
HAL Id: hal-00750756
https://hal.science/hal-00750756v1

Submitted on 12 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of local and global approaches to digital
image correlation

François Hild, Stéphane Roux

To cite this version:
François Hild, Stéphane Roux. Comparison of local and global approaches to digital image correlation.
Experimental Mechanics, 2012, 52 (9), pp.1503-1519. �10.1007/s11340-012-9603-7�. �hal-00750756�

https://hal.science/hal-00750756v1
https://hal.archives-ouvertes.fr


Experimental Mechanics manuscript No.

(will be inserted by the editor)

Comparison of local and global approaches to digital image

correlation

François Hild⋆
· Stéphane Roux

Received: date / Accepted: date

Abstract Local and global approaches to digital image correlation are compared when

the displacement interpolation is based upon bilinear shape functions (i.e., with four-

node quadrilaterals). The resolution in terms of displacements and strains associated

with both techniques are evaluated a priori and validated a posteriori by using series

of images of real experiments. It is shown that global approaches generally out-perform

a local approach.

Keywords 4-noded quadrilaterals · Displacement · Full-�eld measurements ·

Resolution · Standard uncertainty · Strain.

1 Introduction

Digital image correlation (DIC) is a popular technique to measure 2D and 3D displace-

ment �elds [1�3]. In its 2D version, DIC consists in registering two images by measuring

the displacement �eld that enables for the best match. Generally, planar surfaces nor-

mal to the optical axis are observed to minimize perspective distortions, and non-rigid

image registration is sought for. A random pattern is often applied on the observed
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surface, or the natural surface texture and markings are exploited to measure the dis-

placement �eld based on the assumption that the surface texture passively follows the

displacement of the analyzed solid. DIC, which is used in solid mechanics, is equiv-

alent to Particle Image Velocimetry (PIV) utilized in �uid mechanics. DIC [4�7] was

initiated a few years later than PIV [8�12]. However, because the sought displacement

and strain resolutions were smaller than the velocity resolutions, its development was

slower; algorithmic challenges being more di�cult to address. However, the technique

has reached centipixel standard resolutions and uncertainties [13�16], and millipixel

biases or less [17,14,2,16] that are compatible with a large variety of cases encountered

in solid mechanics [1�3].

In its original developments, the registration was performed on zones of interest

(ZOIs) that are small windows of the considered region of interest. This type of ap-

proach will be referred to as local. The early developments were based on pure trans-

lations that were sought either in the physical space [4�6] or in Fourier space [18�20].

The kinematic hypotheses were changed later on to account for warping of the ZOI

and �rst order interpolations were implemented [7,21]. Higher degree interpolations

are also used [15] but in all the cases, the only information that is kept is the mean

displacement of each ZOI.

In computer vision, very early on, alternative techniques were implemented. They

are based upon variational formulations (as one would use in solid mechanics when

resorting to, say, �nite element formulations [22]). In the work of Horn and Schunck,

a spatial regularization was introduced to reduce the displacement �uctuations [23].

However, in cases in which discontinuities are expected, the previous approach is not

appropriate per se [24]. �Smoother� penalizations based on robust statistics were imple-

mented [25,26]. Another way of regularizing the registration is to enforce directly, say,

continuity or even more so that no choice is left concerning the weighting associated

with the regularization term. Various displacements �elds were studied, namely, lin-

ear [27], Fourier expansions [27,28], B-spline [29,30], elastic solutions (closed-form [31,
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32] and numerical [33,34]). In all these cases, because the registration is performed

over the whole region of interest (ROI), it will be referred to as global approach.

It is also possible to use the same interpolations as those used in local approaches.

In that case, there is a need for discretization schemes and the �nite element method

is the most suited one. In computer vision, this type of approach was developed in

the 1990s [35]. Finite-element based global approaches were introduced in the mid-

2000s in solid mechanics. Either the correlation product [37] or the sum of squared

di�erences [36,14] were used as the minimization quantity. 4-noded bilinear elements

are the most logical choice for comparison purposes. They will be used herein in addition

to mesh adaption to allow for better resolutions of nodal displacements in the whole

ROI. It is worth noting that unstructured meshes could also be used [33]. However,

there are very few, if any, local approaches that use such types of discretizations.

The aim of the paper is to compare local and global approaches. For local as

for global approaches, di�erent matching algorithms are used [15,36,37,14]. To make

the comparison objective, the same algorithms should be used in terms of gray level

interpolation, kinematic interpolation, and minimization procedure. It will be the case

hereafter. The paper is organized as follows. First, the principles of local and global

approaches will be presented when the sum of squared di�erences is minimized to

evaluate the sought displacements. The sensitivity to acquisition noise is discussed in

terms of the uncertainty levels of nodal displacements, mean displacements and mean

strains per ZOI or element. Theoretical predictions are compared with an a priori

resolution analysis. A �rst practical example deals with a series of pictures taken with

a CCD camera during a biaxial test on a thin �lm. A couple of pictures acquired in a

scanning electron microscope (SEM) are analyzed as a second example.
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2 Local and global approaches to DIC

2.1 Correlation procedure

There are various ways of registering 2D pictures. Among them, the most popular in

local approaches is related to the correlation product [2]. An alternative approach is

given by the sum of squared di�erences. The latter was used by the authors when

implementing global approaches in the context of �nite element discretizations [14,

32�34]. It will be used for both techniques in the sequel.

Let us consider f the picture of the reference con�guration, and g that in the

deformed con�guration. Those two images capture the speckle pattern of the solid

surface that is assumed to be passively advected by the supporting solid. The gray

level conservation at any pixel location x then reads

f(x) = g(x+ u(x)) (1)

where u is the displacement vector. Because the conservation law is never strictly

satis�ed due to acquisition noise and the number of unknowns exceed the number of

equations, it is not possible to determine the displacement vector u from the sole pic-

tures f and g. The correlation procedure has therefore to be written on a given domain

that contains more than 1 pixel. Thus a correlation procedure aims, for instance, at

minimizing the sum of squared di�erences

T =

∫

Ω

(f(x)− g[x+ u(x)])2 dx (2)

over the considered domain Ω (i.e., a ZOI in a local approach, and a ROI in a global

approach) in which the displacement �eld is interpolated as

u(x) =
∑

n

unψn(x) (3)

where ψn are (chosen) vector functions, and un the associated degrees of freedom. The

measurement problem then consists in minimizing T with respect to the unknowns un.

Let us note that choosing nodal displacements is a convenient way to emphasize the
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similarities and di�erences between local and global approaches. However, the tradi-

tional parametrization used in local approaches is equivalent but di�erent. The center

point displacement being the key quantity of interest it is singled out, and other degrees

of freedom correspond to a �rst order polynomial expansion about the center.

A Newton iterative procedure is followed to circumvent the nonlinear aspect of the

minimization problem. Let u
i denote the displacement at iteration i, and {u}i the

vector containing all the unknown degrees of freedom. By assuming small increments

du = u
i+1 − u

i of the solution, a Taylor expansion is used to linearize g(x+ v(x)) ≈

g(x) + v(x) ·∇g(x) ≈ g(x) + v(x) ·∇f(x) and then, ∂T /∂{u}i is recast in a matrix-

vector product as

∂T
∂{u}i = [M]{du} − {b}i = {0} (4)

with

Mmn =

∫

Ω

[∇f(x) ·ψm(x)][∇f(x) ·ψn(x)]dx (5)

bim =

∫

Ω

[f(x)− g̃i(x)][∇f(x) ·ψm(x)]dx (6)

and

g̃i(x) = g(x+ u
i(x)) (7)

It is worth noting that matrix [M] is computed once for all, and only vector {b} is

updated from one iteration to the next. This choice (other alternatives are possible [14])

is only dictated by computational e�ciency. The iterations stop when the displacement

corrections {du} reach a small level that is chosen by the user. In many situations, the

initial value is {u}i = {0}, but there are other propositions [30,38].

To evaluate the resolution1 of the developed technique, since the un-noised reference

is not known, the noise is assigned to the deformed picture with a variance 2σ2, where

σ2 is the variance of Gaussian white noise [32]. Under this assumption, the covariance

matrix [C] simply reduces to [14,32]

[C] = 2σ2p2[K] (8)

1 The resolution of a measuring system is the `smallest change in a quantity being measured

that causes a perceptible change in the corresponding indication' [39].
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with [K] = [M]−1, and p the physical size of one pixel. This result is very general.

Similarly, it can be shown that when the noise level remains small, the estimate of u

is unbiased.

2.2 Local approach

In the present setting, a local approach to DIC consists in minimizing the sum of

squared di�erences

Tl =
∫

ZOI

(f(x)− g[x+ u(x)])2 dx (9)

over the considered ZOI. At this level of generality, many choices can be made for

the displacement in each ZOI. In the following, shape functions used in �nite element

formulations are chosen. It is worth noting that the connectivity between elements is

not yet enforced in this part. Since pictures are sampled in pixels it is logical to use

square or rectangular ZOIs. Only regular square ZOIs will be considered herein. Their

size is denoted by ℓ. The separation between ZOIs can be chosen, namely, it can be

equal to ℓ (i.e., contiguous ZOIs), less than ℓ (i.e., overlapping ZOIs), or greater than ℓ

(i.e., separate ZOIs). To compare with �nite element calculations, contiguous ZOIs will

be used in the sequel. The simplest interpolation to consider is bilinear (i.e., 1, x, y, xy

functions, where x and y denote the local coordinates of any point M(x, y) belonging

to a given ZOI). Each component of the displacement �eld is treated the same way

(i.e., only scalar functions Nn(x) are considered) so that the displacement u
e(x) in

each ZOI Ωe reads

u
e(x) =

ne
∑

n=1

∑

α

aeαnNn(x)eα (10)

where ne denotes the number of nodes (here ne = 4), eα the unit vector associated with

direction α = 1, 2, and aeαn the unknown nodal displacements. Elementary matrices

[Me] whose components read

Me
αmβn =

∫

Ωe

∂αf(x)Nm(x)∂βf(x)Nn(x)dx (11)

and elementary vectors {be}

beαm =

∫

[f(x)− g̃(x)] ∂αf(x)Nm(x)dx (12)
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where ∂αf = ∇f · eα, and g̃ the corrected image, are computed for each ZOI. Matrix

[Me] is symmetric, positive, and de�nite (when invertible). Contrary to classical FE

procedures, quadrature formulas are not used because of the irregularity of the picture

texture. Instead, a pixel summation is implemented [14]. For each ZOI, an 8× 8 linear

system is solved iteratively

[Me]{dae} = {be}i (13)

where vector {ae} collects all sought degrees of freedom aeαn. The resolution analysis of

Section 2.1 is applied to the kinematics chosen in this part. For each degree of freedom

aeαm, the standard variation σae
αm

reads

σae
αm

=
√
2σp

√

Ke
αmαm (14)

with [Ke] = [Me]−1. This result shows that depending on the underlying texture, and

more precisely its gradient, the resolution of the correlation technique is not necessarily

uniform over the whole ROI.

Let us assume that the correlation length of the texture is greater than a few pixels

and less than the ZOI size ℓ. In such a case, a �mean-�eld� assumption is used, namely,

the squared image gradient that appears in the expression of [Me] (Equation (11)) is

extracted from the integral and changed into its expectation value

〈∂αf∂βf〉 = G2
f δαβ (15)

where Gf is the square mean of the image gradient projected along any direction. Note

that here the image texture is assumed to be isotropic. This mean-�eld assumption is

expected to hold for large ZOI sizes, but it may break down for small ones. Under such

circumstances, sub-matrix M
e
αβ reads

[Me
αβ ] ∝

G2
f ℓ

2

36
δαβ



















4 2 2 1

2 4 1 2

2 1 4 2

1 2 2 4



















(16)
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Consequently, the covariance matrix associated with the measured degrees of freedom

reads

[Cαβ ] ∝
8σ2p2

G2
f ℓ

2
δαβ



















4 -2 -2 1

-2 4 1 -2

-2 1 4 -2

1 -2 -2 4



















(17)

The covariance matrix for the degrees of freedom is simply related to the inverse of

[M]. Thus there exists a basis where both [Me] and [C] are diagonal. The spectrum

of eigenvalues and eigenmodes allows for a simple interpretation of noise sensitivity. In

a local approach, the four eigenvalues of [Me
αα] are G2

f ℓ
2(1/4, 1/12, 1/12, 1/36). The

largest eigenvalue corresponds to a uniform translation. The second eigenvalue, which

is twice degenerate and three times smaller than the �rst one, corresponds to a uniform

gradient along x and y. Finally, the fourth eigenvalue is a �eld whose nodal value is

proportional to {1,−1,−1, 1}, and as it is orthogonal to the three other eigenmodes,

it corresponds to a deformation mode with zero translation and zero mean strain.

However, it is nine times smaller than the major one. Thus noise has a much more

pronounced e�ect on the latter one.

An estimate σa of the standard displacement resolution of each degree of freedom

is given by

σa =
4
√
2σp

Gf ℓ
(18)

For any quantity of interest, which is linear in the displacement ϕ =
∑

i κiai, or

ϕ = {κ}t{a}, its standard uncertainty reads

σϕ =
(

{κ}t[C]{κ}
)1/2

(19)

where κi are known coe�cients collected in vector {κ}. This general formula can be

used to evaluate the mean displacement uncertainty, the strain uncertainty, but also

holds for more complex linear forms such as stress intensity factors (based on interaction

integrals [40,41]), or simply mean strain evaluated over arbitrary shaped and sized

domains.
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For any point x within a ZOI, the displacement can be evaluated from the di�erent

shape functions, see Equation (10). Consequently, Equation (19) can be used to map

out the uncertainty of σu(x). The shape of the uncertainty function has a minimum at

the centre and a maximum value at the mesh nodes. The map is shown in Figure 1(a).

Consequences of this observation are that if one single information is to be kept from

the local analysis then the center value is the most reliable one. The displacement at

the center of ZOI reads

u =
1

4

∑

m=1,4

aeαm (20)

and the corresponding standard deviation

σu =
√
2σp

√

∑

m=1,4

∑

n=1,4

Ke
αmαn =

σa
4

(21)

To evaluate the strain �eld, the components of the displacement gradient ∇ ⊗ u
e

is computed in each ZOI Ωe by using the gradient of the shape functions

(∇⊗ u
e)(x) =

ne
∑

n=1

∑

α

aeαn(∇Nn(x)⊗ eα) (22)

The mean component per ZOI is calculated by using the divergence theorem

p2ℓ2∇⊗ u
e
=

∫

∂Ωe

(ue ⊗ n)ds (23)

where n is the outward normal of any point belonging to the boundary ∂Ωe character-

ized by its curvilinear abscissa s. Let uα,α and uα,β denote the two components of the

displacement gradient associated with uα. The two average quantities over any ZOI

are related to the degrees of freedom aeαm by

uα,α =
aeα4 − aeα3 + aeα2 − aeα1

2ℓp
, uα,β =

aeα4 + aeα3 − aeα2 − aeα1
2ℓp

(24)

so that their corresponding standard deviations reads

σuα,α
=

√
2σ

2ℓ

√

∑

m=1,4

∑

n=1,4

(−1)m+nM−1
mn

σuα,β
=

√
2σ

2ℓ

√

∑

m=1,4

∑

n=1,4

(−1)m+nM−1
nm (25)
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As a �rst approximation, the standard uncertainty level for the mean gradient compo-

nents σǫ becomes

σǫ =
2
√
6σ

Gf ℓ2
(26)

so that it is related to σu and σa by

σǫ = 2
√
3
σu
ℓp

=

√
3

2

σa
ℓp

(27)

Usually, the mean displacement gradients are evaluated by interpolating the mean

displacements of neighboring ZOIs. In the following analysis, a set of 2 × 2 ZOIs is

considered. The mean displacement gradients become

〈uα,α〉 =
uα4 − uα3 + uα2 − uα1

2ℓp
, 〈uα,β〉 =

uα4 + uα3 − uα2 − uα1
2ℓp

(28)

and the corresponding uncertainty level σ〈ǫ〉 becomes

σ〈ǫ〉 =

√
2σ

Gf ℓ2
=

σu
ℓp

(29)

where 〈•〉 denotes averages taken over 2× 2 ZOIs.

All these results will be analyzed by using a real picture in Section 3. Figure 2

summarizes the results when a local approach is used and 10×10 ZOIs are considered.

By construction, the local approach yields displacement and strain uncertainties (i.e.,

σa, σu, σǫ) that are independent of the location when the texture content (i.e., (∂αf)
2

is uniformly distributed over the whole ROI) and provided the ZOIs do not overlap.

2.3 Global approach

In a global approach to DIC the sum of squared di�erences is minimized when de�ned

over the whole ROI

Tg =

∫

ROI

(f(x)− g[x+ u(x)])2 dx (30)

In the following, the same shape functions as those chosen in the local approach will

be considered. A regular square mesh made of 4-noded elements with a bilinear inter-

polation of the displacements is constructed. The main di�erence with the previous
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approach is that the continuity of the displacement �eld between elements is satis-

�ed. Each component of the displacement �eld satis�es Equation (10). Matrix [M] (see

Section 2.1) is assembled by considering elementary matrices [Me] whose components

are de�ned in Equation (11) and vector {b} is assembled by calculating elementary

vectors {be} expressed in Equation (12). Matrix [M] is symmetric, positive, de�nite

(when invertible), and sparse as in any FE computation. A single global problem is

solved iteratively

[M]{du} = {b}i (31)

where vector {b}i is updated thanks to the picture corrections g̃, and vector {u} col-

lects all sought degrees of freedom. Because of connectivities between elements, the

maximum component of matrix [M] is multiplied by 4 for inner nodes when com-

pared with a local approach. Further, edge nodes and corner nodes have smaller values

compared with inner nodes since the connectivities are di�erent.

As shown above, the spectrum of eigenvalues and eigenmodes allows for a simple

interpretation of noise sensitivity. In a global approach, and with a torus topology (in

order to avoid edge e�ects), matrix [M] is easily diagonalized. Translational invariance

makes it a convolution. It is thus diagonal in Fourier space, and hence all harmonic

functions eik·x are eigenmodes, where k is the wave vector. Matrix [M]/(G2
f ℓ

2) extends

over second neighbors with three di�erent values for inner nodes, 16/36, 4/36, and 1/36

respectively for diagonal, �rst and second neighbors.

Eigenvalues, ξ, are determined by applying [M] onto such Fourier modes. They

obey

ξ =
(G2

f ℓ
2)

9
(4 + 2 cos(kx) + 2 cos(ky) + cos(kx) cos(ky)) (32)

with kx = nxπ/L, ky = nyπ/L, and 0 ≤ nx ≤ L 0 ≤ ny ≤ L. Figure 3 shows the

magnitude of the eigenvalues as a function of the wavevector k. The largest eigenvalue,

ξmax = G2
f ℓ

2, corresponds to k = 0. The corresponding eigenmode is thus a uniform

translation. As the wavelength decreases, so does the eigenvalue, and for a large system

size, a series expansion of ξ as a function of k provides the following expression

ξ = G2
f ℓ

2
(

1− (1/6)|k|2
)

(33)
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where only the modulus of the wavenumber matters. At the other end of the spectrum,

the smallest eigenvalue corresponds to a checkerboard nodal �eld. In that case, kx =

ky = π, and hence

ξmin = (1/9)G2
f ℓ

2 (34)

The condition number of matrix [M] is thus equal to 9, provided the mean-�eld as-

sumption is valid. A consequence of this analysis is that when the noise level is large

(or the element size small), the nodal displacement �eld exhibits a checkerboard type

component that can easily be seen. Hopefully, those high frequency modes have little

impact on estimates of strain or mean displacement.

The resolution analysis of Section 2.1 is applied to the �nite element implemen-

tation [32,14]. Each inner node belongs to four elements so that the shape function

associated with a given inner node spans over 4 elements. Consequently, the variance

is divided by 4, and the standard displacement resolution σa is divided by 2 when

compared with the value of a single Q4 element. However, this result does not account

for the additional requirement of continuity in the displacement �eld (i.e., the global

approach deals with matrix-vector system that is written on a level of the ROI). To

estimate the additional gain associated with the continuity constraint, a global matrix

is formed by assembling elementary matrices Mαα for, say, a mesh made of 10 × 10

Q4 elements (Figure 2). For inner nodes, it is found that

σa =

√
6σp

Gf ℓ
(35)

The multiplicative factor induced by continuity is therefore equal to
√
3/2. Edge nodes

are shared by two elements so that the standard displacement resolution σa is divided

by
√
2 when compared with its value for a single Q4 element. Again, this result does

not account for the continuity of the displacement �eld. When the latter is accounted

for, the following result is obtained

σa =
2
√
3σp

Gf ℓ
(36)

The multiplicative factor due to continuity is equal
√
3/2 as for the previous case. Last,

corner nodes belong to one element only, and the standard displacement resolution σa
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is identical to that of a single Q4 element. By following the same procedure as above,

it is found that

σa =
2
√
6σp

Gf ℓ
(37)

The multiplicative factor is equal to
√
3/2 in that case as well. All these results show

that there is an additional bonus associated with the continuity requirement on the

uncertainty level of the nodal displacements. If this e�ect is neglected, it is shown

that the same uncertainty level is reached for a global approach as for a local one,

but with a mesh that is two times �ner in both directions. This can be understood

by comparing the number of unknown degrees a freedom per direction eα, which is

equal to 4NxNy when Nx ×Ny Q4 ZOIs are analyzed in a local approach, and (Nx +

1)(Ny + 1) when Nx × Ny Q4 elements are considered in a global approach. The

variance level is estimated as the ratio of the total number of pixels in the ROI Lx×Ly

divided by the number of unknowns. Consequently, the gain in uncertainty level is
√

(Nx + 1)(Ny + 1)/4NxNy ≈ 1/2 when Nx, Ny ≫ 1 when the same Q4 discretization

is compared for a local and a global approach.

Because the number of connectivities of each node of the mesh is di�erent (i.e.,

from 1 to 4), it leads to a standard uncertainty σa that is no longer uniform over the

whole ROI. This is also the case of σu and σǫ (Figure 2). For inner nodes, by using the

same approach as above, the following approximations are obtained for σu

σu =
0.63

√
2σp

Gf ℓ
(38)

and σǫ

σǫ =
1.67

√
2σ

Gf ℓ2
(39)

In both cases, when normalized by the corresponding value or σa, they lead to upper

bounds.

In the case of σu, it can be noted that the factor 2 when compared with a local

approach is not found. An upper bound to the ratio is equal to 0.36 (it is reached

for inner nodes). This e�ect can be understood by comparing the uncertainty maps

of σu(x) for both approaches (Figure 1). The shape of the uncertainty map is similar
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with a minimum at the center and a maximum value at the mesh nodes. However, it is

observed that consistently with the value reported for the nodal and center values, the

entire function for the global case lies below that of the local case. It is also observed

that the gain is much more important at the nodes, and much smaller for the average

value. However, for the global approach the same result holds albeit it may appear as

less trivial. In particular, when the displacement �eld is to be compared with another

such �eld only at discrete points it is much more advantageous to select the central

values rather than the nodal ones, while preserving the same density of points, the

uncertainty is reduced by more than a factor of 2.

Conversely, for σǫ there is a gain of 0.48. In that case, the bonus of continuity

is equal to 4 %. However, let us note that the mean strain is never calculated in

such a way for a local approach. To compare with a local approach, the displacement

gradients are evaluated by interpolating the nodal displacements 2 × 2 elements. The

mean displacement gradients become

〈uα,α〉 =
aeα3 − aeα1 + aeα6 − aeα4 + aeα9 − aeα7

6ℓp

〈uα,β〉 =
aeα7 − aeα1 + aeα8 − aeα2 + aeα9 − aeα3

6ℓp
(40)

and the corresponding uncertainty level σ〈ǫ〉 reads

σ〈ǫ〉 =

√
2σ√

3Gf ℓ2
=

σa
3ℓp

(41)

for inner nodes. Even though nodal displacements are used, a multiplication factor of

1/
√
3 is obtained when the local and global approaches are compared. Had the mean

displacements of each elements been used instead, the result of Equation (29) still

applies (σ〈ǫ〉 = σu/ℓp), so that

σ〈ǫ〉 =
0.63

√
2σ

Gf ℓ2
=

σa
2.75ℓp

(42)

which is about 8 % higher compared to the previous case.

The use of a uniform mesh leads to a heterogeneous distribution of standard dis-

placement and strain uncertainties due to the heterogeneity of matrix [M] (see Fig-

ure 2). It is possible to make the distribution more uniform. Depending on the type
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of studied quantity, the result will be di�erent. In the following analysis, the stan-

dard uncertainty of the nodal displacements is chosen. As a �rst approximation, it was

shown that σa was 2 times larger for corner nodes and
√
2 larger for edge nodes when

compared to the value of inner nodes. Since the standard displacement uncertainty is

inversely proportional to the element size, it su�ces to multiply the size of the corner

elements by a factor of 2, and edge elements then become rectangular. Figure 2 shows

the e�ect on the global matrix for which corner and edge nodes have components that

have the same order of magnitude than inner nodes.

Under this assumption, the �uctuation of the Gf ℓσa/
√
2σ �eld varies between 1.73

(≈
√
3) and 1.82 (Figure 2). The �eld of Gf ℓσu/

√
2σ then varies between 0.87 and

0.63, and the �eld Gf ℓ
2σǫ/

√
2σ between 0.7 and 1.67. These �uctuations are smaller

than those observed with a regular mesh.

3 Analysis of a synthetic case

In this �rst analysis, an a priori resolution analysis is performed. It consists in con-

sidering a given picture f and adding Gaussian white noise with di�erent standard

deviations to form picture g. These two pictures are correlated by DIC. In a �rst part,

a local analysis with Q4 ZOIs is considered. The aim of the study is to evaluate the mea-

surement uncertainties associated with the measured degrees of freedom, the average

displacement per ZOI. The same analysis is run for the �rst displacement gradients.

Figure 4(a) shows the considered reference picture of the random speckle pattern.

It was obtained by spraying a black and white paint. It was used to identify damage

parameters by using a biaxial test on a vinylester matrix reinforced by a mat of E-

glass �bers [42,43]. In the present case, a 512× 512-pixel de�nition is considered. The

histogram (Figure 4(b)) does not cover completely the whole 8-bit dynamic range. The

correlation radius of the texture is of the order of 3 pixels. Values of σ ranging from

1 to 32 gray levels are considered in the sequel. In many practical situations, σ is of

the order of 1 percent of the dynamic range for CCD or CMOS cameras. However,

other imaging systems may be used (e.g., scanning electron microscopes or atomic
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force microscopes) for which the noise level is signi�cantly larger than that observed

for conventional cameras (see Section 5).

The �rst output of a correlation code to be checked is the residual �eld η(x) =

f(x) − g[x + u(x)] and its RMS η over the whole ROI. In the present case, the ZOI

separation is equal to the ZOI size so that this measure counts only once each pixel

belonging the ROI. Figure 5 shows the change of the RMS residual η normalized by

the dynamic range ∆f = maxROI f − minROI f as a function of the dimensionless

noise level
√
2σ/∆f . A linear trend is shown with a slope of 1. When the noise level

reaches very high values, there is a deviation as the number of ZOIs increases, thereby

indicating a higher sensitivity to noise, which is to be expected. Otherwise, there is an

almost 1 to 1 correspondence between the two quantities. The fact that the correlation

residual is virtually identical to the noise level is an indication that the registration was

successful. Furthermore, when the noise level is unknown, as will be shown below, it is

a simple way of assessing it by acquiring a series of pictures, performing correlations to

account for slight kinematic deviations, and assessing the RMS value of the residual,

which is equal to
√
2σ as a �rst approximation.

The result of Equation (18) is analyzed next. Figure 6(a) shows the change of σa

with the ZOI size ℓ and for di�erent values of σ. The uncertainty level is increasing

as σ increases and ℓ decreases. This trend is described by Equation (18). On a more

quantitative way, when σa is divided by the noise level σ, it should fall onto a single

curve that varies as 1/ℓ. The results of Figure 6(b) show that this dependence is

captured. A deviation is observed when only one ZOI is considered (i.e., ℓ = 512 pixels)

or for very small ZOIs. For large ZOIs, very few points are available, making the

statistical content poor. Conversely, for small ZOI sizes, the mean �eld approximation

is less likely to apply as the ZOI size becomes closer to the correlation length of the

texture. On a quantitative way, it is found that ℓσa∆f/
√
2σp ≈ 47 to be compared

with 4∆f/Gf = 50. This last result validates Equation (18) since σa ≈ 4
√
2σp/Gf ℓ.

When the mean displacement per ZOI is computed, it is expected that its uncer-

tainty level σu decreases when compared with that of the measured degrees of freedom
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σa (see Equation (21)). Figure 7 shows a plot of the ratio σu/σa as a function of σa.

The average value of the ratio is found to be equal to 0.24 (to be compared with the

theoretical value of 1/4). The di�erent data are scattered because, for small ZOIs in

particular, there are �uctuations of the mean picture gradient, and the hypothesis of

scale separation is less satis�ed.

Equation (26) is now studied. The change of σǫ with the ZOI size ℓ and for di�erent

values of σ is shown in Figure 8(a). The uncertainty level again increases with σ and

decreases with ℓ as expected from Equation (26). When σǫ is normalized by the noise

level σ it falls onto a single curve that varies as 1/ℓ2 (see Figure 8(b)). A deviation

is also present when only one ZOI is considered for the same reason as above. The

interpolation of the previous results leads to ℓ2σǫ∆f/
√
2σ ≈ 39 to be compared with

2
√
3∆f/Gf = 43. The value 2

√
3 is therefore a very good estimate of the actual ratio

σǫ/
√
2σℓ2Gf .

When the mean strain per ZOI is computed, it is expected that its uncertainty level

σǫ depends linearly on the standard uncertainty of the measured degrees of freedom

σa (see Equation (27)) and is inversely proportional to ℓ. Figure 9 shows a plot of the

ratio σǫ/σa as a function of σa. The average value of the ratio is found to be equal to

0.84, which is very close to the theoretical value (
√
3/2 ≈ 0.87). All the results found

in the present section validate the closed-form solutions derived in Section 2.2.

The performances of a global approach is compared with a local one in Figure 10

when the mean values of the standard uncertainties are considered for all the noise

levels. As the ZOI or element sizes decrease, the standard uncertainties σa, σu and σǫ

of the global approach tend to the theoretical limits when compared with the values

of the local approach. This is due to the fact that for small elements, the proportion

of inner nodes becomes dominant. These results validate the a priori predictions of

the standard resolution in terms of nodal displacement, mean displacement and mean

strain per ZOI or element for local and global approaches.
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4 Analysis of a series of pictures of a biaxial experiment

The series of pictures analyzed in this section were taken before starting a biaxial test

on supported thin W �lms. The sample was positioned in the goniometer center of

the Di�Abs experimental station at SOLEIL synchrotron source [44]. Strains using

x-ray di�raction and digital image correlation can be measured in this new setup (Fig-

ure 11(a)) The two techniques led to very similar results not only in terms of mean

strain levels but also concerning the standard strain uncertainties [45]. The optical

microscope is composed of a telecentric lens mounted on a CCD camera (12-bit dy-

namic range, de�nition: 1392× 1024 pixels). This setup allows for the minimization of

out-of-plane e�ects since a stereoscopic equipment was not possible to implement in

the experimental environment. Figure 11(b) shows the considered reference picture. It

is the raw surface with a 512 × 512 pixel de�nition. Even though the quality of the

texture seems poor at �rst sight, the histogram (Figure 11(c)) indicates that most of

the 12-bit dynamic range is used with a slight saturation so that image acquisition is

close to optimal. The correlation radius of the texture is of the order of 3 pixels and

isotropic. Hence, the images are considered as suitable for DIC.

Values of σ/∆ ranging from 1/256 to 1/32∆f are considered in the sequel. Figure 12

shows the result of the resolution analysis for a local approach. The same trends as

those observed in Figure 5 are obtained. The predictions of the a priori resolution

analysis will be compared to actual measurements. A series of ten pictures, in addition

to the reference one, was acquired. The stepping motors of the testing machine were

motionless. This is typical of an analysis that can be performed experimentally to assess

the actual resolution of the measuring system [39]. The direct DIC analysis of the 10

pictures provides the values of the RMS residual η in addition to the measurement

uncertainties. In the present case, η/∆f varies between 0.008 and 0.025 (see shaded

zone in Figure 12). From this information, it is concluded that σ varies between 0.5 %

and 1.8 % of the dynamic range of the camera, with an average value of 1.0 %. Figure 13

shows the change of the standard displacement and strain uncertainties as a function of

the ZOI size. The latter ones are compared with the levels predicted by the resolution



19

analysis when using the bounds of η and the results of Figure 12. A good agreement is

obtained, thereby validating the a priori resolution analysis.

Let us now compare the measurement uncertainties of local and global approaches.

Lower uncertainty levels are to be expected with a global approach. Figure 14(a) shows

the change of the standard displacement uncertainty of the measured degrees of freedom

for both approaches. In both cases, as expected, the uncertainties increase when the

ZOI or element sizes decrease. All approaches converge toward the same value when

only one ZOI or element is considered. When 2× 2 elements are chosen, the two global

approaches coincide since no mesh adaption was performed. As the number of elements

increases, the e�ect of mesh adaption is visible and a gain is observed in terms of σa

level for the same element size. The gain is even more important when compared with

the results of the local approach.

Figure 14(b) shows the change of the standard uncertainty of the average displace-

ment per ZOI (local approach) or element (global approach). Let us note that the

mean displacement is generally not an information that is given when using a global

approach. Generally, the values that are shown are the nodal displacements. Yet, for

comparison purposes, the levels of these values are compared herein. As expected from

the a priori analysis, the gain between local and global approaches is less important.

However, the global approaches still out-perform the local approach as the ZOI or

element sizes decrease.

Figure 14(c) shows the change of the standard uncertainty of the mean strain

per ZOI (local approach) or element (global approach). It is worth noting that this

information is generally not given as an output of a local approach. However, for

comparison purposes it is reported herein. As the number of ZOIs or elements increases,

the ratio of 2 between σǫ of the global approach compared with that of a local approach

is found. This is faster when mesh adaption is considered.
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5 Analysis of SEM pictures

A couple of pictures taken 30 minutes apart in an SEM is �nally analyzed. They have an

8-bit digitization. A ROI of 750×750 pixels is extracted. This case was chosen because

of the high acquisition noise level generally associated with SEM pictures as will be

shown hereafter. In the present case, the secondary electron mode is selected with

an Everhart-Thornley detector (ETD). Because the sample surface was not textured

enough, a grid was deposited by resorting to microphotolithography (Figure 15(a)).

This type of texture leads to a bimodal histogram (Figure 15(b)) corresponding to

the grids (high gray levels) and the raw surface (low gray levels). Moreover, the whole

dynamic range of the detector is not used in the present case, but only 80 %.

When the couple of pictures is analyzed, the RMS residual η/∆f is found to be of

the order of 7 % for local and global approaches, which is signi�cantly higher than what

was observed above. The a priori analysis is run on the reference picture of Figure 15(a)

for values of σ/∆ ranging from 1/64 to 1/8. By using the results of Figure 16, it

is concluded that the noise level associated with the SEM pictures is signi�cantly

higher than for a conventional CCD or CMOS camera. This case is therefore interesting

to check whether the theoretical predictions survive when the noise level of pictures

becomes higher.

In Figure 17(a) the change of the standard uncertainty of the measured degrees

of freedom for the three approaches is shown. All the general trends observed in Fig-

ure 14(b) are also present in this di�cult case. In particular, the global approaches

become even more interesting as they allow for a signi�cant decrease of the uncer-

tainty level.

Figure 17(b) shows the change of the standard uncertainty of the average displace-

ment per ZOI (local approach) or element (global approach) as a function of ℓ. For

very large ZOIs, the local approach out-performs the global approach. This may occur

since it was shown that the ratio σǫ/σa is lower for a local approach (i.e., 1/4) com-

pared with a global approach (i.e., 0.36 at most for inner nodes). However, the trend
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is inverted for smaller values of ℓ for which the global approaches out-perform again

the local one.

Figure 17(c) shows the change of the standard uncertainty of the mean strain per

ZOI or element as a function of ℓ. In the present case, there is a clear bene�t from the

global approach. Very early, the ratio of 2 between the global and local approaches is

reached. Because of the high noise level, there is an additional bonus in using global

approaches.

6 Summary

A comparison between local and global approaches to DIC was performed by using 4-

noded zones of interest (local approach) and 4-noded elements (global approach). The

same minimization procedure was used in both approaches so that algorithmic issues

are not the cause of di�erences. In both cases, the sum of squared di�erences was

minimized by using a modi�ed Newton scheme. It was shown that the global approach

out-performs the local one thanks to the continuity requirements and the fact that

shape functions span over four elements for inner nodes. It is worth noting that the

results derived herein with Q4 shape functions can be generalized to 8-noded cubes

with trilinear shape functions [46] when performing Digital Volume Correlation [47].

General results concerning the resolution in terms of displacement and strains were

derived. Under simplifying assumptions, closed-form expressions were obtained. They

were checked against arti�cial and practical cases, and validated in all the examples

analyzed herein. In particular, a mesh adaption strategy was proposed to yield nodal

displacement uncertainties that are uniform for a global approach, irrespective of the

fact that nodes are located inside the region of interest, or on its edges or at corners.

The gain in terms of measurement resolution allows for �ner meshes, namely, a

ratio of two of the element size compared with the ZOI size yields, as a �rst approxima-

tion, the same uncertainty level for the displacement and strain quantities investigated

herein. This result shows that more complex displacement �elds can be captured by a

global approach when compared with a local approach. Furthermore, there is an ad-
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ditional bonus induced by the continuity constraint on the displacement �eld, though

less signi�cant (i.e., of the order of 10 %) as compared with the previous e�ect. It

was shown that in case of very noisy images, this requirement made the displacement

measurements more robust with a global approach.

The next advantage of FE-based global approaches is their direct link with numer-

ical simulations. The measured displacement �elds are very often used for comparison

purposes with numerical simulations. The latter ones are, for instance, used for iden-

ti�cation and / or validation purposes of constitutive laws and numerical models. If

these issues are addressed, it is desirable to have the same kinematic basis whenever

possible. If it is not the case, the measured �eld can be interpolated by using the shape

functions of the underlying discretization, and not some exogenous interpolation that

was not used during the measurement stage.
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Fig. 10 Standard displacement uncertainty of the measured degrees of freedom (a), of the

mean displacement per ZOI (b), of the mean strain per element for a global and optimized

approach as functions of the same quantity for a local approach.
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Fig. 11 Biaxial testing machine (a) in Di�Abs line at SOLEIL synchrotron [44]. Reference

picture of a natural texture used in in situ experiments (b), and corresponding histogram (c).

The de�nition of the picture is equal to 256 kpixels with a 12-bit digitization.
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Fig. 13 Standard displacement uncertainty σa (a) and strain uncertainty σǫ (b) as functions

of the ZOI size ℓ for the ten analyzed pictures. The gray shaded areas show the predictions

based on the a priori resolution analysis.



42

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

ℓ (pixels)

σ
a

(p
ix

el
)

 

 

local
global
global optim.

(a)

10
1

10
2

10
3

10
−3

10
−2

10
−1

ℓ (pixels)

σ
u

(p
ix

el
)

 

 

local
global
global optim.

(b)

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

ℓ (pixels)

σ
ǫ

 

 

local
global
global optim.

(c)

Fig. 14 Standard displacement uncertainty of the measured degrees of freedom (a), of the

mean displacement per ZOI or element (b), of the mean strain per ZOI or element as functions

of ZOI or element size ℓ for the three approaches used herein.
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Fig. 15 Reference SEM picture for which a grid was deposited (a), and corresponding his-

togram (b). The de�nition of the picture is equal to 563 kpixels with an 8-bit digitization.
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Fig. 16 Normalized RMS residual η/∆f as a function of the dimensionless noise level
√

2σ/∆f

when σ/∆f = 1/64, 1/32, 1/16, 1/8. The solid line shows a linear interpolation with a slope of

1.
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Fig. 17 Standard displacement uncertainty of the measured degrees of freedom (a), of the

mean displacement per ZOI or element (b), of the mean strain per ZOI or element as functions

of ZOI or element size ℓ for the three approaches used herein.


