (f T q ) = 1 √ T k+j=q d j (ψ 0 ) a k T 0 H j (X i (s)) H k (X i (s)) ds.
Each J i q (f T q ) belongs to the q-th Chaos (see Annex 2). Besides these functionals are asymptotically Gaussian and asymptotically independent for different values of q. This last assertion is a consequence of the univariate Central Limit Theorem. Then to prove joint asymptotic normality it is sufficient to apply Proposition 2 in [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF] [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. In particular we apply Proposition 5.1 in Annex 2 that is a slight adapted version of this result in order to adequate it to our context. Firstly we have, for i = 1, 2:

J i q (f T q ) = 1 √ T k+j=q d j (ψ 0 ) a k T 0 H j (X i (s)) H k (X i (s)) ds d ----→ T →∞ N (0, σ 2 (q)).
Furthermore lim

T →∞ E(J 1 q (f T q )J 2 q (f T q )) = σ X1,X2 (q) 
. Then all the conditions of Proposition 5.1 in Annex 2 are satisfied and being fulfilled joint asymptotic normality of the vector (J 1 q (f T q )J 2 q (f T q )).

Illustration of Theorem (4.1)

In the following we calculate σ X (q) and σ X1,X2 (q) in Theorem (4.1), for different values of q. Using the fact that

E[X(0)X(s)] = Γ V (s), E[X(0)X (s)] = Γ V (s) = -E[X (0)X(s)] and E[X (0)X (s)] = -Γ V (s),
we obtain:

σ 2 (1) = φ(ψ 0 ) 2 ψ 2 0 2 π ∞ 0 Γ V (s)ds - 1 4 ∞ 0 Γ V (s)ds , σ 2 (2) = φ(ψ 0 ) 2 1 4 π (ψ 2 0 -1) 2 ∞ 0 Γ V (s) 2 ds + 1 2 π (ψ 2 0 -1) ∞ 0 Γ V (s) 2 ds + 1 4 π ∞ 0 Γ V (s) 2 ds , σ 2 (3) = φ(ψ 0 ) 2 1 4 π (ψ 3 0 -3 ψ 0 ) 2 ∞ 0 Γ V (s) 3 ds .
Furthermore as

E[X 1 (0)X 2 (s)] = 2 ε (1 -ε) Γ V (s), E[X 1 (0)X 2 (s)] = 2 ε (1 -ε) Γ V (s) = -E[X 1 (0)X 2 (s)] and E[X 1 (0)X 2 (s)] = -2 ε (1 -ε) Γ V (s),
we get:

σ X1,X2 (1) = φ(ψ 0 ) 2 (1 -ε) ε ψ 2 0 π ∞ 0 Γ V (s)ds - 1 2 ∞ 0 Γ V (s)ds , σ X1,X2 (2) = φ(ψ 0 ) 2 ε (1 -ε) 1 π (ψ 2 0 -1) 2 ∞ 0 Γ V (s) 2 ds + 2 π (ψ 2 0 -1) ∞ 0 Γ V (s) 2 ds + 1 π ∞ 0 Γ V (s) 2 ds , σ X1,X2 (3) = φ(ψ 0 ) 2 (ε (1 -ε)) 3 2 2 π (ψ 3 0 -3 ψ 0 ) 2 ∞ 0 Γ V (s) 3 ds .
Remark that trivially σ X1,X2 (j) = σ X1 (j), for = 1 2 .

Remark 1 Using Lemma 10.7 in Azäis and Wschebor (2009) [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF], the covariance a 12 = +∞ q=1 σ X1,X2 (q) can be written in terms of the dependence parameter as

a 12 = +∞ q=1 2 ε (1 -ε) q q k=0 q k =0 d q-k (ψ 0 )d q-k (ψ 0 )a k a k ∞ 0 d1, d2, d3, d4∈Z (q -k)! k! (q -k )! k ! d 1 ! d 2 ! d 3 ! d 4 ! • Γ V (s) d1 Γ V (s) d2 (-Γ V (s)) d3 (-Γ V (s)) d4 ds,
where Z is the set of d i 's satisfying:

d i ≥ 0, d 1 + d 2 = q -k, d 3 + d 4 = k, d 1 + d 3 = q -k and d 2 + d 4 = k .
Theorem 4.1 can be useful to study the asymptotic behavior of a measure of correlation between neurons i.e. the correlation coefficient ρ T . This measure is based on count correlations (see Tchumatchenko et al., 2010[7]) and it is defined by:

ρ T = < U X1 [0,T ] (ψ 0 ), U X2 [0,T ] (ψ 0 ) > Var(U X1 [0,T ] (ψ 0 )) Var(U X2 [0,T ] (ψ 0 )) . ( 13 
)
Proposition 4.1 Under assumptions of Theorem 4.1 and using the same notation, it holds that

ρ T ----→ T →∞
a 12 a 11 .

Simulation study

In this section we confront our theoretical results with various simulated samples. We consider simulations of a system of coupled harmonic oscillators given in [START_REF] Wang | On the theory of the brownian motion ii[END_REF]. In the following of this section we will choose this set of parameters:

ψ 0 = 0, γ = 1, σ 2 = 2, ω 2 0 = 1.
Firstly we consider a classical harmonic oscillator: V (t) + γ V (t) + ω 2 0 V(t) = σ dW (t). This case corresponds to a specific choice of the dependence parameter: = 0 or = 1. Using the variance estimator proposed by Doukhan et al. (2010) [START_REF] Doukhan | Variance estimation with applications[END_REF] we are able to provide a consistent estimation for the covariance-matrix in Theorem 4.1 (see Figures 23). Indeed, using the subsampling approach on the data, simulated with the parameter set above, we obtain the results gathered in Figures below. In We now focus on the estimation of the asymptotic covariance structure a 12 . In particular in Figure 3 we draw the behavior of the estimated covariance for different values of the dependence parameter and for large values of time T . We remark a constant behavior of a 12 for T → ∞, for different values of (see Theorem 4.1). Furthermore we illustrate the behavior of the asymptotic covariance a 12 and of the asymptotic correlation coefficient ρ T in terms of the dependence parameter ∈ [0, 1], for a fixed value of time (T = 5000). The results are gathered in Figure 4. Finally in Figure 5 we illustrate the bivariate confidence intervals given by Theorem 4.1. The asymptotic ellipses are studied in terms of the dependence parameter , for a fixed time T = 5000. Using the regression-system above, we write the conditional expectation E

[Y1 1 {Y 1 ∈[0,+∞)} Y2 1 {Y 2 ∈[0,+∞)} |X1 = X2 = ψ0] as: E[((α1 + α2)τ ψ0 + 1) 1 {(α 1 +α 2 )τ ψ 0 + 1 )∈[0,+∞)} ((β1 + β2)τ ψ0 + 2) 1 {(β 1 +β 2 )τ ψ 0 + 2 )∈[0,+∞)} ] = E[((α1 + α2)τ ψ0 + 1) 1 { 1 ∈[-(α 1 +α 2 )τ ψ 0 ,+∞)} ((β1 + β2)τ ψ0 + 2) 1 { 2 ∈[-(β 1 +β 2 )τ ψ 0 ,+∞)} ] = E[ ψ 2 0 (α1 + α2)τ (β1 + β2)τ + 1((β1 + β2)τ ψ0) + 2((α1 + α2)τ ψ0) + 1 2 1 { 1 ∈[-(α 1 +α 2 )τ ψ 0 ,+∞)} 1 { 2 ∈[-(β 1 +β 2 )τ ψ 0 ,+∞)} ]. Let σ 1 (τ ) = Var( 1), σ 2 (τ ) = Var( 2), Z1 = 1 σ 1 (τ ) , Z2 = 2 σ 2 (τ ) , a := -ψ 0 (α 1 +α 2 )τ σ 1 (τ ) , b := -ψ 0 (β 1 +β 2 )τ σ 2 (τ )
.

With this notation we rewrite the expectation above as:

a b σ 1 (τ )σ 2 (τ ) E[1 {Z 1 ∈[a,+∞)} 1 {Z 2 ∈[b,+∞)} ] -b σ 1 (τ )σ 2 (τ ) E[Z1 1 {Z 1 ∈[a,+∞)} 1 {Z 2 ∈[b,+∞)} ]- a σ 1 (τ )σ 2 (τ ) E[Z2 1 {Z 1 ∈[a,+∞)} 1 {Z 2 ∈[b,+∞)} ] + σ 1 (τ )σ 2 (τ ) E[Z1 1 {Z 1 ∈[a,+∞)} Z2 1 {Z 2 ∈[b,+∞)} ] (14) 
In the following we will study the four expectations in (14), using the associated Hermite polynomials

Hn(z) = (-1) n d n dz n (e -z 2 2 )e z 2 
2 .

To study

E[Z1 1 {Z 1 ∈[a,+∞)} Z2 1 {Z 2 ∈[b,+∞)} ]
we consider the Hermite polynomial associated to the function f (z) = z 1 {z∈[a,+∞)} .

In this case we have coefficients cn(a) = (-1)

n n! √ 2 π +∞ a z d n dz n (e -z 2 
2 ) dz, and in particular,

-for n = 0, c0(a) = e -a 2 2 √ 2 π = φ(a), -for n = 1, c1(a) = -aφ(a) + Φ(a) -1, -for n ≥ 2, cn(a) = φ(a)
n! (a Hn-1(a) + Hn-2(a)).

Then, using Mehler's formula (see Azäis and Wschebor, 2009 [START_REF] Azais | Level Sets and Extrema of Random Processes and Fields[END_REF]; Lemma 10.7), we get: Then we obtain: .

E[Z11 {Z 1 ∈[a,+∞)} Z2 1 {Z 2 ∈[b,+∞)} ] = +∞
E[1 {Z 1 ∈[a,+∞)} 1 {Z 2 ∈[b,+∞)} ] = +∞
Finally, we have: 

E[Y1 1 {Y 1 ∈[0,+∞)} Y2 1 {Y 2 ∈[0,
We denote pτ the bivariate gaussian density of vector (X1, X2) with covariance ρ13(τ ). Using the Melher's formula we obtain:

pτ (ψ0, ψ0) = φ(ψ0) 2 +∞ n=0 (ρ13(τ )) n n! H 2 n (ψ0) (16) 
Then, using (15) and ( 16), we finally obtain: 

z 2 2

 2 and C (a,b) (τ ) is the series given by: C (a,b) (τ ) = σ 1 σ 2 (b Φ(b) -φ(b)) (a Φ(a) -φ(a)) + 4 a b φ(a)φ(b) + 2 b φ(b)Φ(a) + a φ(a) Φ(b)

Figure 1 :

 1 Figure 1: Temporal behavior of an harmonic oscillator for T = 400, 2000, 10000. Here we chose = 0, ψ 0 = 0 (red horizontal line), γ = 1, σ 2 = 2, ω 2 0 = 1.

  particular in Figure 2 we draw the behavior of the variance a 11 for large values of time T . We choose T ∈ [40, . . . , 10000]. We remark a constant behavior of a 11 for T → ∞, in coherence with our asymptotical result (see Theorem 4.1).

Figure 2 :

 2 Figure 2: Estimation of asymptotic variance a 11 = ∞ q=1 σ 2 (q). Here we chose = 0, ψ 0 = 0, γ = 1, σ 2 = 2, ω 2 0 = 1, T ∈ [40, 10000].

Figure 3 :

 3 Figure 3: Estimation of asymptotic covariance a 12 = ∞ q=1 σ 2 X 1 ,X 2 (q) for = 0 (black full line), = 0.2 (red full line), = 0.25 (black dashed line), = 0.5 (red long-dashed line), = 0.5 (black long-dashed line), = 1 (black dotted line). We choose here ψ 0 = 0, γ = 1, σ 2 = 2, ω 2 0 = 1, T ∈ [40, 10000].

Figure 4 :

 4 Figure 4: Left: Behavior of the asymptotic covariance a 12 in terms of ∈ [0, 1]. Right: Behavior of the asymptotic correlation coefficient ρ T in terms of ∈ [0, 1]. In red horizontal line we draw the asymptotic variance a 11 ≈ 0.01 (left) and the correlation coefficient ρ T = 1 for = 0.5 (right). We choose here ψ 0 = 0, γ = 1, σ 2 = 2, ω 2 0 = 1, T = 5000.

Figure 5 :

 5 Figure 5: Asymptotic confidence intervals for different values of ∈ [0, 1]. In this case we choose two harmonic coupled oscillators with ψ 0 = 0, γ = 1, σ 2 = 2, ω 2 0 = 1, T = 5000.

.

  Hn-1(a) + Hn-2(a))(b Hn-1(b) + Hn-2(b))Cov ( 1 , 2 ) (τ ) σ 1 (τ )σ 2 (τ ) n To study E[1 {Z 1 ∈[a,+∞)} 1 {Z 2 ∈[b,+∞)} ]we consider the Hermite polynomial associated to the function f (z) = 1 {z∈[a,+∞)} . In this case we have coefficients cn(a) = (-1) n (e -z 2 2 )dz, and in particular, -for n = 0, c0(a) = 1 -Φ(a) = Φ(a), -for n = 1, c1(a) = φ(a), -for n ≥ 2, cn(a) = φ(a) n! Hn-1(a).

..Cov ( 1 , 2 ).

 12 It is now easy to obtain explicit expressions of the two remaining expectations:E[Z11 {Z 1 ∈[a,+∞)} 1 {Z 2 ∈[b,+∞)} ] = +∞ n=0 φ(a) φ(b) n! (a Hn-1(a) + Hn-2(a)) Hn-1(b) Cov ( 1 , 2 ) (τ ) σ 1 (τ )σ 2 (τ ) n ,andE[1 {Z 1 ∈[a,+∞)} Z2 1 {Z 2 ∈[b,+∞)} ] = +∞ n=0 φ(a) φ(b) n! (b Hn-1(b) + Hn-2(b)) Hn-1(a) Cov ( 1 , 2 ) (τ ) σ 1 (τ )σ 2 (τ ) nSo we obtain:E[Y1 1 {Y 1 ∈[0,+∞)} Y2 1 {Y 2 ∈[0,+∞)} |X1 = X2 = ψ0] = σ 1 (τ )σ 2 (τ ) ab E[1 {Z 1 ∈[a,+∞)} 1 {Z 2 ∈[b,+∞)} ]b E[Z1 1 {Z 1 ∈[a,+∞)} 1 {Z 2 ∈[b,+∞)} ]-a E[Z2 1 {Z 1 ∈[a,+∞)} 1 {Z 2 ∈[b,+∞)} ]+E[Z1 1 {Z 1 ∈[a,+∞)} Z2 1 {Z 2 ∈[b,+∞)} ] = σ 1 (τ )σ 2 (τ ) • • +∞ n=0 φ(a)aHn-2(b)Hn-1(a) n! (φ(b)-1)+ φ(b)bHn-2(a)Hn-1(b) n! (φ(a)-1)+ φ(a)φ(b)Hn-2(a)Hn-2(b) n! (τ ) σ 1 (τ )σ 2 (τ ) nIn the above expression, for n = 0, we obtain:σ 1 (τ )σ 2 (τ ) (b Φ(b) -φ(b)) (a Φ(a) -φ(a)), and for n = 1, σ 1 (τ )σ 2 (τ ) (4 a b φ(a)φ(b) + 2 b φ(b)Φ(a) + 2 a φ(a) Φ(b) + Φ(a)Φ(b)) Cov ( 1 , 2 ) (τ ) σ 1 (τ )σ 2 (τ )

  +∞)} |X1 = X2 = ψ0] = C (a,b) (τ ) = σ 1 (τ )σ 2 (τ ) (b Φ(b)-φ(b)) (a Φ(a)-φ(a))+ 4 a b φ(a)φ(b)+2 b φ(b)Φ(a) + a φ(a) Φ(b) + Φ(a)Φ(b) Cov ( 1 , 2 ) (τ ) σ 1 (τ )σ 2 (τ ) + n≥2 φ(a)aHn-2(b)Hn-1(a) n! (φ(b)-1)+ φ(b)bHn-2(a)Hn-1(b) n! (φ(a)-1)+ φ(a)φ(b)Hn-2(a)Hn-2(b) n! Cov ( 1 , 2 ) (τ ) σ 1 (τ )σ 2 (τ ) n .

<

  s1(t)s2(t + τ ) >= C (a,b) (τ ) φ(ψ0)where C (a,b) (τ ) is the series in (15). Hence the result of Proposition 2.1.
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Annex 1. A detailed derivation of Proposition 2.1

For simplicity of notation in the following we adopt the following convention: we write (X1, Y1, X2, Y2) to denote the vector (V1(0), V 1 (0), V2(τ ), V 2 (τ )). In order to calculate < s1(t)s2(t + τ ) >, defined in (2), we use the following regression model:

with ( 1, 2) ⊥ (X1, X2). Then using the covariance matrix in (1) we obtain:

,

,

.

Annex 2. The Wiener Chaos

In this annex we will give some notions of the Wiener Chaos. Moreover we put in this context the functionals that we study in this paper. Let us consider a four-dimensional standard Brownian motion W = (W11, W12, W21, W22) defined in all the real line R. The solutions of the coupled linear oscillators (10) can be expressed as follows 18)

Where f is the spectral density of each oscillator, normalized to have Γ(0) = -Γ (0) = 1.

In the sequel we are going to express the representation (Equations ( 18) and ( 19)) in an Isonormal Process framework (Wiener Chaos). Let define H 2 the Hilbert vectorial space defines as {h = (h1, h2, h3, h4) :

The transformation

defines an isometry between H 2 and a Gaussian subspace of L 2 (Ω, A, P ). Thus W (h) h∈H 2 is the Isonormal process associated to H 2 . By using the representations (18) and ( 19) readily we get

2 ). A similar representation can be obtained for V i , i = 1, 2 by taking derivatives. We are in disposition of introduce the Itô-Wiener's Chaos. Let Hn be the Hermite's polynomial of degree n, such that for Y a standard Gaussian random variable we have EHn(Y )Hm(Y ) = δn,mn!. Consider {ei} i∈N an orthonormal basis for H 2 . Denoting as Λ the set the series a = (a1, a2, . . .) ai ∈ N such that all the terms except a finite number vanish. For a ∈ Λ we set a! = ∞ i=1 ai! and |a| = ∞ i=1 ai. For any multi-index a ∈ Λ we define

Ha i (W (ei)).

For each n ≥ 1, we will denote by Hn the closed subspace of L 2 (Ω, A, P ) spanned by the random variables {Φa, a ∈ Λ, |a| = n}. The space Hn is the nth Wiener Chaos associated with the Gaussian family I. If H0 denotes the space of constants we have the orthogonal decomposition

Hn.

For any Hermite's polynomial Hq it holds Hq(W (h)) = Iq(h).

For instance as X1(t) = W ((f (λ))

Where I2(•) is the second-order Wiener-Itô integral.

We can also conclude that k+j=q dj(ψ0) a k Hj(Xi(s)) H k (X i (s))ds belongs to Hq and a fortiori by linearity the following integral also belongs to this subspace,

Thus the following series

results an expansion into the Chaos.

We can adapt to our framework the result given in Proposition 2 in Peccati and Tudor (2004) [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF].

Proposition 5.1 Let the bi-dimensional kernel (f T,1 q , f T,2 q ) such that the following convergence hold E(J i q (f T,i q )) 2 → σ 2 (q, i) and E(J 1 q (f T,1 q )J 2 q (f T,2 q )) → σ(q, 1, 2).

Moreover if J i q (f T,i q ) d ----→

T →∞ N (0, σ 2 (q, i)), for i = 1, 2, then (J 1 q (f T,1 q ), J 2 q (f T,2 q )) d ----→ T →∞ N 0 0 , σ 2 (q, 1) σ(q, 1, 2) σ(q, 1, 2) σ 2 (q, 2) .