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Abstract Independent factor analysis (IFA) defines a generative model for observed data that are assumed

to be linear mixtures of some unknown non-Gaussian, mutually independent latent variables (also called

sources or independent components). The probability density function of each individual latent variable is

modelled by a mixture of Gaussians (MOG). Learning in the context of this model is usually performed

within an unsupervised framework in which only unlabelled samples are used. Both the mixing matrix

and the parameters of latent variable densities are learned from observed data. This paper investigates

the possibility of estimating an IFA model in a noiseless setting when two kinds of prior information are

incorporated; namely, constraints on the mixing process and partial knowledge on the cluster membership

of some training samples. Semi-supervised or partially-supervised learning frameworks can thus be han-

dled. The investigation of these two kinds of prior information was motivated by a real-world application

concerning the fault diagnosis of railway track circuits. Results from both this application, simulated data

are provided to demonstrate the capacity of our approach to enhance estimation accuracy and remove the

indeterminacy commonly encountered in unsupervised IFA, such as source permutations.

Keywords Independent factor analysis · Semi-supervised learning · Mixing constraints · Mixture models ·

Maximum likelihood · Fault diagnosis

1 Introduction

Generative latent variable models aim to describe observed variables in terms of a set of unobservable (or

latent) variables. Depending on the assumptions made on the latent and observed variable distributions,

different kinds of models can be distinguished, including principal component analysis (PCA) (21; 32),

factor analysis (FA) (6; 17), and independent component analysis (ICA) (22; 7; 9). This paper deals with a

particular model of this last family recently proposed by (3; 26) in the context of signal processing known

as independent factor analysis (IFA).

The generative model involved in IFA assumes that observed variables are generated by a linear mixture

of independent and non-Gaussian latent variables, as in the ICA model. Furthermore, it assumes that each

individual latent variable has its own distribution, which is modelled semi-parametrically by a mixture
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of Gaussians (MOG). The general IFA model includes data that are noisy, or it can be considered in its

noiseless setting. In the latter case, the model is similar to standard ICA but it includes a mixture of

Gaussians model for the source densities.

Learning in the context of the IFA and ICA models is often considered within an unsupervised or

blind framework. The model parameters and latent variables are learned exclusively from the observed

data. These models yield reliable results, provided that the independence assumption is satisfied and the

postulated mixing model is suited to the physics of the system. Otherwise, they may fail to recover the

sources. Several extensions of the basic ICA model have been proposed to improve its performance, they

are commonly referred to as semi-blind independent component analysis (see (5) for a review). The main

approaches exploit nonlinear mixtures (20), temporal correlation (4), positivity (9) or sparsity (19; 23; 34).

An approach to modelling class-conditional densities based on an IFA model was also recently introduced

in (25).

The method proposed here falls in this class of semi-blind approaches and may take advantage of two

kinds of prior information through two extensions of the basic noiseless IFA model. The first one concerns

the possibility of incorporating independence hypotheses with respect to a subset of latent and observed

variables. Such hypotheses can be derived from physical knowledge available on the mixing process. This

kind of approach has not been applied within the framework of IFA, but it has been widely considered in

factor analysis (6) and, more specifically, in the domain of structural equation modelling (8). The second

extension incorporates additional information on the cluster membership of certain samples to estimate

the IFA model. In this way, semi-supervised learning can be addressed.

Considering the graphic model of IFA shown in Figure 1, the mixing process prior consists in omitting

some connections between some set of observed variables X and some set of latent variables Z. The

second prior means that additional information on the discrete latent variables Y is taken into account.

Indeed, it can be seen that the IFA model provides two levels of interpretation corresponding to discrete

and continuous latent variables. For each one of the S latent variables, the discrete latent variable Ysi

encodes the cluster from which each sample i is drawn. Therefore, partial labelling over these discrete

latent variables may help to improve the performance. Such an approach was very recently also explored

by (33) in the context of non-negative matrix factorisation using quite different tools, but it is up to our

knowledge the first attempt to use such information in the context of IFA.
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Fig. 1 Graphical model for Independent Factor Analysis.

This article is organised as follows. We first review the noiseless IFA model and show how it can be

estimated using maximum likelihood. In Section 3, the problem of learning in the context of the IFA

model with prior knowledge on the mixing process is addressed. Section 4 focuses on the problem of

incorporating additional information on the cluster membership of some training samples to learn the

model. A generalised maximum likelihood criterion is defined, and the algorithm for its optimisation is also

detailed. Experiments with simulated and standard data sets are presented in Section 5. The railway track

circuit diagnosis problem is then addressed in Section 6, and Section 7 concludes the paper.
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2 Noiseless IFA

2.1 Background on noiseless IFA

IFA was introduced by (26; 3). It originates from both ordinary factor analysis (FA) in applied statistics

(29; 31) and independent component analysis (ICA) in signal processing (22; 7). IFA aims to recover

independent latent variables from their observed linear mixtures. The latent variables are assumed to be

mutually independent and non-Gaussian. In the noiseless form that is used throughout this paper, the IFA

model can be expressed as:

x = A z, (1)

where A is a square matrix of size S × S, x is the random vector where elements (x1, . . . ,xS) are the

mixtures and z is the random vector where elements (z1, . . . , zS) are the latent variables. In this noiseless

setting, the un-mixing matrix plays an important role, and we note that W = A−1 in this paper. Thanks to

the noiseless setting, a deterministic relationship between the distributions of observed and latent variables

can be expressed as:

fX (x) =
1

|det(A)|
fZ (A−1

x), (2)

Unlike the ICA model in which the probability density functions of the latent variables are fixed using

prior knowledge or according to some indicator that allows switching between sub- and super-Gaussian den-

sities (22), each latent variable density in IFA is modelled as a mixture of normally-distributed components

(i.e., mixture of Gaussians MOG) so that a wide class of densities can be approximated (26; 3):

fZs (zs) =

Ks∑

k=1

πs
kϕ(zs; µ

s
k, νs

k), (3)

Note that ϕ(.; µ, ν) denotes a normal density function with vector mean µ and variance ν. The Equation

(3) means that each latent variable is described as a mixture of Ks Gaussians with mean µs
k, variance νs

k

and mixing proportions πs
k.

2.2 Noiseless IFA model Learning

The learning problem associated with the IFA model consists in estimating both the mixing matrix A and

the MOG parameters from the observed variables alone. Consider an i.i.d random sample of size N . Using

the Equation (2) under the latent variable independence hypothesis, the log-likelihood has the form:

L(A;X) = −N log(|det(A)|) +

N∑

i=1

S∑

s=1

log
(
fZs

(
(A−1

xi)s
))

, (4)

By substituting the density distribution by its expression given in (3), the log-likelihood can be rewritten

as:

L(ψ;X) = −N log(|det(A)|) +
N∑

i=1

S∑

s=1

log

(
Ks∑

k=1

πs
kϕ
(
(A−1

xi)s, µ
s
k , νs

k

))
. (5)

Note ψ is the IFA parameter vector ψ = (A,π1, . . . ,πS ,µ1, . . . ,µS ,ν1, . . . , νS), A is the mixing matrix;

πj is the vector of mixing proportions of source j that sum to 1; and µj and νj are vectors of size Kj

containing the means and the variances of each cluster, respectively.

All IFA parameters can therefore be estimated by maximising the likelihood function. When the latent

variable densities are known, the mixing matrix estimation is based on gradient methods that maximize

the likelihood. The stochastic gradient of the log-likelihood defined in (5) can be derived as:

∆A ∝
∂L(A;X)

∂A
∝ −N.(A−1)t +

N∑

i=1

(A−1)tg
(
A−1.xi

)
(A−1

xi)
t

∝ −(A−1)t +
1

N

N∑

i=1

(A−1)tg (zi) z
t
i

∝ (A−1)t
(

1

N

N∑

i=1

g (zi) z
t
i − I

)
, (6)
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where zi = A−1xi and g(z) =
[
−∂ log(fZ1 (z1))

∂z1
, . . . , −∂ log(fZS (zS))

∂zS

]t
.

The update rule of the mixing matrix is thus given by:

A(q+1) = A(q) + τ∆A(q), (7)

Note that τ is the gradient step that can be adjusted by means of line search methods such as the

backtracking line search method (27, page 37), which decreases the learning rate τ by a factor ρ ∈ [0, 1]

until sufficient increase conditions are met.

The convergence of this algorithm can be improved by using the natural gradient, which is based on

the geometrical structure of the parameter space. This can be obtained by multiplying the left-hand side

by the matrix AAt, which leads to the following mixing matrix update rule (22):

∆natA = AAt∆A = A

(
1

N

N∑

i=1

g (zi) z
t
i − I

)
. (8)

with z
(q)
i = W (q)xi and I the identity matrix.

Maximization of the likelihood with respect to all model parameters can be achieved by an alternating

optimisation strategy. The gradient algorithm is indeed well suited to optimise the log-likelihood function

with respect to the mixing matrix A when the parameters of the source marginal densities are held constant.

In contrast, when A is fixed, an EM algorithm can be used to optimise the likelihood function with

respect to the parameters of each source. These observations have led to the development of a generalised

EM algorithm (GEM) that simultaneously maximises the likelihood function with respect to all model

parameters (16; 24).

3 Constraints on the mixing process

This section investigates the possibility of incorporating independence hypotheses concerning relationships

between some subset of latent and observed variables in the ICA model. Such hypotheses are often deduced

from physical knowledge of the mixing process. The hypothesis that we consider in this section has the

following form, namely, Xh ⊥⊥ Zg, which means that Xh is statistically independent from Zg . This kind

of hypothesis constrains the form of the mixing matrix, as shown by the following proposition:

Proposition 1 In the noiseless ICA model,

Xh ⊥⊥ Zg ⇔ Ahg = 0. (9)

Proof. Independence can be defined as:

Xh ⊥⊥ Zg ⇔ fXh×Zg (xh, zg) = fXh(xh) fZg (zg). (10)

In the case of the noiseless IFA model, the joint probability density function on Xh ×Zg is given by:

fXh×Zg(xh, zg) =

∫

RS−1

fXh×Z1×···×ZS (xh, z1, . . . , zS)
S∏

l=1,l 6=g

dzl (11)

=

∫

RS−1

S∏

s=1

fZs(zs) × δ(xh − Ah.z)
S∏

l=1,l 6=g

dzl

= fZg (zg) ×




∫

RS−1

S∏

l=1,l 6=g

fZl (zl) × δ(xh − Ah.z)dzl



 , (12)

Note that Ah. is the hth row of the mixing matrix A. Using the independence assumption, we identify:

Xh ⊥⊥ Zg ⇔ fXh(xh) =

∫

RS−1

S∏

l=1,l 6=g

fZl(zl) × δ(xh − Ah.z)dzl, (13)

Note that δ is the Dirac function. The integral must not depend on zg (the gth row of z), which is possible

only if A satisfies Ahg = 0. �
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The log-likelihood must be maximised under the constraint that some of the mixing coefficients are

null, and the gradient ascent is only performed with respect to the non-null coefficients. In this case, the

initialisation and the update rules of the mixing matrix are given by:

A(0) = C • A(0)

A(q+1) = A(q) + τ C • ∆A(q), (14)

Note that • denotes the Hadamard product between two matrices, and C is a binary matrix defined by

Chk = 0 if Zk ⊥⊥ Xh, and Chk = 1, otherwise.

4 Semi-supervised learning in noiseless IFA

The expectation maximization (EM) algorithm provides a general solution to problems involving missing

data (16). Here, we are interested in one of its most classical applications, which concerns mixture estimation

problems.

In a semi-supervised learning context, the IFA model is built from a combination of M labelled and

N − M unlabelled samples (12; 13). The maximum likelihood criterion can be decomposed into two parts

respectively corresponding, to the supervised and unsupervised learning examples; the log-likelihood crite-

rion then becomes:

L(A;X) = −N log(|det(A)|)+

M∑

i=1

S∑

s=1

Ks∑

k=1

lsik log
(
πs

kϕ
(
(A−1

xi)s, µ
s
k, νs

k

))
+

N∑

i=M+1

S∑

s=1

log

(
Ks∑

k=1

πs
kϕ
(
(A−1

xi)s, µ
s
k, νs

k

))
. (15)

Note that lsik ∈ {0, 1}Ks , lsik = 1 if sample i comes from component ck of sources s and lsik = 0

otherwise.

A generalised EM algorithm (GEM), (also noted here as Algorithm 1) can be designed to simultaneously

maximise the likelihood function with respect to all model parameters. This algorithm is therefore similar to

the EM algorithm used to estimate IFA parameters in an unsupervised setting, except for the E-step during

which the posterior probabilities tsik are only computed for the unlabelled samples. The score function g

of each latent variable density is thus given by:

gs(zis) =






−∂ log
(∑Ks

k=1 lsikπs
kϕ(zis;µ

s
k,νs

k)
)

∂zis
, if i ≤ M

−∂ log
(∑Ks

k=1 πs
kϕ(zis;µs

k,νs
k)
)

∂zis
, if i > M

=






∑Ks

k=1 lsik
(zis−µs

k)
νs

k
, if i ≤ M

∑Ks

k=1 tsik
(zis−µs

k)
νs

k
, if i > M

(16)

Note that tsik is the posterior probability that the sample i belongs to component k of the latent variable

s, given zis = (Wxi)s and the labels:

tsik =
πs

kϕ(zis; µ
s
k, νs

k)
∑Ks

k′=1 πs
k′ϕ(zis; µ

s
k′ , νs

k′)
. (17)

The proposed algorithm thus takes as inputs a centred observation matrix X (of size N × S), the

available labels : lsik ,∀i ∈ {1, . . . , M}, ∀s ∈ {1, . . . , S} and ∀k ∈ {1, . . . , Ks} and a constraints matrix (a

binary matrix of size S × S) with zeros indicating the desired independence assumptions.
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Algorithm 1 Pseudo-code for Semi-supervised IFA with GEM algorithm

Inputs:Centred observation matrix X, cluster membership for the M labelled data ls
ik

, constraints matrix C

# Random initialization of IFA parameter vector ψ(0), q = 0
while convergence test do

//Latent variable update

Z = X
(
A(q)−1

)t

//Update of the latent variable parameters (EM)

for all s ∈ {1, . . . , S}, and k ∈ {1, . . . , Ks} do

//E-Step

t
s(q)
ik

= lsik , ∀i ∈ {1, . . . , M}

t
s(q)
ik

=
π

s(q)
k

ϕ(zis; µ
s(q)
k

, ν
s(q)
k

)
∑Ks

k′=1
π

s(q)
k′ ϕ(zis; µ

s(q)
k′ , ν

s(q)
k′ )

, ∀i ∈ {M + 1, . . . , N}

end for

for all s ∈ {1, . . . , S}, and k ∈ {1, . . . , Ks} do

//M-step, Update of the parameter vector of each latent variable

π
s(q+1)
k

= 1
N

∑N
i=1 t

s(q)
ik

µ
s(q+1)
k

= 1
∑

N
i=1

t
s(q)
ik

∑N
i=1 t

s(q)
ik

zis

ν
s(q+1)
k

= 1
∑

N
i=1 t

s(q)
ik

∑N
i=1 t

s(q)
ik

(zis − µ
s(q+1)
k

)2

end for

//Update of the score matrix G (16)

G = g(q+1)(Z)
//Natural gradient (8)

∆A =
(
A(q)

) (
1
N

∑N
i=1 g

(
z
(q)
i

)
z
(q)
i

t
− I
)

//Linear search τ (gradient step)

τ∗ = Linearsearch(A(q),∆A)
//mixing matrix update
A(q+1) = A(q) + τ∗.C •∆A
//Latent variable normalization to remove scale indetermination

for all s ∈ {1, . . . , S} do

σ2
s =

∑Ks
k=1 π

s(q+1)
k

(ν
s(q+1)
k

+ µ
s(q+1)
k

2
)−

(∑Ks
k=1 π

s(q+1)
k

µ
s(q+1)
k

)2

for all k ∈ {1, . . . , Ks do

µ
s(q+1)
k

= µ
s(q+1)
k

/σs

ν
s(q+1)
k

= ν
s(q+1)
k

/σ2
s

A
(q+1)
s. = A

(q+1)
s. /σs

end for

end for

q ← q + 1
end while

Outputs:Estimated parameters : ψ̂
ml

, estimated latent variables : Ẑml

Remark 1 The convergence of the algorithm can be checked in different ways. The increment in log likeli-

hood can be monitored and a test such as:

L(ψq;X) − L(ψ(q−1);X)

|L(ψ(q−1);X)|
< ǫ, (18)

where ǫ is a precision threshold set to a small value (10−6), can be used to check the convergence. Another

convergence test can be based on differences between successive estimates of the parameters.

In the following sections, we study the performance of semi-supervised noiseless IFA with mixing

constraints using both simulated and real data sets. We compare our results with the results of classic

unsupervised IFA. The experiments were designed to illustrate the capability of the proposed approach to

enhance estimation accuracy and remove the indeterminacy commonly encountered in unsupervised IFA,

such as indeterminacy related to permutation of sources.

5 Experiments using simulated and standard real data

To better understand our approach as compared to the unsupervised IFA model, different experiments

were carried out to show the influence of incorporating prior information on estimation accuracy as well
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as on the complexity of the optimisation problem. The first set of experiments was designed to show the

impact of mixing constraints on estimation accuracy. In the second set of experiments, we investigate the

benefits of learning the IFA model when information regarding the component membership of some training

samples is introduced. We show that such information can be exploited to enhance estimation accuracy

and remove indeterminacy commonly encountered in unsupervised IFA, such as the indeterminacy due to

permutation of sources.

Several simulated data sets were built as follows. Six independent latent variables were considered with

the densities shown in Figure 2. The mixtures were then generated using the IFA model given in (1),

where each coefficient of the 6× 6 mixing matrix was randomly generated according to a standard normal

distribution. We aimed to recover six latent variables from six observed ones.

0-5 50-5 5
0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4
Density of the 1st latent component Density of the 2nd latent component 

0-5 5
0

0.1

0.2

0.3

0.4

0-5 5
0

0.5

1

1.5

2

0-5 5
0

0.4

0.2

0-5 5
0

1

2

3

Density of the 3rd  latent component 

Density of the 4th latent component Density of the 5th  latent component Density of the 6th  latent component 

Fig. 2 Simulated sources densities.

5.1 Influence of mixing constraints on estimation accuracy

We now present simulation results that highlight the practical usefulness of introducing mixing constraints

when estimating the IFA model. The mixing coefficients were randomly generated according to a standard

normal distribution, and zeros were randomly introduced in the mixing matrix; each coefficient has a prob-

ability equal to 0.3 of being null. The experiment aims to compare the results of the standard noiseless IFA

and the constrained IFA in which prior information on the mixing process is incorporated. The comparison

was made on data sets of different sizes N ∈ {100, . . . , 700} and assessed using the Amari performance

index (10). This index is a classical measure of performance in the context of ICA; it measures the closeness

of the estimated un-mixing matrix to the inverse of the mixing matrix, which is assumed to be known:

Ap(Q) =
1

S

S∑

i=1








S∑

j=1

|Qij |

max(|Qi.|)
− 1



 +




S∑

j=1

|Qji|

max(|Q.i|)
− 1







 , (19)

Q = AŴ , (20)

Note that A is the exact mixing matrix and Ŵ = Â−1 is the estimated un-mixing matrix. The lower the

Amari index is, the more accurate the latent variable estimation is.

The Amari indexes obtained for different sample sizes and for the two noiseless IFA models (with constraints

or without constraints) are presented in Figure 3. The results were averaged over 30 different training sets,

from which 25 random starting points were used for the GEM algorithm. Only the best solution according

to likelihood was kept. The results show that constrained IFA (IFAc) outperforms IFA regardless of the

sample size; the index improvement is indeed approximately 0.5.
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Fig. 3 The Amari performance index as a function of the training sample size obtained using standard IFA (IFA)
and the IFA with prior information on mixing matrix (IFAc).

5.2 Influence of labelling on estimation accuracy

The next experiment aims to illustrate the influence of the number of labelled samples on IFA model

performance. At first, three different learning strategies were compared, namely, unsupervised IFA, semi-

supervised IFA using 25% of labelled samples for three sources and semi-supervised IFA using 25% of

observations labelled over all sources. Figure 4 shows the performance measures obtained for these strategies

when 500 simulated samples are used during the learning phase. The performances were quantified using

the absolute correlation between the true sources and their estimates calculated based on a test set of

5, 000 samples. It can be seen that permutation is avoided for sources when labelled samples are provided;

correlation is close to 1 in the diagonal terms. This result is because, in the semi-supervised setting, the

likelihood is not invariant under permutations of the sources, as the numbering of the source is fixed by

the known labels. This avoids the a posteriori analysis usually employed to identify the correspondences

between data and sources. Visually, one also sees that the results are improved when semi-supervised IFA

is employed, as a better contrast in the correlation matrix is achieved.
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Fig. 4 Absolute correlation between estimated and latent variables, computed on a test set for (a) unsupervised
IFA, (b) semi-supervised IFA with 25% labelled samples for three sources (b) and (c) semi-supervised IFA with 25%
of samples labelled over all sources (c).

Figure 5 shows the Amari performance index (1) and the Pearson’s correlation cœfficient r2 between

the true latent variables and their estimates when the number of labelled samples over all sources varies

between 5% and 50%. These results were computed on 30 different learning data sets of 500 samples

each. Fifty initialisations were performed for the GEM algorithm, and only the best solution according

to likelihood was kept to avoid the problem of local maxima. From these figures, we can see the benefits

of incorporating prior knowledge on labels in the estimation of the IFA model. As expected, when the

number of labelled samples increases (i.e., to greater than 20%), the model behaves better, as both the

mean correlation and the Amari performance index are significantly improved. When there is not enough

prior information (i.e., less than 20%) provided to the model, the variability of the r2 indicator seems to

be important, which is mainly because the GEM algorithm converges to local maxima corresponding to

the permutations of sources.
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Fig. 5 Influence of the proportion of labelled samples on the estimation of the semi-supervised IFA model: Boxplot
of the Amari perfomance index and correlation cœfficient function of the percentage of labelled samples.

5.3 Influence of labelling on the likelihood landscape

The following experiment was designed to show the potential benefit of incorporating labels in terms of

simplification of the optimisation problem. Figure 6(a) displays the computation time required for the

GEM algorithm convergence as a function of the amount of labelled samples. These results were computed

on 30 different learning data sets of 500 samples each. It can be seen that the computation time (or the

number of iterations) decreases when the amount of labelled samples increases. The number of different

local maxima found by the GEM algorithm was also counted for 100 random initialisations. Two local

maxima were supposed to be distinct if the distance between the vectors containing all the parameters

was larger than 0.001. This experiment was repeated 10 times with different data sets of 500 samples each,

generated using the IFA model with the latent variable densities shown on Figure 2. The labelling concerns

all the sources. Figure 6(b) displays the number of local maxima. function of the amount of labelled samples

used in the training phase. It can be seen that the number of local maxima exponentially decreases when

the amount of labelled samples increases. This consideration has high practical interest as the problem of

local maxima is very important in the unsupervised learning context.
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Fig. 6 Influence of the proportion of labelled samples on the likelihood landscape: Boxplot of the computation time
function of the percentage of labelled samples and number of local maxima detected over 100 random initializations
for the GEM algorithm, as a function of labelled samples.

5.4 Comparison on standard real datasets

In this subsection, the proposed method is compared with alternative approaches on standard data sets.

We investigate the possibility of projecting original data onto a lower dimensional space, when using semi-

supervised IFA model with prior knowledge on the cluster membership of some training samples.

Experimental setup



10

Three real datasets of which the characteristics are given on Table 1 were considered. The first dataset

is the Crabs dataset 1 that contains different morphological measurements for crabs of different species

and sex. The second dataset is the YaleB face database (18). We chose the first 5 subjects from the

dataset and got a total of 320 face samples captured under different illumination conditions (5 subjects

× 64 illumination conditions). This dataset required a preprocessing step before using semi-supervised

dimensionality reduction techniques. A model having pixel gray levels as input variables would have 32256

variables (one for each pixel). For this reason, we first processed the data by PCA and kept only the

40 leading principal components.The third dataset deals with the recognition of Thyroid disease using 5

biological measurements (14).

name # dimensions # samples # classes

Crabs 5 200 4
YaleB 40 320 5
Thyroid 5 215 3

Table 1 Characteristics of real datasets.

In order to perform feature extraction with semi-supervised IFA, one has to specify the model structure

including the number of significant independent factors and the number of Gaussian components modeling

each latent variable density. We propose to use two strategies depending on the classification problem to

be solved. If the labels can be decomposed into different classification problems, then each latent variable

corresponds to a classification problem and the number of Gaussian components is given by the number

of subclasses within the corresponding problem. For example, the crabs dataset can be categorized into

four classes corresponding in fact to two binary classification problems concerning sex and species of the

crabs. In such a situation it’s natural to use two latent variables modeled as a mixture of two components

(male and female for the sex variable and blue and orange for the species variable). When the classification

problem cannot be decomposed in such way (as it is the case for the other two datasets), K latent variables

can be used to solve a classification problem of K classes. In this case, each one of the K latent variables

is modeled by a mixture of two components: one component encodes a sample’s membership to a specific

class, the second one encoding the remaining classes, in a one against all scenario. Finally, note that the

noiseless IFA model requires recovering as many latent variables as observed ones, therefore the remaining

latent variables are considered to be noise components and are modeled by a unique Gaussian distributions.

Results and discussion

Different learning strategies were compared, namely, principal component analysis (PCA), unsuper-

vised IFA, semi-supervised discriminant principal component analysis DPCA (30), semi-supervised IFA

using some labelled samples over all latent variables and the following supervised methods:LDA, QDA and

independent component discriminant analysis ICDA (2). The DPCA algorithm optimizes a discriminant

objective function composed of the PCA criterion and some discriminant criterion estimated on labelled

data. However, in order to be used, one has to specify two regularization coefficients (λ, η), where λ con-

trols the balancing of contributions of the two criterions (PCA and discriminant) while η is used to balance

the contribution of between-class and generalized within-class scatter matrices. When PCA or DPCA was

applied to reduce dimensionality, the nearest neighborhood (1-NN) classifier was employed for classification.

70% of data were randomly chosen for training, while the remaining data are used as a test set. The

labelled data were selected at random from the training set. The performances were quantified using the

correct classification rates according to each class calculated on a test set. The process was repeated for

30 times and the averaged results were recorded. Finally to avoid local minima, twenty random starting

points were used for the GEM algorithm and only the best solution according to the likelihood was kept.

Table 2 summarizes the results for supervised and unsupervised methods in order to supply baselines for

comparisons with the two semi-supervised approaches compared here in Table 2.

With only 40% of labelled samples, the correct detection rate for the crabs dataset reaches 91.2%, which

is close to the performance obtained by supervised approaches (94% on average). Note that unsupervised

IFA correctly classifies only 37.5% of observations. PCA-1NN gives 63.1% of correct classification rate. For

1 http://rweb.stat.umn.edu/R/library/MASS/html/crabs.html
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Unsupervised Supervised
PCA IFA LDA QDA ICDA

Crabs 63.1 37.56 94.67 93.83 92.92
YaleB 25.8 20.59 96.77 87.53 82.63

Thyroid 93.38 24.53 91.77 96.41 95.35

Table 2 Correct detection rates (%) averaged over 30 random test sets, for five dimensionality reduction methods
PCA, IFA, LDA, QDA and ICDA. For all the methods, 70% of the samples were used for training, the remaining
ones being used for testing.

Semi-supervised
% labelled samples 10 20 30 40 50 60 70

Crabs IFA 85.28 89.5 88.5 91.22 90.28 91.56 91.5
DPCA 67.56 67.61 67.65 68.49 68.45 69.63 69.27

YaleB IFA 32.47 47.47 60.07 62.57 68.19 74.10 79.27
DPCA 33.25 34.18 35.06 36.5 39.43 38.53 42.48

Thyroid IFA 74.90 86.77 87.19 88.70 89.06 89.22 89.53
DPCA 92 93.37 95.28 95.92 96.06 96.17 96.07

Table 3 Correct detection rates (%) averaged over 30 random test sets, for two semi-supervised dimensionality
reduction methods IFA and DPCA with different proportions of labelled samples (%). For all the methods, 70% of
the samples were used for training, the remaining ones being used for testing.

this dataset, DPCA does not significantly improve the performance. It gives 68.5% of correct classification

rate with 40% of labelled samples. For the DPCA method, we set λ = 1 and η = 0.1 as suggested by

the authors of the method. With 40% of labelled samples, classification performance for the YaleB dataset

reaches 62.6% with our approach and 36.5% with DPCA (20.6% in the unsupervised IFA). For this dataset,

we set λ = 1 and η = 0.1. Considering the thyroid dataset, semi-supervised IFA reaches 88.7% of correct

classification with 40% of labelled samples. For this specific dataset, PCA and DPCA models outperforms

semi-supervised IFA. For DPCA parameters, we set λ = 1 and η = 10.

These experimental results show that efficient dimensionality reduction can be achieved in some prob-

lems for which unsupervised methods fail to capture the underlying structure of the data. The amount of

labelled data required to reach a satisfactory accuracy depends on the discrimination problem complexity.

For all the problems investigated here, we found that with only 10% of labelled data semi-supervised IFA

gives much better results than standard IFA.

The aim of the next experiment is to highlight the practical interest of semi-supervised learning of the

IFA model when labelling errors are present. Considering the crab dataset with 40% of labelled samples,

the label noise was varied from 0 to 40%. Figure 7 shows the correct classification rate (%) averaged over 30

random test sets as a function of label noise. When the quantity of labelling errors provided to the model

is small (i.e., less than 20%), the proposed approach does not suffer from label noise. We can also notice

that the results are still better than those of unsupervised learning context even if the labelling error rate

increases.
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IFA when the label noise varies between 0 to 40% with 40% of labelled samples. 70% of the samples were used for
training, the remaining ones being used for testing.
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6 Fault Diagnosis in Railway Track Circuits

The application considered in this paper concerns fault diagnosis in railway track circuits. This device is

first described and the problem to be addressed is then explained. Finally, an overview of the proposed

diagnosis method is presented.

6.1 The track circuit principle

The track circuit is an essential component of the automatic train control system (15; 28). Its main function

is to detect the presence or absence of vehicle traffic within a specific section of railway track. On French

high-speed lines, the track circuit is also a fundamental component of the track and vehicle transmission

system. It uses a specific carrier frequency to transmit coded data to the train regarding, for example,

the maximum authorised speed on a given section on the basis of safety constraints. The railway track

is divided into different sections. Each one of them has a specific track circuit consisting of the following

components (see Figure 8):

– A transmitter connected to one of the two section ends, which delivers a frequency modulated alter-

nating current;

– The two rails that can be considered as a transmission line;

– At the other end of the track section, a receiver that essentially consists of a trap circuit used to avoid

the transmission of information to the neighboring section;

– Trimming capacitors connected between the two rails at constant spacing to compensate for the induc-

tive behavior of the track. Electrical tuning is then performed to limit the attenuation of the transmitted

current and improve the transmission level. The number of compensation points depends on the carrier

frequency and the length of the track section.

without defect

with 1 defect

with 2 defects 

Icc (A)

1st defect 2nd defect 

3 

0 
0 1600 (m) 

C
Icc

Transmitter Receiver rail

rail
C : Trimming 
capacitors

Icc

Trimming cell

. . . .

Track circuit

Axle

C CC
. . . .

C

Fig. 8 Diagram of a track circuit and example of a denoised inspection signal.

The rails themselves are part of the track circuit, and a train is detected when its wheels and axles

short-circuit the track. The presence of a train in a given section induces the loss of the track circuit signal

due to shorting by train wheels. The drop in the received signal below a preset threshold indicates that

the section is occupied. In order to make the transmitted information specific to each track section and to

minimize the influence of both longitudinal interference and transverse crosstalk, four frequencies are used

for adjacent and parallel track circuits. Neighbouring track circuits are also isolated electrically by using

tuned circuits (capacitor and inductance) on both the transmitter and the receiver.

The different parts of the system are subject to malfunctions that must be detected as soon as possible

in order to maintain the system at the required safety and availability levels. In the most extreme case,
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Fig. 9 Polynomial parametrization of inspection signal.

a malfunction may cause an unfortunate attenuation of the transmitted signal that leads to the stopping

of the train. The purpose of diagnosis is to inform maintainers about track circuit failures based on an

analysis of a specific current as recorded by an inspection vehicle. This paper will focus on trimming

capacitor faults that affect their capacitance. Figure 9 shows an example of the inspection signal when

the system is fault-free, while the other figures correspond to a defective 5th capacitor and defective 5th

and 9th capacitors. The aim of the diagnosis system is to detect faults in the track circuit and localise the

defective capacitor by analysing the measurement signal.

6.2 Overview of the Diagnosis Method

The track circuit can be considered as a large-scale system made up of a series of spatially related subsystems

that correspond to the trimming capacitors. A defect on one subsystem is represented by a continue value

of the capacitance parameter. The proposed method is based on the following two observations (see Figure

9):

– The inspection signal has a specific structure, which is a succession of so many arches as capacitors; an

arch can be approximated by a quadratic polynomial ax2 + bx + c;

– Each observed arch is influenced by the capacitors located upstream, that is, on the transmitter side.

The proposed method consists in extracting features from the measurement signal and building a gener-

ative model as shown in Figure 10, in which each observed variable Xis corresponds to cœfficients (bis, cis)

of the local polynomial approximating the arch located between two capacitors. Only two coefficients are

used because of continuity constraints between each polynomial, as there exists a linear relationship be-

tween the third cœfficient and the three cœfficients of the previous polynomial. The continuous latent

variable Zis of the generative model is linked the capacitance of the ith capacitor and the discrete latent

variable Yis corresponds to the categorisation of the capacitor’s state into one of the three states, namely,

fault-free, minor defect, and major defect. As there is no influence between a trimming capacitor state and

the inspection signal located upstream from it, some connections between latent and observed variables are

omitted. This information can also introduced in the model estimation by using constraints on the mixing

matrix.
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coefficients of the local polynomial

Discrete latent variables: 
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capacitances

Fig. 10 A generative model for the diagnosis of track circuits represented by a graphical model including both
continuous and discrete latent variables.
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We can clearly see that this model is closely linked to the IFA model represented in Figure 1. Considering

the diagnosis task as a blind source separation problem, the IFA model can be used to estimate the mixing

matrix A and the MOG parameters for each source density. When these parameters are estimated it’s

possible to recover the latent components (i.e., capacitances of each capacitor) and the estimated capacitor’s

states from the observed variables alone. The capacitances are estimated by computing A−1xi and the most

probable capacitor state is estimated by setting it to the source component with maximum a posteriori

probability.

Moreover, mixing constraints and component membership of some training samples may also be con-

sidered during the learning phase. The signals considered here are obtained for only one frequency (four

frequencies are used for adjacent and parallel track circuits). The experiments given at this frequency will

indeed show the number of observations that have to be labelled in order to obtain satisfactory perfor-

mance. For the other frequencies, the idea is to label afterwards only this quantity of observations since

this task is very time-consuming.

As already explained, a piecewise approach is adopted for signal representation; each arch is approx-

imated by a second degree polynomial in which two cœfficients are used as observed variables for each

node in the model of Figure 1, resulting in 2 ∗ S observed variables. Given an observation matrix, the

aim is to recover S latent variables from 2 ∗ S observed variables with the hope that they will be strongly

correlated with the variable of interest, i.e., capacitance. As prior information on the mixing matrix is

available, PCA cannot be used for preprocessing because the mixing structure would be lost. Note that

2 ∗ S latent variables are therefore extracted; S latent variable densities corresponding to capacitances

are assumed to be mixtures of three Gaussian components, one for each state of the capacitors, while the

S other variables are assumed to be noise variables and are thus modelled by simple Gaussian distributions.

Remark 2 We note that with standard IFA model, S latent variables can be recovered from 2×S observed

ones. However, in this paper, we consider the noiseless IFA model, which is a straightforward way to incor-

porate prior information and to recover sources from the data. In this case, the number of latent variables

must be equal to the number of observed variables.

6.3 Results and discussion

To assess the performance of this approach, we considered a track circuit of S = 18 subsystems (i.e.,

capacitors) and a database containing 2, 500 noised signals obtained for different values of the capacitance

of each capacitor. We note that 500 signals were used in the training phase, while an additional 2, 000

signals were employed for the test phase. The experiments aim to illustrate the influence of both the

number of labelled samples and the use of the mixing matrix constraints on the results.

The model provides two levels of interpretation corresponding to discrete and continuous latent vari-

ables. We first discuss the results for the continuous latent variables and then discuss results for the discrete

latent variables.

Three different learning settings are compared in this section :

– supervised IFA without constraints : in this setting only labelled training data are used to learn the

IFA model.

– semi-supervised IFA without constraints : in this setting labelled data are completed with the remaining

training samples (over the 500 training signals) this part of the training dataset is unlabelled.

– semi-supervised IFA with constraints : in this settings both labelled and unlabelled training data are

used and the constraints on the mixing matrix are also used.

Furthermore, the number of labelled data was varied between 0 and 500. Note that, when the number

of labelled samples is equal to zero, semi-supervised IFA without constraints boils down to the standard

IFA model (without any prior), which has indeed very poor performance in this task. Figure 10(a) shows

the mean of the absolute value of the correlation between estimated latent variables and capacitances as

a function of the number of labelled training samples when the mixing matrix is both constrained and

not constrained. When more labelled samples are used, the performances reach a more satisfactory level.

For all the settings, twenty random starting points were used for the GEM algorithm and only the best

solution according to the likelihood was kept. This figure clearly highlights the benefit of using constraints

when the amount of labelled samples is small. As expected, when the number of labelled data increases,

the mean correlation also increases to reach a maximal value of 0.84 for the constrained IFA model with
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250 labelled sampled and for the unconstrained one with 350 labelled samples. When a sufficient amount

of labelled samples is provided to the model (> 350), the prior on the mixing process does not significantly

improve the performances. It can also be noticed that unlabelled samples improve the performances of

the approach, particularly when there are few labelled data available (< 300). In such a case, the unla-

belled data are of great help in the estimation process as is it can be seen in Figure 11(a). Indeed, the

contribution of unlabelled samples can be highlighted by comparing the performance of supervised IFA to

those of semi-supervised IFA when the mixing matrix is not constrained. For example, with 250 labelled

samples, the improvement in term of absolute correlation is around 0.5. Figure 11(b) shows the boxplot

of the computation time as the proportion of labelled samples increases from 0 to 500. It can be seen that

both the mean value and the variability of the computation time decrease when the amount of labelled

samples increases.
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Fig. 11 Influence of prior information : (a) Results of semi-supervised IFA with constraints (–), without constraints
(- - ) and of supervised IFA without constraints (-. -. ) when the number of labelled samples varies between 0 and
500. (b) Boxplot of the computation time function of the number of labelled samples for semi-supervised IFA without
constraints.

In the following section, the results are analysed according to the discrete latent variables. With regards

to the three classes (i.e., fault-free ω0, minor defect ω1, and major defect ω2), the confusion matrix between

the true and the estimated classes for all capacitances observed in the data set is reported in Table 4 when

30% of samples are labelled. The results show that a good classification performance is obtained despite

some confusions between neighbourhood classes (i.e., between ω0 and ω1 and ω1 and ω2). A detection matrix

can be also computed by combining the two defect cases (i.e., ω1 ∪ ω2), which allows for an evaluation of

the usual indicators such as false alarm (FA, FA = nb(ω0,D1∪D2)/nbω0 = 1.55%), correct detection (CD,

CD = nb(ω1∪ω2,D1∪D2)/nb(ω1∪ω2) = 92.43%) and false detection (FD, FD = nb(ω0,D1∪D2)/nbD1∪D2
=

24.22%) rates.

In order to accurately quantify the effect of the proportion of labelled samples, the evolution of both

false alarm and correct detection rates is presented as a function of the number of labelled samples when

the mixing matrix is either constrained or not constrained (Figure 12). When the amount of labelled

samples provided to the model is small (i.e., less than 100), the false alarm rate is too high to exploit the

results. However, when the proportion of labelled samples is sufficiently large to obtain a weak false alarm

rate (i.e., 1.5%), the benefit of prior information on the mixing constraint and the cluster membership of

some samples is clearly visible. With only 250 labelled samples, 92% correct detection is reached. Further

improvement of the overall performance level would require a non-linear model.

ω0 ω1 ω2

D0 98.45 11.24 1.73
D1 1.33 75.25 25.18
D2 0.22 13.51 73.09

Table 4 Confusion matrix between true classes (ω0,ω1,ω2) and their estimates (D0,D1,D2), computed on a test
set of 2000 track circuits in which 30% of samples have been labelled.
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Fig. 12 Evolution of false alarm (a) and correct detection (b) rates when the number of labelled samples varies
between 0 and 500 for semi-supervised IFA with (- - ) and without constraints (–). The rates have been evaluated
on the test set.

7 Conclusions

In this paper, we have proposed a method for learning parameters of the noiseless IFA model that incorpo-

rates two kinds of prior information related to the mixing process, on the one hand, and cluster membership

of some subset of training samples, on the other hand. The main assumption of this generative model is that

the observed data have been generated by a linear mixture of latent variables assumed to be independent

and non-Gaussian. Moreover, each individual latent variable has its own distribution, which is modelled

semi-parametrically by a mixture of Gaussians (MOG). In this context, a criterion can be defined, and a

GEM algorithm dedicated to its optimisation can be subsequently described. The main limitations of the

approach concerns the hypotheses underlying the IFA model: if the mixing system is not linear or if the

sources are not independent the method is likely to fail. However, the proposed method has been success-

fully applied to both simulated data and real data related to fault diagnosis in railway track circuits. The

diagnosis system aims to recover the latent variables linked to track circuit defects using features extracted

from the inspection signal and IFA hypothesis. A comparison between standard and proposed IFA models

has been carried out to show that our approach takes advantage of prior information, thus significantly

improving estimation accuracy and removing indeterminacy associated with unsupervised IFA, such as

indeterminacy related to the permutation of sources. Further studies should be carried out to take into

account imprecise and uncertain cluster memberships, such as those yielded subjectively by human experts.

Indeed, soft labels seem to be appropriate when dealing with the imprecise knowledge that experts have

regarding the monitoring data of complex systems and to deal with the label noise problem (11).
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