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Estimating the attraction domain for the boost

inverter

C. Albea ∗ F. Gordillo †

Abstract

This work presents an approach for estimating the domain of attraction
for polynomial systems with state and control-signal constraints including
saturation. In many problems, it is possible to derive global stability
properties for such systems, neglecting constraints. Consideration of the
constraints usually makes the problem much more involved. In this paper,
the stability analysis performed for the unconstrained case is used for the
problem as a whole. For application of the method, there are powerful
computational tools that can be employed in cases of polynomial systems.
The technique is not only valid for the analysis of equilibrium points but
also for other attractors, such as limit cycles.

As examples, the domain of attraction for given control laws is es-
timated for a nonlinear DC-DC boost converter as well as for a boost
inverter.

1 Introduction

Many control designs do not take into account system constraints such as ac-
tuator saturation and forbidden regions in the state space, in spite of the fact
that these kinds of constraints are present in almost any control application.
Nonlinear control books contain an abundance of stability analysis examples in
which constraints are not present [13, 28]. The behaviour of the closed-loop con-
strained system is not necessarily greatly degraded with respect to the case of
unconstrained analysis, making this approach very successful. Nevertheless, in
some situations the global stability character may be lost, resulting in local sta-
bility of the desired operating behaviour within a bounded region of attraction
[15, 2]. Estimation of this region is desirable but represents a difficult problem.
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There exist many published methods for estimating the region of attraction
(see, for example [10, 13] and the references therein). One example of this kind
of method is based on Lyapunov theory, in which closed Lyapunov-function level
surfaces are utilized to determine approximate sort of (conservative) estimations
for the region of attraction [13]. These methods often employ polynomial sys-
tems [14, 22, 25, 26]. There exist powerful mathematical tools that can be used
in the computation of the maximum acceptable level for polynomial systems
[12, 18, 27, 7]. Some of these tools could be further developed for application to
non-polynomial systems as well [6]. Application of these methods would imply to
seek for Lyapunov functions in order to be able to deal with the constraints. The
search for a Lyapunov function by means of the numerical estimation method
may be seen as an advantage as the user would not be required to propose a
Lyapunov function. In cases like these, however, the computational methods are
faced with a problem that is very difficult to tackle alone and would encounter
difficulty in resolving problems in moderately complex systems.

Furthermore, saturation-like functions, which are one of the most common
nonlinearities in practice, usually fall outside of the scope of these techniques.
Saturations-like functions are typically only considered in the case of linear
systems [1, 4, 17, 19], or in specific cases, as for instance in a port-controlled
Hamiltonian system [29].

This paper presents a simple idea that solves the problem of estimation of
attraction domain estimation for polynomial non-linear systems (among others)
with saturation-like constraints and state constraints. The term saturation-
like constraints is used for non-linear functions γ(u) that appear in the system
model and they become the identity, γ(u) = u, in certain regions of the state
space that present the desired behaviour, (those regions are referred to regions
in which such constraints are not active). Functions of this sort include typical
control signal saturation as well as others, such as rate limiters, for example.
Other constraints on the state variables can be considered as well, with an eye
to being able to exploit the unconstrained global stability analysis and use the
result to obtain a (conservative) estimation of the region of attraction for the
constrained case. Employing the Lyapunov function, which is an integral part of
this analysis, eliminates the need to search for a Lyapunov function to estimate
the domain of attraction, thus simplifying the problem. On the other hand, the
estimated attraction region is included in the domain where the saturation-like
constraints are not active and, therefore, the method introduces a new source
of conservatism, which could prove to be useful for solving problems when all
other methods fail.

To demonstrate the effectiveness of this technique, two electronic application
examples are presented. These applications use boost topology in order to obtain
oscillating current in such a way that the output voltage can be higher than
the input voltage. In the first application, the DC-DC boost converter, physical
constraints prevent the output signal from passing through zero, and alternating
current is therefore unattainable [3, 9, 23], leading to a configuration change in
the second application in which the circuit is duplicated, thereby yielding an
inverter [5]. The control laws analyzed are presented in [15, 11] for the first case



and [2] for the second case. Application of these control laws does not achieve
global stability due to two reasons: firstly, the ideal control signal cannot be
implemented globally due to control signal saturation; and secondly, the circuit
imposes physical constraints on certain state variables: the capacitor voltages,
for example, cannot be negative. These reasons motivate the computation of
an estimated attraction domain, in such a way that in the starting phase, the
system must be driven into a point inside this region. The application of the
method produces good, albeit conservative, results. However, certain difficulties
should be mentioned here: 1) the system equations are quite involved and can
even present non-polynomial terms, namely rational functions; 2) the desired
attractor is not an equilibrium point but a limit cycle. Both complications make
the use of any other analysis method a formidable task.

The rest of this article is organized as follows: in Section 2 the problem state-
ment as well as the proposed method for estimation of the attraction domain are
presented. Section 3 will provide an overview of sums of squares optimization,
the numerical tool that is employed in the application of the proposed technique.
Section 4 is devoted to the practical cases. Conclusions are drawn in Section 5.

2 Estimation of the attraction domain

In every control system, the control signal is subject to physical constraints
such as saturations, rate-limiters, etc. As for control designs, such constraints
are typically disregarded and the resulting control law is applied to the actuator.
In this way, if the designed control law is ud = α(x), where x is the state variable,
the actual control signal is u = γ(ud) = γ (α(x)), where γ(·) is a saturation-like
function. This approach is valid when the actual expression for u is used in the
stability analysis of the resultant system. It is however quite common to neglect
the actuator constraints in the stability analysis so as to simplify the analysis.
In fact, the local stability property is not usually affected by these constraints,
since in a neighborhood D of the desired attractor they are not active, that
is, γ(α(x)) = α(x) ∀x ∈ D. However, the resulting attraction domain may be
affected by constraints γ. This study deals with the estimation of this attraction
domain based on a stability analysis that neglects the constraints.

The analysis can also take into account state variable constraints in the
following sense. Assume that there exists a “forbidden” region in the state
space. This means that the system state must remain within the boundaries
of a pre-specified admissible (“safe”) region. The estimation of the domain of
attraction should take into account these constraints.

Formally, the problem can be stated as follows:
Actual system Consider a control system type defined as such:

ẋ = fa(x, u), (1)

where x ∈ S ⊂ Rn, u ∈ Rnu . Function fa may include saturation-like functions.
Furthermore, due to physical considerations, the state of the system must not
go out of an admissible region T . �



Unconstrained system Assume that an approximate model of the system
is

ẋ = f(x, u), (2)

where function f : Rn → Rn and in D, f(x, u) ≡ fa(x, u). The reader should as-
sume that this approximate model includes neither the saturation-like functions
nor the state constraints. �

Assume that a control law u = α(x) has been designed for the unconstrained
model (2) for a given control objective.

Remark 1 The control objective is not necessarily the stabilization of an equi-
librium point, but perhaps the stabilization of limit cycles, for instance, as seen
in the examples in Section 4, can be considered.

Assumption 1 There is a widely known radially unbounded Lyapunov function
V (x), in which a compact positively invariant set Ω, ∂V

∂x f(x, α(x)) ≤ 0. Let M
be the largest invariant subset of the set for which V̇ = 0 in Ω.

By the LaSalle invariance principle, Assumption 1 guarantees that the trajec-
tories of the unconstrained model tend toM. It is implicitly assumed that this
is the desired behaviour. Notice that if the original Lyapunov theorem is used
to prove global stability, the previous assumption is also fulfilled.

Assumption 1 also guarantees local stability for system (1). The problem
lies in the estimation of the domain of attraction.

The key is to ensure that the system state remains within the boundaries of
the region where saturations are not active, thus introducing new constraints. A
conservative estimation of the region of attraction can then be easily obtained.
The idea of the method is schematically shown in Fig. 1. The advantage of the
relative ease with which the estimation is obtained, however, is compromised by
the fact that it may be far too conservative. Nevertheless, in many problems
this simple idea may give satisfactory results.

Assumption 2 Consider system (1) with control law u = α(x). Let be A 4=
S ∩ T , that is, the intersection between the safe region and the region where
the saturation-like functions are not active. It is assumed that this set can be
estimated by a set of inequalities g(x) ≥ 0, where g : Rn → Rng .

Now the problem can be transformed as follows:

Given a control system ẋ = f(x, u) with constraints in both the state
variables and the control input g(x) ≥ 0, assume that a control
law u = α(x) has been designed such that global stability is con-
firmed when no constraints are taken into account. The problem
lies in estimating a region of attraction for the real system with
constraints when this control law is applied.
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Figure 1: Estimated attraction domain where the constraints are not active.



A (conservative) estimation for the attraction domain of the system with
constraints is given by the following theorem:

Theorem 1 Under assumptions 1 and 2, assume that there exists a constant
c > 0 such that in the set Ωc = {x : V (x) ≤ c}, the constraints g(x) ≥ 0 are
satisfied. Then, all trajectories of the system with constraints starting at Ωc

tend to M∩ Ωc.

Proof Since in Ωc the constraints are satisfied, the results for the unconstrained
system are valid in Ωc. Therefore, V̇ ≤ 0 in Ωc and Ωc is positively invariant.
Furthermore, since V (x) is radially unbounded Ωc is compact. The statement
can be validated by applying LaSalle’s invariance principle.

Remark 2 Since M∩Ωc ⊂M, the theorem guarantees the desired asymptotic
behaviour for the system with constraints.

Remark 3 As with other techniques for estimation of attraction domain, the
present method is conservative. In this case the conservativeness is mainly due
to two facts:

• The estimation of the region of attraction is restricted to domains in which
V ≤ c.

• The method considers the saturation-like functions as hard constraints.
Nevertheless, there may be points where the saturations are active in the
actual attraction domain.

Using Theorem 1, the problem is reduced to finding a value c > 0 such that
g(x) ≥ 0 at the points where V (x) ≤ c. In order to use numerical tools for
the determination of c, as will be seen in the next sections, the optimization
problem can be stated as follows:

Problem 1 Maximize c
subject to:

(V (x)− c) + pi(x)gi(x)− εi ≥ 0 i = 1, . . . , N, (3)

where pi(x) are unknown semi-definite positive functions and εi > 0; i =
1, . . . , N . The purpose of constraint (3) is to validate the Theorem 1 hypothe-
sis. To observe this, notice that at the boundary of the set Ωc, V (x) = c and,
thus, the above constraints are reduced to pi(x)gi(x) ≥ εi > 0. As functions
pi ≥ 0, the constraints gi(x) ≥ 0 are satisfied at the points on the boundary of
Ωc. Furthermore, in the interior of this set, V (x)− c < 0 and, thus, these con-
straints are also satisfied. The pi functions lend even more degrees of freedom,
thereby increasing problem feasibility. The small εi constants are pre-specified
and are necessary in order to avoid problems at the points where pi(x) = 0. The
introduction of εi parameters constitute a new source of conservatism.

Remark 4 Notice that the expression of V̇ is not considered in the optimization
Problem 1. This fact may greatly reduce the complexity of the numerical problem.



In this work, sum-of-squares optimization is used order to solve this problem.
For this, a new assumption is needed.

Assumption 3 Functions f(x, u) and g(x) are polynomial.

3 Sum of squares optimization

Sum of squares optimization is an optimization technique based on the Sum
Of Squares (SOS) decomposition for multivariate polynomials. A multivariate
polynomial p(x) is said to be an SOS, if there exist polynomials f1(x), ..., fm(x),
such that:

p(x) =

m∑
i=1

f2i (x)

and therefore, p(x) ≥ 0 [21].
An SOS program has the following form [21]:

Minimize the linear objective function

wT c,

where c is a vector formed from the (unknown) coefficients of:

• polynomials pi(x), for i = 1, 2, ..., N1

• sum of squares pi(x), for i = N1 + 1, ..., N2

such that:

g0,j(x) +

N∑
i=1

pi(x)gi,j(x) = 0

for j = 1, 2, , . . . ,M1.

g0,j(x) +

N∑
i=1

pi(x)gi,j(x) are SOS,

for j = M1 + 1, . . . ,M2.

where w is the linear objective function weighting coefficients
vector, and gi,j(x) represent certain scalar constant coefficient
polynomials.

Currently, SOS programs are solved by reformulating them as semi-definite
programs (SDPs), which in turn are solved efficiently, e.g., using interior point
methods. Several commercial as well as non-commercial software packages are
available for solving SDPs. SOSTOOLS [20] is a Matlab toolbox that performs
this conversion automatically, calls the SDP solver, and converts the SDP solu-
tion back to that of the solution of the original problem.

The problem stated in the previous section can be addressed solving the
following SOS problem:



Problem 2 Maximize c
subject to:

(V (x)− c) + pi(x)gi(x)− εi
are SOS; i = 1, . . . , N, (4)

where pi are unknown SOS polynomials. This problem is more restricted than
that presented in the previous section. Nevertheless, any solution to SOS prob-
lem 2 is a solution to problem 1.

Remark 5 Assumption 3 can be relaxed since other types of functions, such as
trigonometric functions [16] or rational functions (e.g., the application examples
in the next section) can be considered.

4 Some practical cases: electronic converters

The method developed above is applied to two practical cases: a DC-DC boost
converter and a boost inverter. The control laws used for these systems ap-
pear in [15] and [2] respectively where the global stability analysis is performed
neglecting saturations and forbidden regions.

4.1 Application 1: Oscillations in a DC-DC boost con-
verter

A boost circuit is usually used as a DC-DC converter and is of particular interest
due to the fact that it generates an output voltage larger than its input voltage.
Nevertheless, in [9, 8] it is proposed to convert DC voltage into an oscillating
one. However, alternating current cannot be generated with this circuit, as the
output current cannot change its sign. In this section the attraction domain is
analyzed when this converter is controlled with the law presented in [15]. For
completeness, the design is summarized here.

The normalized model of the DC-DC boost converter is:

ẋ1 =−ux2 + 1 (5)

ẋ2 = ux1 − ax2 (6)

where x1 is the normalized current and x2 is the normalized capacitor voltage
defining the system states and where a is a constant and u is the control input,
which has a direct relationship with the average duty-cycle. System (5)-(6) can
therefore be assumed to be a continuous system [15].

Under the assumption that a is a known constant, a nonlinear control law
based on the Hamiltonian approach is proposed in [15]. The design is based on
the following change of coordinates:

ζ1 =
x21 + x22

2

ζ2 = x1 − ax22 + ζ20



The aim of the control design is to ensure that the following function:

Γ = ω2(ζ1 − ζ10)2 + (ζ2 − ζ20)2 − µ

tends to zero. This goal corresponds to an ellipse in the current-voltage plane
and is assumed that correspond to the desired behaviour. Notice that this
desired behaviour is a limit cycle. Based on this definition, the nonlinear control
law proposed in [15] can be expressed as follows:

u =
1 + 2a2x22 + kΓ(ζ2 − ζ20) + ω2(ζ1 − ζ10)

x2(1 + 2ax1)
(7)

where k > 0 defines the speed of the transient response.
In [15] it is proven that, with this control law, for all initial conditions except

the origin, the trajectories of the system tend to the curve Γ = 0. Nevertheless,
there are several constraints in the state variable that make this analysis useless
from the practical point of view. These constraints are of several types:

C1. Constraints 0 ≤ u ≤ 1 make control law (7) unfeasible in the full state
space. In practice, u is chosen equal to 1 when control (7) is greater than
1 and, u is chosen equal to zero when control (7) is negative. Therefore,
this constraint is ‘soft’ in the sense that if the system arrives at a point
where the constraints are violated, the analysis of [15] is no longer valid for
the system with constraints. The point may nonetheless still lie inside the
attraction domain of the desired limit cycle. Therefore, these constraints
are saturation-like.

C2. Capacitor voltage cannot be negative in this circuit, which implies x2 ≥ 0.
This is considered to be a ‘hard’ constraint, meaning that such a situation
should always be avoided.

C3. Finally, the control law is not feasible when the denominator in (7) is zero.
This constraint is actually contained in C1, since when the denominator is
close to zero the control signal assumes large (positive or negative) values.

The objective of this work is to obtain a (possibly conservative) estimation
for the region of attraction of the resultant system taking these physical con-
straints into account.

The stability proof in [15] for the unconstrained (fictitious) case is based on
LaSalle’s invariance principle. The Lyapunov function used is:

V =
Γ2

2
. (8)

The constraints are (only constraints C1 and C2 are presented here; con-
straint C3 will be discussed later):

u(x)≤ 1 (9)

u(x)≥ 0 (10)

x2 ≥ 0 (11)



The expression for u, which is given by (7) is not polynomial but rather a
rational function. Nevertheless, by expressing it as a quotient u(x) = n(x)/d(x)
polynomials, all the constraints can be formulated in standard form. It can
then be assumed that polynomial d(x) does not vanish at any point along the
objective curve Γ(x) = 0. Otherwise, control law (7) is not valid for this problem.
Therefore, the sign of d(x) is constant along Γ(x) = 0 and, through continuity
in the neighborhood of this curve. By means of numerical inspection, it can be
verified that, for the circuit parameters given below, d(x) > 0 on Γ(x) = 0. With
this consideration in mind, constraints (9)–(11) can be written as polynomial
constraints:

• d(x)− n(x) ≥ 0

• n ≥ 0

• x2 ≥ 0

Therefore, the problem to be solved is as follows:

Minimize (−c) (12)

subject to:

(V (x)− c) + p1(x)(d(x)− n(x))− ε1 ≥ 0

(V (x)− c) + p2(x)n(x)− ε2 ≥ 0

(V (x)− c) + p3(x)x2 − ε3 ≥ 0

p1(x), p2(x), p3(x) are SOS

Notice that constraint C3 is considered in the previous set of constraints. In-
deed, constraint (13) implies n(x) ≥ ε2 > 0 for V (x) ≤ c, while constraint (13)
implies d(x) ≥ n(x) + ε1 for V (x) ≤ c. This implies that d(x) > 0 in V (x) ≤ c.

The following analysis can be directly modified for the case when d(x) < 0.

Results

The values of the circuit parameters are taken from [15], resulting in a value
for parameter a equal to 0.9045. The desired output AC voltage of the boost
circuit is:

v∗conv = 135 + 15 sin 2π50t

Software SeDuMi [24] was used as the SDP solver under SOSTOOLS. The
values for parameters εi are chosen equal to 10−6 while the chosen order for the
unknown polynomials pi is 6. The solution obtained is: c∗ = 208.5. This value is
close to the optimal value as verified by numerical inspection and thus confirms
that for the point x(1) = (6.9 1.1)>, which corresponds to V (x(1)) = 355, the
control signal u takes a value equal to 1.0001.

Nevertheless, the result is probably conservative as was pointed out in Re-
mark 3.



Figure 2 shows the resultant estimation of the attraction domain. Note, this
attraction domain is presented in the voltage-current plane. Also shown in Fig.
2 is the smaller Lyapunov level curve which inscribes the forbidden point given
before (x(1)), as well as the desired limit cycle Γ = 0.
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Figure 2: Example 1: Estimated attraction domain (solid); Lyapunov level
curve (dashed) corresponding to the a forbidden point x(1); and desired limit
cycle (dotted).

Notice that the method proposed in this paper may be valid when the system
presents complex fractional equations.

4.2 Application 2: boost inverter

A means of obtaining AC output using boost topology a double boost is proposed
in [5]. In this section the attraction domain is analyzed when this converter is
controlled with the law presented in [2]. The design is summarized here, with
the normalized model of this system being:

ẋ1 =−u1x2 + 1

ẋ2 = u1x1 − a(x2 − x4)

ẋ3 =−u2x4 + 1

ẋ4 = u2x3 + a(x2 − x4)



The nature of the constants and variables here are similar to that in the case
before: x1, x3 are the normalized currents, x2, x4 are the normalized capacitor
voltages and u1, u2 are the control inputs. Note that this system is of greater
dimensions than the system described in example 1.

The control law designed in [2] for the unconstrained (fictitious) case employs
the following Lyapunov function:

V =
Γ2
1

2
+

Γ2
2

2

with

Γ1 = ω2(ζ1 − ζ10)2 + (ζ2 − ζ20)2 − µ
Γ2 = ω2(ζ3 − ζ30)2 + (ζ4 − ζ40)2 − µ

In [2], it is proved that V̇ < 0 by LaSalle’s invariance principle.
The corresponding control laws are

u1 =
1 + 2a2x22 − 3a2x2x4 + a2x24 + a2x2ẋ4

x2 + 2ax1x2 − ax4x1

+
k1Γ1(ζ2 − ζ20) + ω2(ζ1 − ζ10)

x2 + 2ax1x2 − ax4x1

u2 =
1 + 2a2x24 − 3a2x2x4 + a2x22 + a2x4ẋ2

x4 + 2ax3x4 − ax2x3

−k2Γ2(ζ4 − ζ40)− ω2(ζ3 − ζ30)

x4 + 2ax3x4 − ax2x3

This system has the same constraints as those of the previous application:
C1, C2 and C3. It should be noted that in this case there are two control
inputs (ui, i = 1, 2) and as before, two capacitor voltages (xi, i = 2, 4), and
numerical inspection reveals the case in which d(x) > 0 is the one that should
be analyzed. The optimization problem results

Minimize (−c) (13)

subject to:

(V (x)− c) + p1(x)(n1(x)− d1(x))− ε1 ≥ 0

(V (x)− c) + p2(x)(n2(x)− d2(x))− ε2 ≥ 0

(V (x)− c)− p3(x)n1(x)− ε3 ≥ 0

(V (x)− c)− p4(x)n2(x)− ε4 ≥ 0

(V (x)− c) + p5(x)x2 − ε5 ≥ 0

(V (x)− c) + p6(x)x4 − ε6 ≥ 0

p1(x), p2(x), p3(x), p4(x), p5(x), p6(x) are SOS



Results

The parameter values are taken from [2]. The desired output voltage is:

v∗inv = 40 sin 2π50t

The tuning parameters εi are equal to 10−6 and the degree of the unknown
pi polynomials is assigned a value of 3.

The solution is obtained in approximately ten minutes on a PC (1.66 GHz
Intel Core2): c∗ = 1.5. As a means of corroborating this result, a numerical
inspection has found that for a value of x(2) = (0 − 0.1 0.4 8.1)>, which
corresponds to V (x(2)) = 2.38, the constraint x2 ≥ 0 is violated.

5 Conclusions

A methodology for the estimation of the region of attraction that takes sys-
tem physical constraints into consideration has been presented in this article.
The kind of problems considered may present a high degree of difficulty due to
the model and control law nonlinearities including saturation-like constraints.
The method is based on the search for a Lyapunov level surface where the
constraints are satisfied. This problem can be written as a sum of squares opti-
mization problem, for which good numerical tools are available. This approach
has general applicability to cases where the global stability of the unconstrained
problem has been demonstrated (by means of Lyapunov methods) and in which
extension to the constrained case is desired. This method is useful even when
the degree and complexity of the equations are high. The closed-loop model
and constraints must be polynomial or rational (there are cases, nevertheless,
where SOS programming has been applied to trigonometric and other terms
[16]). Conservativeness of the method has also been discussed.

The usefulness of the method has been shown with two electronic applica-
tions.
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