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On the stability of high-speed milling with spindle
speed variation

Sébastien Seguy & Tamás Insperger & Lionel Arnaud &

Gilles Dessein & Grégoire Peigné

Abstract Spindle speed variation is a well-known tech-
nique to suppress regenerative machine tool vibrations, but
it is usually considered to be effective only for low spindle
speeds. In this paper, the effect of spindle speed variation is
analyzed in the high-speed domain for spindle speeds
corresponding to the first flip (period doubling) and to the
first Hopf lobes. The optimal amplitudes and frequencies of
the speed modulations are computed using the semidiscre-
tization method. It is shown that period doubling chatter
can effectively be suppressed by spindle speed variation,
although, the technique is not effective for the quasiperiodic

chatter above the Hopf lobe. The results are verified by
cutting tests. Some special cases are also discussed where
the practical behavior of the system differs from the
predicted one in some ways. For these cases, it is pointed
out that the concept of stability is understood on the scale
of the principal period of the system—that is, the speed
modulation period for variable spindle speed machining
and the tooth passing period for constant spindle speed
machining.

Keywords Stability . Milling . Spindle speed variation .

Regenerative chatter . Surface roughness

1 Introduction

Machining by material removal is one of the most widely
used manufacturing processes in the industry. The produc-
tivity of machining is often limited by vibrations that arise
during the cutting process. These vibrations cause poor
surface finish, increase the rate of tool wear, and reduce
spindle lifetime. One reason for these vibrations is surface
regeneration, i.e., the tool cuts a surface that was modulated
during the previous cut. The theory of regenerative machine
tool chatter is based on the works of Tobias and Fishwick
[1]. This knowledge—initially dedicated to the turning
process—has been adapted to milling [2, 3] and has led to
the development of the stability lobe theory. Since then,
several improved models and analysis techniques have
appeared including detailed analysis of the governing delay
differential equation and time domain simulations [4–12].
These models all use the so-called stability lobe diagrams,
which make it possible to choose the maximum axial depth
of cut for a given spindle speed associated with a chatter
free machining. In many practical cases, however, the
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choice of the optimal speed is difficult because contradic-
tory parameters interact with productivity [13–15].

There are various ways to reduce chatter vibrations.
Classical solutions are based on increasing the stiffness of
the mechanical components and the damping by reducing
cutting speed or by adding dampers [16]. Tools with
variable pitches [17, 18] or with variable helix angles [19,
20] can also be used to suppress chatter. The idea behind
these techniques is that each flute experiences different
regenerative delay; in this way, the regenerative effect is
disturbed and that may reduce the self-excited vibrations for
certain spindle speeds.

A similar technique to disturb the regenerative effect and
to suppress chatter vibrations is the spindle speed variation.
As opposed to variable pitch or variable helix cutters,
spindle speed variation can effectively be used in a wider
spindle speed range since the frequency and the amplitude
of the speed variation can easily be adjusted in CNC
machines even during the machining process. The idea of
spindle speed variation became the focus of interest in the
1970s. Takemura et al. [21] presented the first simple model
to study the stability of variable speed machining; they
predicted significant shift of the stability lobes to higher
depth of cuts, but the experimental tests showed only small
improvements. Sexton and Stone [22, 23] developed a more
realistic model, and they found some improvements in the
stability properties for low spindle speeds. Moreover, they
showed that the presence of transient vibrations may further
reduce these gains [24].

Stability analysis for variable speed machining requires
special mathematical techniques since the corresponding
mathematical model is a delayed differential equation with
time-varying delay. Sexton et al. [22] considered the
projection of the solutions of the system to the subspace
of periodic functions and used Fourier expansion to reduce
the problem to an eigenvalue analysis. Tsao et al. [25]
developed a model taking the angular coordinates as
variables instead of time. This approach was further
improved by Jayaram et al. [26], who used a special
combination of Fourier expansion and Bessel function
expansion to analyze the system. Insperger and Stépán
[27] used the semidiscretization method to construct
stability diagrams for variable speed turning. They showed
that the critical depths of cut can be increased for low
speeds, but for the high-speed domain, no improvement
was found. Recently, Zhang et al. [28] presents a systematic
stability analysis of spindle speed variation based on a
machining chatter model of nonlinear delay differential
equation. Experimental validations in turning show reduc-
tion of the displacement and improvements in the surface
roughness at low speed [29, 30].

The modeling of variable speed milling is more complex
than that of turning since the speed variation frequency and

the tooth passing frequency interact, and the resulting
system is typically quasiperiodic. Still, there are mathemat-
ical techniques to determine approximate dynamic proper-
ties. Sastry et al. [31] used Fourier expansion and applied
the Floquet theory to derive stability lobe diagrams for face
milling. They obtained some improvements for low spindle
speeds. Recently, Zatarain et al. [32] presented a general
method in the frequency domain to solve the problem and
show that variable spindle speed can effectively be used to
chatter suppression for low cutting speeds. They used the
semidiscretization method and time domain simulations to
validate their model and confirmed their results by experi-
ments. Another approach is to use time domain simulation [33,
34] that makes it possible to obtain more detailed information
about the process such as the amplitude of the vibrations,
the chip thickness, or the cutting forces. While theoretical
results are available for a wide range of spindle speeds, to
the best knowledge of the authors, experimental validations
were made only for low spindle speeds [26, 29–32, 35].

In this paper, the stability of variable speed milling is
analyzed in the high-speed domain for spindle speeds
corresponding to the first flip (period doubling) and to the
first Hopf lobes. Theoretical stability predictions are
obtained using the semidiscretization method based on
[36], and the results are confirmed by experiments. The
structure of the paper is as follows. First, the model of the
process is presented in Section 2, then, the stability
properties are predicted in Section 3. The selection of the
optimal amplitude and frequency is presented in Section 4.
Experimental verifications are provided in Section 5.
Section 6 deals with some special equivocal cases. Finally,
the paper is concluded in Section 7.

2 Model of milling process with variable spindle speed

In this section, the relevant parameters of the spindle speed
variation are defined, and the mechanical model of the
milling process is presented.

2.1 Variation of the spindle speed

In this paper, periodic spindle speed variation is considered,
i.e., the spindle speed is modulated periodically around a
mean value by a given amplitude and frequency. In the
literature, mostly sinusoidal, triangular or square-wave
modulations are considered [21, 37]. The available fre-
quencies and amplitudes of the modulation are limited by
the spindle dynamics [33]. With the same dynamic
characteristics of the spindle, the triangular modulation
provides larger amplitudes and frequencies than the
sinusoidal or the square-wave modulation [37]. In addition,
there is no jump in speed like with a square-wave function



[37]. In the current study, the triangular variation will be
analyzed.

Assume that the spindle speed variation is periodic at
period, T, with a mean value, N0, and an amplitude, NA,
that is, NðtÞ ¼ N t þ Tð Þ ¼ N0 þ NASðtÞ, where SðtÞ ¼
S t þ Tð Þ is the shape function. For a triangular modulation
(see Fig. 1), the shape function is defined as:

S tð Þ ¼ 1� 4 mod ðt; TÞ=T if 0 < mod t; Tð Þ � T=2

�3þ 4 mod t; Tð Þ=T if T=2 < mod t; Tð Þ � T

( )
�

ð1Þ
Here, mod(t,T) denotes the modulo function, for exam-

ple, mod(12, 5)=2.
According to the general notation in the corresponding

literature (see, e.g., [25]), the amplitude and the frequency
of the speed variation is normalized by the mean spindle
speed N0 as:

RVA ¼ NA

N0
; ð2Þ

RVF ¼ 60

N0T
¼ 60f

N0
: ð3Þ

RVA represents the ratio of the amplitude, NA, and the
mean value, N0. In practical applications, the maximum
value for RVA is about 0.3. This represents a variation of
30% of the spindle speed and results in a variation of 30%
of the feed by tooth due to the constant feed velocity. RVF
is the ratio of the variation frequency, f, and the average
spindle frequency, N0/60. The variation frequency, f, is
typically about 1–2 Hz.

Using the normalized parameters introduced above, the
triangular modulation can be given as:

N tð Þ ¼
N0 1þ RVAð Þ � 4N0 RVA

T
mod t; Tð Þ if 0 < mod t; Tð Þ � T=2

N0 1� 3RVAð Þ þ 4N0 RVA

T
mod t; Tð Þ if T=2 < mod t; Tð Þ � T

8><
>:

9>=
>;�

ð4Þ
The time delay between two subsequent cutting teeth

plays a crucial role in the dynamics of the system due to the

regenerative effect. For a machining process with constant
spindle speed, N0, this time delay is constant:

t0 ¼ 60

zN0
; ð5Þ

where z is the number of the teeth of the tool. For variable
spindle speed machining, the time delay varies periodically in
time according to the spindle speed modulation. The variation
of the regenerative delay can be given in the implicit form:

Z t

t�tðtÞ

NðsÞ
60

ds ¼ 1

z
: ð6Þ

For the triangular modulation defined in Eq. 4, this
equation gives:

t tð Þ ¼
t0 1� RVAð Þ þ 4t0 RVA

T
mod t; Tð Þ if 0 < mod t; Tð Þ � T=2

t0 1þ 3RVAð Þ � 4t0 RVA
T

mod t; Tð Þ if T=2 < mod t; Tð Þ � T

8><
>:

9>=
>;;

ð7Þ
where τ0 is the mean time delay.

2.2 Mechanical model

A schematic diagram of the milling process is shown in
Fig. 2. The structure is assumed to be flexible in the x
direction, while the feed is parallel to the y direction. The
dynamic model is defined by the following equation:

m ��xðtÞ þ c x
� ðtÞ þ kxðtÞ ¼ FxðtÞ; ð8Þ

where m is the modal mass, c is the damping, k is the
stiffness, and Fx(t) is the cutting force in the x direction.
According to the linear cutting law, the x component of the
force is given by:

FxðtÞ ¼ Ap

Xz
j¼1

KR cos8j � KT sin8j

� �
hjðtÞ

h i
; ð9Þ

where Ap is the axial depth of cut, 8 j is the angular position
of the jth cutting edge, and KT and KR are the specificFig. 1 Typical triangular shape variation

Fig. 2 Mechanical model of the milling process with single degree of
freedom



tangential and radial cutting coefficients. The chip thickness
is expressed by:

hjðtÞ ¼ gjðtÞ fz sin8j þ xðtÞ � x t � tðtÞð Þ½ � cos8j

� �
; ð10Þ

where the function gj(t) is a unit function, which is equal to
1 when the jth tooth is cutting; otherwise, it is equal to 0.
Here, fz is the feed per tooth, x(t) is the current position of
the tool, and x(t-τ(t)) is the position at the previous cut. The
regenerative delay τ(t) is periodic in time due to the spindle
speed modulation, as it is given in Eq. 7.

3 Theoretical stability predictions

Stability of the variable speed machining is predicted using
the semidiscretization method based on [27] and [36]. This
method can be used to derive stability charts for delayed
systems with time-periodic coefficients and with time-
periodic delay as shown in [36]. The semidiscretization
method was already used for milling models with varying
regenerative delays in [38] and [39]; however, in these
models, the spindle speed was constant, and the variation of
the delay arose due to the accurate modeling of the feed
motion.

In order to verify the results obtained by semidiscretiza-
tion, the system’s behavior is determined as well by time
domain simulations for some spindle speeds. The results
obtained by the two methods are compared for both
constant and variable spindle speeds.

3.1 Stability analysis by semidiscretization

Equations 8, 9, and 10 imply the time-periodic delay
differential equation in the form:

x
�ðtÞ ¼ AðtÞxðtÞ þ BðtÞu t � tðtÞð Þ;
u t � tðtÞð Þ ¼ Cx t � tðtÞð Þ; ð11Þ

where

xðtÞ ¼ xðtÞ
x
�ðtÞ
� �

; AðtÞ ¼ 0 1
vðtÞ � k

m � c
m

� �
; BðtÞ ¼ 0

vðtÞ
� �

;

u t � tðtÞð Þ ¼ x t � tðtÞð Þ½ �; C ¼ 1 0½ �;
ð12Þ

with

vðtÞ ¼ Ap

m

Xz
j¼1

gjðtÞ KR cos 8j � KT sinϕj

h i
cos8j

 !
:

ð13Þ
As shown by Eq. 7, the regenerative time delay is

periodic at the spindle modulation period T. We assume that
the ratio of the modulation period T and the mean time
delay τ0 is a rational number, i.e., qT=pτ0 with q and p
being relative primes. Thus, the system is periodic at the
principal period qT, consequently, the Floquet theory of
periodic DDEs can be applied. Note that if the ratio of T
and τ0 is not rational, then the system is quasiperiodic, and
the Floquet theory cannot be used.

Stability is determined using the first-order semidiscre-
tization method according to [40]. The scheme of the
approximation is shown in Fig. 3. First, the discrete time
scale ti= iΔt, i=0,1,2,... is introduced so that qT=KΔt with
K being an integer. In the ith discretization interval, the time
delay is approximated by its integral average as:

t i � 1

$t

Ztiþ1

ti

tðsÞds; t 2 ti; tiþ1½ �: ð14Þ

Then, the delayed term u(t-τ(t)) is approximated by the
linear function of time as

u t � tðtÞð Þ � u t � t ið Þ � t � t i � ti�ri

$t
uiþ1�ri

þ tiþ1�ri þ t i � t

$t
ui�ri ;

t 2 ti; tiþ1½ �;
ð15Þ

Fig. 3 Schematic diagram of
the semidiscretization method



where

ri ¼ int
t i
$t

þ 1

2

� �
; ð16Þ

and ui=u(ti) is used as short notation. Note that riΔt is a kind
of integer approximation of the delay, τi. Finally, the time-
periodic functions are approximated by their integral average:

Ai ¼ 1

$t

Ztiþ1

ti

AðsÞds; Bi ¼ 1

$t

Ztiþ1

ti

BðsÞds; t 2 ti; tiþ1½ �:

ð17Þ
Now, the equation of motion 11 is approximated by:

x
� ðtÞ ¼AixðtÞ þ Bi

t � t i � ti�ri

$t
uiþ1�ri þ

tiþ1�ri þ t i � t

$t
ui�ri

� �
;

t 2 ti; tiþ1�:½
ð18Þ

In each discretization interval, this system can be consid-
ered as an ordinary differential equation with a forcing term,
which linearly depends on time. Thus, if xi=x(ti), uiþ1�ri ¼
u tiþ1�rið Þ, ui�ri ¼ u ti�rið Þ are given, then the solution over
the interval t 2 ti; tiþ1½ � can be constructed analytically as:

xiþ1 ¼ x tiþ1ð Þ ¼ Pixi þ Ri0ui�ri þ Ri1uiþ1�ri ; ð19Þ
where

Pi ¼ exp Ai$tð Þ;
Ri0 ¼ A2

i þ 1
$t A

�2
i I� exp Ai$tð Þð Þ � t i� 1þrð Þ$t

$t Ai
�1 I� exp Ai$tð Þð Þ

� �
Bi;

Ri1 ¼ �A�1
i þ 1

$t A
�2
i I� exp Ai$tð Þð Þ � r$t�t i

$t Ai
�1 I� exp Ai$tð Þð Þ� 	

Bi:

ð20Þ
Here, I denotes the 2×2 unit matrix. This solution can

be represented by a discrete map

yiþ1 ¼ Qiyi; ð21Þ
with

yi ¼

xi
ui�1

ui�2

..

.

ui�rmax

2
666664

3
777775;

Qi ¼

Pi 0 0 � � � 0 Ri1 Ri0 0 � � � 0 0
C 0 0 � � � 0 0 0 0 � � � 0 0
0 I 0 � � � 0 0 0 0 � � � 0 0
..
. . .

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 . .
.

0 0 0 0 � � � 0 0
0 0 0 I 0 0 0 � � � 0 0
0 0 0 � � � 0 I 0 0 � � � 0 0
0 0 0 � � � 0 0 I 0 � � � 0 0
..
. ..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 � � � 0 0 0 0 . .
.

0 0
0 0 0 � � � 0 0 0 0 I 0

2
6666666666666666664

3
7777777777777777775

;

ð22Þ

where Ri1 and Ri0 are in the (ri-1)th and the rith column of
the matrix and rmax=max(r0,r1,...rK-1). Note, that in this
case, the elements ui are 1×1 matrixes, and the
corresponding 1×1 unit matrixes I below the diagonal are
in fact the scalar unit 1.

The approximate Floquet transition matrix can be given
after computing matrix Qi in K succeeding discretization
intervals:

Φ ¼ QK�1QK�2 . . .Q0: ð23Þ
If the eigenvalues of Φ are in modulus less than 1, then

the process is stable. Stability lobes can be constructed by
scanning the cutting conditions (spindle speed and axial
depth of cut) for a couple of (RVA and RVF) parameters.

3.2 Time domain simulation

The solution of the system described by Eqs. 8, 9, and 10
can be approximated by standard time domain simulation
techniques, see e.g., [4, 7, 10, 33]. In this paper, the
Newmark integration scheme is used with average acceler-
ation [10]. The spindle speed variation is taken into account
by adjusting the time step so that the angular step is kept
constant during the simulation. This way, the position at the
previous cut can be computed easily. The nonlinearity due
to the exit from the cut is taken into account, thus, the
displacement of motion reaches its limits even for strong
vibrations.

Time domain simulation gives information about the
history of the vibrations during machining. The stability of
the process can be detected by monitoring the peak-to-peak
amplitude of displacement [4, 33].

3.3 Verification of the predicted stability for constant
spindle speed

First, the stability chart for a constant spindle speed process
is determined using the semidiscretization method, then,
time domain simulations are used to verify the results. The
parameters of the system are collected in Table 1. The
results are presented in Fig. 4. Panel (a) shows the stability
lobes obtained by the semidiscretization, while panels (b),
(c), (d), and (e) show the evolution of the peak-to-peak
displacements obtained by time domain simulation for four
specific speeds also denoted in panel (a). In panels (b) and
(d), the vibration amplitudes can be seen to increase
almost linearly with the axial depth of cut. These cases are

Table 1 First-order modal parameters and cutting force coefficients

m(kg) f1(Hz) ξ(%) KT(MPa) KR(MPa)

1.637 222.5 0.50 700 140



associated with stable machining where the amplitude of the
forced vibrations increases almost linearly with the ampli-
tude of the cutting force. Panels (c) and (e) show that after
a linear part, there is an abrupt change in the amplitudes.
This corresponds to the onset of chatter at the critical
depth of cut that corresponds closely to the predictions in
panel (a).

Note that the spindle speed corresponding to the tooth
passing frequency is 60 f1 / z=4,450 rpm (where f1=
222.5 Hz, and the number of teeth is z=3). Thus, the lobes
presented in Fig. 4. are the first Hopf and the first flip lobes.

3.4 Verification of the predicted stability for variable
spindle speed

In the same way, the two approaches were compared for
variable spindle speed. Parameters RVA and RVF were
fixed at 0.3 and 0.003, respectively. The results are
presented in Fig. 5. Panel (f) shows the stability lobes
obtained by the semidiscretization method, panels (g), (h),
(i), and (j) show the peak-to-peak displacements obtained
by time domain simulations for four specific spindle
speeds. These latter plots show that a smooth increase in
the amplitudes is followed by an abrupt change at a specific
depth of cut denoting the onset of chatter. This behavior
corresponds to the stability lobes in panel (f). In panel (j),
the critical depth of cut is about 2.5 mm, whereas, the lobe
in panel (f) gives a value of 3 mm. This slight difference

could be explained by the limited number of periods taken
into account in the time domain simulation.

Thus, the stability prediction for variable spindle speed
milling obtained by semidiscretization is confirmed by time
domain simulations. In the next sections, only semidiscre-
tization will be used to determine optimal parameters with
chatter free machining since the corresponding stability
computation is much faster in time than it is with time
domain simulation.

For comparison, Fig. 5 (f) also presents the lobes for
constant spindle speed. The critical depth of cut can be seen
to be increased by speed variation for some ranges of
spindle speeds, but for some other ranges, the critical depth
of cut is less than that of the constant spindle speed. For
example, a cutting process with an axial depth of cut of
2 mm and a spindle speed of 9,100 rpm—that is unstable
for constant spindle speed—can be stabilized by a speed
variation. In contrast, at 8,900 rpm stable machining can be
destabilized by a variable spindle speed. Overall, the critical
depth of cut can be seen to be increased essentially in the
area of the first flip lobe by spindle speed variation, as
experiments too will confirm.

4 Selection of the optimal parameters

Stability of variable speed machining is very sensitive to
the choice of the frequency and amplitude parameters. In

Fig. 4 Comparison of semidis-
cretization and time domain
simulations for constant spindle
speed



order to find the optimal modulation, different combina-
tions of frequencies and amplitudes should be analyzed.
Here, the effectiveness of the spindle speed variation is
investigated in the area of the first flip lobe (N0=9,100 rpm)
and also in the area of the first Hopf lobe (N0=8,900 rpm).
For these spindle speeds, the critical depths of cut were
determined for several modulation amplitudes (RVA) and
frequencies using the semidiscretization method. The
results for an average spindle speed of 9,100 rpm are

presented in Fig. 6 in contour plot form. The diagram was
constructed by computing the critical depth of cut over a
40×40 sized grid of frequency and amplitude parameters. A
perfectly uniform grid is obtained here by using rational
numbers (see Section 3.1). For constant speed, the critical
depth of cut is 0.5 mm. For variable spindle speed, the
critical depth of cut Ap is always greater than 0.5 mm for
any RVA and RVF values. For some domains, even Ap=
2.4 mm can be achieved corresponding to a 380% increase

Fig. 5 Comparison of semi-
discretization and time domain
simulations for variable speed
with RVA=0.3 and RVF=0.003

Fig. 6 Parametric study for
N0=9,100 rpm and Ae=2 mm



in the depth of cut. Figure 6 also shows that a wide
frequency of speed variation coupled with low amplitude
does not produce any gain in the depth of cut. The most
effective parameter is amplitude variation, while the
frequency does not have a significant effect on the stability
within the range of 0.5–4 Hz. As mentioned earlier, the
choice of the frequency and the amplitude variation is
limited by the spindle dynamics. Within the range of
variation, the maximum acceleration of the spindle is 100
rev/s2, i.e., 6,000 rpm/s. For a triangular shape variation,
this limit is basically determined by the maximum
acceleration of the spindle:

amax ¼ 4� RVA� N0 � f

60
¼ 100 rev=s2: ð24Þ

This limit gives a hyperbola in the frequency–amplitude
diagram (see Fig. 6). Considering this limit, the optimal
choice is to apply a low frequency of modulation with wide
amplitude. Such cases are denoted by points A and D.

Figure 7 shows a similar contour plot for an average
spindle speed of 8,900 rpm. At constant spindle speed, the
maximum depth of cut is 5 mm. It can be noted that for
variable spindle speed, the critical depth of cut never
exceeds 5 mm for any frequencies and amplitudes. Thus, in
this case, the application of speed variation always reduces
the critical depth of cut. The greatest critical depth of cut is
obtained for the borderline case when the amplitude tends
towards zero, i.e., for the limit case of constant spindle.

Based on the above numerical studies, it can be
concluded that the efficiency of spindle speed variation in
high-speed milling is diverse for different spindle speeds.
For the area of the first flip lobe, the critical depth of cut
can essentially be increased as shown in Fig. 6. However,
for the area of the first Hopf lobe, no significant gains in the
depth of cut can be achieved by spindle speed variation.
Furthermore, the improvements were found to depend

mostly on the amplitude of the speed variation, and
dependence on frequency is low.

5 Experimental work

The machining tests were carried out on a high-speed
milling center (Huron, KX10). The average feed per tooth
was 0.1 mm/tooth. The tool was an inserted mill with three
teeth, D=25 mm, diameter without helix angle. The spindle
speed variation was implemented by a subprogram using a
synchronous function (Siemens, 840D). In compliance with
the dynamics of the spindle, the difference between the
input and the measured spindle speed trajectory was less
than 0.5% (see Fig. 8). According to manufacturers of
spindles and power controllers, the life span of neither the
spindle nor the controller should be shortened by spindle
speed variation.

The setup of the milling tests can be seen in Fig. 9. A
flexure was used to provide a single degree of freedom
system that is compliant in the x direction (perpendicular to
the feed). The tool is considered to be rigid compared to the

Fig. 7 Parametric study for
N0=8,900 rpm and Ae=2 mm

Fig. 8 Comparison between input and measured spindle speed
trajectory, for N0=9,100 rpm; RVA=0.08; and RVF=0.0125 (f=
1.9 Hz)



flexure. An aluminum (2017A) part was down milled with
a radial depth of cut Ae=2 mm, thus, the radial immersion
ratio was Ae/D=0.08. The length of the workpiece was
90 mm, and the operation time was approximately 2 s at a
spindle speed of 9,100 rpm. The vibrations of the part were
measured by a laser velocimeter (Ometron, VH300+).
Filtering followed by a numerical integration was used to
extract vibrating displacement of the part.

The dynamic characteristics of the system were deter-
mined by hammer impact test [41]. The modal parameters
and the cutting force coefficients are collected in Table 1 in
Section 3. The cutting force coefficients were determined in
coherence with previous work [13].

5.1 Constant spindle speed tests

First, a series of tests at a constant speed has been
conducted in order to verify the model. The results are
shown in Fig. 10. Stable cutting tests are labeled by circle
while unstable tests by crosses. The predicted behavior of
the system corresponds to the experiments. The zone of
period doubling chatter at the first flip lobe is also explored
using a finer spindle speed resolution.

5.2 Stabilization via spindle speed variation

In this section, chatter suppression by spindle speed
variation is presented by an example. Consider the
machining process with spindle speed of 9,100 rpm and
depth of cut of 1 mm. For constant spindle speed, this
process is unstable (see Fig. 5). Spindle speed variation is
applied according to point A in Fig. 6. The corresponding
parameters are RVA=0.2 and RVF=0.0046875 (f=
0.71 Hz). Based on the theoretical predictions in Fig. 6,
the critical depth of cut is about 2 mm, i.e., the system with
variable spindle speed is predicted to be stable. The
experimental results are presented in Fig. 11. Test (A)
refers to the variable speed machining, and test (B) refers to
the constant spindle speed machining. Figure 11 presents
the spindle speed, displacement history, and surface
roughness for both cases.

For an ideally symmetric tool, the pitch of the machined
profile is equal to the feed per tooth. However, if the tool
has a runout greater than the roughness of the surface, then
it leaves only one mark per revolution. The tool used in the
tests had a runout of 10 μm, the feed per tooth was 0.1 mm,
and the tool had three teeth; thus, the pitch of the machined
profile is expected to be approximately 0.3 mm for stable
machining. (In fact, the pitch varies slightly around
0.3 mm, since the constant feed velocity and the variable
spindle speed produce a varying feed per tooth.)

During the tests with variable spindle speed, no chatter
was observed. The amplitude of the vibrations was less than
0.01 mm, the roughness was 1.75 μm, and the pitch of the
machined profile was 0.3 mm as it can be seen in Fig. 11.
These all refer to a stable cutting process.

For constant spindle speed, chatter was clearly identi-
fied. The amplitude of the vibrations was about 0.07 mm,
the roughness was 3.7 μm, and the pitch of the machined
profile was 0.6 mm that refers to the period doubling
chatter (note that these cutting parameters are in the first
flip lobe, see point B in Fig. 10).

In these cases, identification of chatter was unambigu-
ous, the pitches of the machined profiles were uniform all
along the workpiece. However, there are some cases where
the stability of the process cannot be clearly assessed as will
be shown in the next sections.

Fig. 9 Experimental setup

Fig. 10 Experimental test at constant spindle speed



6 Some equivocal cases

The stability of the machining process with spindle speed
variation is not always as univocal as it was shown in the
previous section. An unstable machining process with
slowly increasing vibration amplitudes can be acceptable
for a short machining process if chatter does not develop by
the end of machining. Similarly, a stable process with
strong transient vibrations is undesirable. In the following
subsections, cutting tests for these two cases will be
presented.

6.1 Globally unstable, but “practically stable” machining

Cutting tests were performed at spindle speed of 9,100 rpm
and depth of cut of 1 mm using variable spindle speed with
RVA=0.08 and RVF=0.0125 (f=1.9 Hz). This variation
corresponds to point C in Fig. 6. Based on the theoretical
predictions, the critical depth of cut is about 0.8 mm, i.e.,
the process is unstable. Figure 12 shows the recorded
displacement history and the surface roughness variation
during the cutting process. After about two periods of speed
variation, the amplitude of the displacement increases very
strongly. The envelope curve of the vibrations is illustrated
by dashed lines in Fig. 12. This behavior corresponds to the
predicted instability. However, chatter does not appear
suddenly—some time is needed for it to fully develop. In

the case of the cutting test in Fig. 12, this time span is about
0.7 s. If the duration of the machining process is less than
this period, then large amplitude vibrations do not develop.
In a sense, this case can be considered as “practically
stable” machining in spite of the fact that the process itself
is globally unstable. If the duration of the machining
process is longer, then chatter develops.

This effect can also be observed on the surface
roughness of the workpiece (see Fig. 12). The left hand
side of the machined profile, where the cutting was started,
has a pitch of approximately 0.3 mm with roughness of
1.6 μm. For a three fluted tool with runout of 10 μm and
feed per tooth 0.1 mm, this corresponds to stable
machining. As the tool passes over and chatter develops,
the surface roughness gets worse and worst. By the end
of the workpiece, the roughness increased to 13.9 μm.
Here, the pitch is determined mainly by the vibrations of
the workpiece and the sign of the feed per tooth cannot be
detected on the surface.

6.2 Globally stable, but “practically unstable” machining

Cutting tests were performed at spindle speed of 9,100 rpm
and depth of cut of 2 mm using variable spindle speed
according to points D and A’ in Fig. 6. The critical depth of
cuts for point A’ is 2.1 mm and for point D is 2.2 mm, thus,
both cases result in stable machining, but they are close to

Fig. 11 Chatter suppression by
spindle speed variation for Ap=
1 mm and N0=9,100 rpm



the stability boundary. The recorded displacement history
and the surface roughness variation during the cutting
process are presented in Fig. 13.

Test (D) presents a strong transient vibration that slowly
decays in time. Although, this is a stable machining, the
heavy transient vibrations degrade the surface roughness.
The rate of decay of the vibrations is low since the system
is close to the stability boundary. In this case, the operation
time (2 s) to machine the workpiece (length 90 mm) was
less than the spindle variation period T=1/f=2.22 s.

For test (A’), a lower amplitude was applied allowing a
higher modulation frequency of 0.71 Hz that corresponds to
the spindle variation period T=1/f=1.41 s. Similar to case
(D), strong transient vibrations arise in the first period of
the variation degrading the surface roughness. However, as
clearly seen in Fig. 13, the magnitude of these vibrations
decreases for the second period of the variation.

The conclusion drawn from cutting tests (D) and (A’) is
that, although these cases correspond to a theoretically
stable machining process, heavy transient vibrations arise
and decay only after 1–2 periods of speed variation. Thus,
these cases can be called “practically unstable,” in spite of
the fact that the process itself is globally stable. One reason
for the slow decay of the transient vibrations is that tests
(D) and (A’) are close to the stability boundary, and the
eigenvalues of the Floquet transition matrix are close to
one. Another reason is that the decay time of the transient
vibrations is scaled to the principal period qT of the system
(with T being the speed variation period, see the explana-
tion after Eq. 13), which is relatively high compared to the
tooth passing period, τ0.

Fig. 13 Cutting test associated
with points D and A’ in Fig. 6
(Ap=2 mm and N0=9,100 rpm)

Fig. 12 Analysis of an unstable machining for Ap=1 mm and N0=
9,100 rpm



Transient vibrations also occur for constant speed
machining, but these decay within a few tooth passing
period (note that for constant speed machining the principal
period is the tooth passing period, τ0).

7 Conclusions

Variable spindle speed machining was studied for high-
speed milling at around the first Hopf and the first flip
lobes. Stability properties were predicted using the semi-
discretization method and confirmed by time domain
simulations. Different combinations of the amplitude and
the frequency of the speed modulation were analyzed in
order to find the optimal technique to suppress chatter. It
was found that the stability properties can always be
improved (i.e., the critical depth of cut can always be
increased) by spindle speed variation within the unstable
domain of the first flip lobe, while there are some spindle
speeds where spindle speed variation does not provide any
essential gain. Amplitude was also shown to have a greater
effect on the stability of the process than frequency.

Cutting tests were performed for certain spindle speeds
in the flip domain in order to verify the theoretical pre-
dictions. The stabilizing effect of spindle speed variation was
clearly verified experimentally; a period doubling chatter
was suppressed by applying a proper spindle speed variation.

Some adverse cases were also discussed. The concept of
stability for variable spindle speed machining was shown to
differ slightly from that of constant spindle speed, since the
principal period of the system is equal to the spindle
variation period (or to its integer multiple) instead of the
tooth passing period. If the machining process is unstable,
but the development of chatter requires more time than the
duration of the process, then it can be considered as
“practically stable” machining. On the other hand, if the
machining process is stable, but strong transient vibrations
arise, then the process can be considered “practically
unstable.”

The efficiency of spindle speed variation can be
increased by spindles capable of providing high accelera-
tion. This would allow the use of a wider range of
amplitudes and frequencies. Furthermore, the application
of high modulation frequencies would decrease the princi-
pal period of the system—beneficial for the suppression of
transient vibrations.
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