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A short proof of the Gaillard-Matveev theorem based on shape invariance arguments

Y. Grandati
Equipe BioPhyStat, LCP A2MC, ICPMB, IF CNRS 2843,

Université de Lorraine-Site de Metz, 1 Bd Arago, 57078 Metz, Cedex 3, France

We propose a simple alternative proof of the Wronskian representation formula obtained by Gail-
lard and Matveev for the Darboux-Pöschl-Teller (DPT) potentials. It rests on the use of singular
Darboux-Bäcklund transformations applied to the free particle system combined to the shape in-
variance properties of the DPT.

PACS numbers:

I. INTRODUCTION

In 2002, Gaillard and Matveev established an interesting connection between the Darboux-Crum dressing formula
and the Darboux-Pöschl-Teller potentials. More precisely, they proved the following theorem:

Gaillard-Matveev’s theorem: The trigonometric Darboux-Pöschl-Teller potential (TDPT) with integer parameters
m ≥ n defined on x ∈ ]0, π/2[ by

V (x;m,n) =
m(m+ 1)

sin2 x
+
n(n+ 1)

cos2 x
, (1)

admits the following Wronskian representation

V (x;m,n) = −2 (lnW (u1, ..., um | x))
′′
, (2)

where W (u1, ..., um | x) denotes the Wronskian of the functions u1 (x) , ..., um (x) which are given by

{
uk (x) = sin(lx), if 1 ≤ l ≤ m− n

um−n+l (x) = sin((m− n+ 2l)x), if 1 ≤ l ≤ n.
(3)

Gaillard and Matveev underlined that this result traduces the existence of a chain of Darboux transformations
connecting the constant potential to the TDPT V (x;m,n). If such a construction was already envisaged in Darboux’s
seminal works1, the theorem above precises what is the correct choice of “seeds” eigenfunctions of the free Hamiltonian
to reach this last potential.
The proof given in2 and3 rests on direct evaluations of the Wronskian W (u1, ..., um | x) and is quite sophisticated

and technically involved. In this letter, we show that this result can be obtained in a shorter way directly by following
Darboux’s original idea. In a modern formulation the proof makes use of shape invariance and SUSY QM arguments
associated to singular Darboux-Bäcklund Transformations (DBT) built from excited eigenstates. If the use of singular
DBT has already been envisaged in several papers4–7, they are generally considered of less interest, although recently
proven to be crucial in the study of some two-dimensional superintegrable systems8.
We also examine the case of the Bessel potentials, which is the first example envisaged by Darboux1. This is a

confluent case which necessitate to employ Matveev’s generalized Wronskian leading then to a Wronskian version of
the Rayleigh formula for Bessel functions.

II. DARBOUX-BÄCKLUND TRANSFORMATIONS

We begin to briefly recall ther essential features of DBT and shape invariance. If ψλ(x; a) is an eigenstate of the

hamiltonian Ĥ(a) = −d2/dx2 + V (x; a), x ∈ I ⊂ R, (a ∈ R
m being a multiparameter) associated to the eigenvalue

Eλ(a) (E0(a) = 0)
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ψ′′
λ(x; a) + (Eλ(a)− V (x; a))ψλ(x; a) = 0, (4)

then the Riccati-Schrödinger (RS) function wλ(x; a) = −ψ′
λ(x; a)/ψλ(x; a) satisfies the corresponding Riccati-

Schrödinger (RS) equation9

−w′
λ(x; a) + w2

λ(x; a) = V (x; a) − Eλ(a). (5)

The class of RS equations is preserved by a specific subset of the group G of smooth SL(2,R)-valued curves
Map(R, SL(2,R)) . These transformations, called Darboux-Bäcklund Transformations (DBT), are built from any
solution wν(x; a) of the initial RS equation Eq(5) as9–11

wλ(x; a)
A(wν)
→ w

(ν)
λ (x; a) = −wν(x; a) +

Eλ(a)− Eν(a)

wν(x; a)− wλ(x; a)
, (6)

where Eλ(a) 6= Eν(a). w
(ν)
λ is then a solution of the RS equation:

−w
(ν)′
λ (x; a) +

(
w

(ν)
λ (x; a)

)2

= V (ν)(x; a)− Eλ(a), (7)

with the same energy Eλ(a) as in Eq(5) but with a modified potential

V (ν)(x; a) = V (x; a) + 2w′
ν(x; a) (8)

called an extension of V . If V (ν) is a rational function of an a priori given variable (x, tanx, sinx, coshx...) we call
it a rational extension of V .
This can be schematically summarized as




wλ

A(wν)
֌ w

(ν)
λ

V
A(wν)
֌ V (ν).

(9)

The corresponding eigenstate of Ĥ(ν)(a) = −d2/dx2 + V (ν)(x; a) can be written

ψ
(ν)
λ (x; a) = exp

(
−

∫
dxw

(ν)
λ (x; a)

)
∼

1√
Eλ (a)− Eν(a)

Â (wν)ψλ(x; a), (10)

where Â (wν) is a first order operator given by Â (wν) = d/dx+ wν(x; a). Eq(10) can still be written as

ψ
(ν)
λ (x; a) ∼

W (ψν , ψλ | x)

ψν(x; a)
, (11)

where W (y1, ..., yn | x) is the Wronskian of the functions y1, ..., yn.
From V , the DBT generates a new potential V (ν) (quasi) isospectral to the original one and its eigenfunctions are

directly obtained from those of V via Eq(10). Nevertheless, in general, wν(x; a) and then the transformed potential

V (ν)(x; a) is singular at the nodes of ψν(x; a). For instance, if Ĥ(a) admits a bound state spectrum (En, ψn)n∈N

(x; a), V (n) is regular only when n = 0, that is when ψn=0 is the ground state of Ĥ, and we recover the usual SUSY
partnership in quantum mechanics17,18. Note that A(w0) is a ”state-deleting” DBT, the spectrum of the superpartner

hamiltonian
̂̃
H = Ĥ(0) having for fundamental level and ground state E1 and ψ

(0)
1 respectively.

V is said to be a translationally shape invariant potential (TSIP) if its superpartner has the form

Ṽ (x; a) = V (0)(x; a) = V (x; a+ α) +R(a), (12)
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where α ∈ R
m.

The question of successive iterations of DBT is very natural and is at the center of the construction of the hierarchy
of hamiltonians in the usual SUSY QM scheme12. Staying at the formal level, it can be simply described by the
following generalization of Eq(9) (Nj denotes the j-uple (ν1, , ..., νj), with N1 = ν1 and Nm = (Nm−1, νm))




wλ

A(wν1)

֌ w
(ν1)
λ

A(w(N1)
ν2

)

֌ w
(N2)
λ ...

A(w
(Nm−1)
νm )
֌ w

(Nm)
λ

V
A(wν1)

֌ V (ν1)
A(w(N1)

ν2
)

֌ V (N2)...
A(w

(Nm−1)
νm )
֌ V (Nm),

(13)

where w
(Nm)
λ is a RS function associated to the eigenvalue Eλ of the potential

V (Nm)(x; a) = V (x; a) + 2

m∑

j=1

(
w(Nj−1)
νj (x; a)

)′

. (14)

The corresponding eigenfunction is given by (cf Eq(10) and Eq(11))

ψ
(Nm)
λ (x; a) = Â

(
w(Nm−1)
νm

)
ψ
(Nm−1)
λ (x; a) =

W
(
ψ
(Nm−1)
νm , ψ

(Nm−1)
λ | x

)

ψ
(Nm−1)
νm (x; a)

. (15)

or

ψ
(Nm)
λ (x; a) = Â

(
w(Nm−1)
νm

)
...Â (wν1 )ψλ(x; a). (16)

By induction, we can prove the Crum formulas13,14

{
ψ
(Nm)
λ (x; a) =W (ψν1 , ..., ψνm , ψλ | x) /W (ψν1 , ..., ψνm | x)
V (Nm)(x; a) = V (x; a)− 2 (logW (ψν1 , ..., ψνm | x))

′′
.

(17)

A succession of m SUSY QM partnerships gives rise to a hierarchy of regular potentials V (Nj), j = 1, ...,m,
associated to the m-uple Nm = (0, , ...,m− 1) , that is, to a set of seeds functions (ψ0, ..., ψm−1) constituted by the
m first bound states of the initial hamiltonian. In the case where the initial potential is a TSIP, we obtain simply

V (Nm)(x; a) = V (x; a)− 2 (logW (ψ0, ..., ψm−1 | x))′′ = V (x; a+mα) +
m−1∑

j=0

R(aj), (18)

with

ψ
(Nm)
k+m (x; a) =

W (ψ0, ..., ψm−1, ψk+m | x)

W (ψ0, ..., ψm−1 | x)
, k ≥ 0, (19)

which is the k-th excited state of V (Nm) with the associated energy Ek+m.

III. FROM THE CONSTANT POTENTIAL TO THE TDPT POTENTIAL

Following Darboux1, our starting point is the constant potential on the real line V (x) = 0, x ∈ R. The physical

energy spectrum of the corresponding hamiltonian Ĥ is constituted by an open band Ek = k2 ∈ ]0,+∞[ , k > 0,
where the two-dimensional eigenspace associated to Ek is spanned by the (unnormalized) scattering eigenstates

φoddk (x) = sin(kx)/k, φevenk (x) = cos(kx)/k. (20)
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We then build a chain of extensions of V where the first DBT we choose is based on a scattering state satisfying
the Dirichlet boundary condition at the origin, namely

ψ0 (x) = φodd1 (x) = sin (x) , w0 (x) = − cot (x) , (21)

where the choice of the value k = 1 is for pure convenience. The first extended potential is then

V (0)(x) = V (x) + 2w′
0(x) =

2

sin2 x
(22)

and the corresponding Schrödinger equation

(
−d2/dx2 + V (0)(x)

)
ψ(x) = Eψ(x). (23)

At this step, Darboux1 writes
“Pour des valeurs particulières de E, cette équation admet les solutions sin2 x, sin2 x cosx. En les employant et en

poursuivant l’application de la méthode, on parviendra successivement à des équations de la forme

(
−d2/dx2 +

n(n+ 1)

cos2 x
+
m(m+ 1)

sin2 x

)
ψ(x) = Eψ(x).”

As emphasized by Gaillard and Matveev, the argument needs to be completed and specified in particular to
determine in a systematic way what is the correct choice of the successive seeds functions to reach this equation.
First note that Darboux’s procedure does not consider the spectral properties of the built hamiltonians which can

then become more singular at each step. This is the case of V (0) which is singular at every node ξl = lπ of ψ0 (x).

The corresponding singularities are of the centrifugal barrier λ/ (x− ξl)
2 with λ > 3/4, that is, strong singularities

for which the transmission probability is zero5,15,16. This confines the particle in a single interval ]ξl, ξl+1[. If we take
for instance l = 0, the existence of the singularities in 0 and π can then be considered as equivalent to the addition
of Dirichlet boundary conditions at the origin and at x = π.

ψ
(
0+

)
= ψ

(
π−

)
= 0. (24)

These lasts act as a filter which select among all the formal eigenfunctions ψ
(0)
k only those which satisfy Eq(24).

The question is now to determine what are the appropriate values of k which allows to verify this constraint.
From a more general point of view, consider the problem to determine what is the condition to which the solution

ψλ(x) of Eq(4) is submitted in order that its image ψ
(ν)
λ via the DBT A (wν) satifies

ψλ(x0) = 0, (25)

where x0 ∈ I is a zero of ψν . In the vinicity of x0 we can write

ψµ(x) = aµ,0 + aµ,1 (x− x0) + aµ,2 (x− x0)
2
+O

(
(x− x0)

3
)
. (26)

x0 being a simple zero of ψν we have aν,0 = 0 and aν,1 6= 0, which gives

wν(x) ≃
x→x0

−1

x− x0
−
aν,2
aν,1

+O((x− x0)). (27)

Inserting these results in Eq(11), we obtain

ψ
(ν)
λ (x) ∼

x→x0

−aλ,0
x− x0

−
aν,2
aν,1

aλ,0 +O((x− x0)) (28)

and the condition (25) is satisfied iff aλ,0 = 0, that is, iff x0 is also a zero of ψλ.
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In brief, a DBT A (wν) associated to a seed function ψν having nodes on the definition interval generates an
extended hamiltonian which is singular on this interval. The restriction of this extension between two singularities
has a spectrum which consists in a filtered version of the initial hamiltonian spectrum: we only keep the levels Eλ
for which the initial eigenstates ψλ have nodes at the singular points. This point of view is equivalent to the one of
Marquez et al7.

Applying this analysis to to the system considered above, we obtain that the potential V (0) restricted to the positive
half line and subjected to the boundary conditions Eq(24) has a discrete non degenerate spectrum given by El, l ∈ N

∗,
with the corresponding eigenstates

ψ
(0)
l (x) = Â (w0)ψl (x) ∼ (l + 1) cos ((l + 1)x)− cotx sin ((l + 1)x) , (29)

where we have noted ψl (x) = φoddl+1 (x) and El = El+1. In particular, the fundamental and first excited eigenstates

are ψ
(0)
1 (x) = sin2 (x) and ψ

(0)
2 (x) = sin2 x cosx. V (0) can also be considered as the image via A (w0) of the infinite

square well

VSW (x) =

{
0, if x ∈ ]0, π[

+∞, if x /∈ ]0, π[ .
(30)

V (0) being a particular TDPT potential (1) with n = 0, m = 1, we can consider that VSW correspond to the limit
case VSW (x) = V (x; 0, 0) = lim

µ,ν→0
V (x;µ, ν).

As it is well known9,17–19, the TDPT potentials V (x;µ, ν) are second category translationally shape invariant
potentials (TSIP), the SUSY QM partner of V (x;µ, ν) being given by

Ṽ (x;µ, ν) = V (x;µ+ 1, ν + 1), (31)

for µ, ν > 0 and

{
Ṽ (x;µ, 0) = V (x;µ+ 1, 0), µ > 0

Ṽ (x; 0, ν) = V (x; 0, ν + 1), ν > 0.
(32)

Starting from V (0)(x) = V (x; 1, 0), we can build a hierarchy of p − 1 extensions of via successive SUSY QM
partnerships, that is, via a chain of p− 1 DBT based on the successive ground states. From Eq(32) and Eq(18), we
deduce that the final potential is V (x; p, 0) and can be seen as the end of a chain of p extensions which starts from
the zero potential V (x) and which is associated to the p-uple Np = (0, ..., p− 1), ie to the set of seeds eigenfunctions

(ψ0 (x) , ..., ψp−1 (x)) = (sin (x) , ..., sin (px)). Using a straightforward recurrence, we deduce that the ground state of

V (Np)(x) = V (x; p, 0) = p(p+ 1)/ sin2 x at energy Ep is

ψ(Np)
p (x) = sinp+1 x. (33)

Since is even with respect to π/2, its eigenfunctions ψ
(Np)
n are repectively symmetric (if n−p is even) or antisymmetric

(if n− p is odd) with respect to this point. An immediate consequence is that its first excited eigenstate (at energy

Ep+1) ψ
(Np)
p+1 has only one node on ]0, π[ which is always located at x = π/2 independently of p. From Eq(33) we

deduce

ψ
(Np)
p+1 (x) ∼ Â+

(
w

(Np+1)
p+1

)
ψ
(Np+1)
p+1 (x) ∼ cosx sinp+1 x. (34)

Suppose that we continue the chain of extension and build the following DBT from this first excited eigenstate.

The obtained potential is then singular and presents a pole of second order at x = π/2. ψ
(Np)
p+1 being the image of

ψp+1(x) = sin((p+ 2)x) by the chain associated to Np

ψ
(Np)
p+1 (x) = Â

(
w(Np−1)
p

)
...Â (w0)ψp+1(x), (35)
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the new chain is associated to the (n+ 1)-uple (Np, p+ 1) and the final extension is given by

V (Np,p+1)(x) =
2

cos2 x
+

(p+ 1) (p+ 2)

sin2 x
. (36)

The presence of the additional ”strong” singularity in π/2 imposes a Dirichlet boundary condition at this point. In

the spectrum of the restriction of V (Np,p+1) to ]0, π/2[, half of the levels E
(Np)
n of the preceding potential V (Np) are

eliminated. These are all those associated to “even” (with respect to π/2) eigenstates, that is to the even values of
the quantum number n− p.
The spectrum of V (Np,p+1)(x) contains then only the levels Ep+1+2(j+1), j ≥ 0, and the associated eigenstates

ψ
(Np,p+1)

p+1+2(j+1) are the images of the initial eigenstates ψp+1+2(j+1) via the chain of BDT corresponding to the (p+ 1)-

uple (Np, p+ 1) = (0, ..., p − 1, p + 1). Starting from V (Np,p+1) we can continue the chain by using standard SUSY

QM partnerships, all the extended potentials thus generated being perfectly regular on ]0, π/2[. But V (Np,p+1) is also
a TDPT

V (Np,p+1)(x) = V (x; p+ 1, 1). (37)

Consequently the shape invariance property Eq(31) implies that after q steps, we obtain as final extension

V (Np,p+1,...,p+q)(x) = V (x; p+ q, q). (38)

This shows in an explicite way what is exactly the chain of DBT which permit to build the general TDPT potential
of integer parameters as a rational (in sinx) extension of the free particle system.
The Crum formula gives then

V (x; p+ q, q) = −2 (lnW (ψ0, ..., ψp−1, ψp+1,..., ψp−1+2j , ..., ψp−1+2q | x))
′′
, (39)

or, noting l = p+ q,

V (x; l, q) =
q(q + 1)

cos2 x
+
l(l+ 1)

sin2 x

= −2 (lnW (sinx, ..., sin((l− q) x), sin ((l − q + 2)x) , ..., sin ((l − q + 2j)x) , ..., sin ((l+ q)x) | x))
′′
,(40)

which is precisely the Gaillard-Matveev result.

IV. FROM THE CONSTANT POTENTIAL TO THE BESSEL POTENTIAL AND A WRONSKIAN

RAYLEIGH FORMULA.

To generate the TDPT potentials from the constant one, we start with a DBT built from any (physical) diffusion
state of the constant potential. Nevertheless, we are not limited to this case and on a formal point of view we
can use any eigenfunction, physical or not to build this DBT. In particular, we can choose as seed eigenfunction
ψ0 (x) = x = lim

k→0
ψk (x) whose associated eigenvalue E0 = 0 is located at the lower boundary of the physical spectrum

of V . The extended potential generated by the DBT A(w0) is

V (0)(x) = 2/x2 = VB (x, 1) , (41)

that is, the first Bessel potential of integer parameter, the general form of which being VB (x; a) = a(a+ 1)/x2.

The two partner hamiltonians Ĥ and Ĥ(0)are strictly isospectral but the levels of are no more degenerated since

the strong singularity of V (0) at the origin imposes to retain in the spectrum of Ĥ only the eigenstates which satisfy
the Dirichlet boundary condition at the origin

ψ
(
0+

)
= 0. (42)
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The physical spectrum of Ĥ(0) is then

{
E

(0)
k = k2 ∈ ]0,+∞[ , k > 0

ψ
(0)
k (x) = 1

Ek−E0
Â(w0)ψk (x) = (− sin(kx) + kx cos (kx)) /k3x,

(43)

the unphysical ”fundamental” eigenfunction for k = 0 being ψ
(0)
0 (x) = x2 ∼ lim

k→0
ψ
(0)
k (x).

We can start to build a chain of isospectral potentials by successive DBT based on the ”fundamental” unphysical
eigenfunctions of zero energy which are recessive at the origin (satisfying the Dirichlet boundary conditions at the
origin). An immediate recurrence gives, for Nm = (0, ..., 0)︸ ︷︷ ︸

m times

{
ψ
(Nm)
0 (x) = xm+1

V (Nm) (x) = VB (x;m) = m(m+ 1)/x2.
(44)

All the extensions V (Nm) subject to the Dirichlet boundary condition at the origin are then strictly isospectral to
V (0) with a unique energy band ]0,+∞[. These results are naturally well-known and this constitutes the first example
of application that Darboux gave of his method in his first article on the subject20. They are also one of the key
ingredient given by Duistermaat and Grünbaum21 in the proof that every trivial monodromy potential decaying at
infinity can be considered as a rational extension of the free particle potential.
Nevertheless, the question of the Wronskian representation of the extended potentials Eq(44) and of their eigen-

functions is less trivial. Indeed, we are now in a case of confluency where all the successive DBT are built from
eigenfunctions associated to the same energy. Then we cannot use the Crum formulas to express V (Nm) and its eigen-

states ψ
(Nm)
k in terms of Wronskians of distinct ”seeds functions” (note that Â(w

(Nm)
0 ) is an annihilator for ψ

(Nm)
0

and that ψ
(Nm+1)
0 cannot be considered as the image of ψ

(Nm)
0 by the DBT A(w

(Nm)
0 )). In this case, we can however

use Matveev’s formulas22,23 and express V (Nm) and ψ
(Nm)
k in terms of ”generalized Wronskians”:

Matveev’s formulas: In the confluent case where the repeated DBT are built on eigenfunctions associated to the
same value k0 of the spectral parameter k (Nm = (k0, ..., k0)︸ ︷︷ ︸ )

m times

, we can write





V (Nm)(x) = V (x)− 2

(
lnW

(
ψκ,

∂i1ψκ
∂κi1

∣∣∣
κ=k0

, ..., ∂
im−1ψκ
∂κm−1

∣∣∣
κ=k0

| x

))′′

ψ
(Nm)
k (x) =

W

(

ψk0 ,
∂i1ψκ

∂κi1

∣

∣

∣

κ=k0

,..., ∂
im−1ψκ
∂κm−1

∣

∣

∣

∣

κ=k0

,ψk|x

)

W

(

ψk0 ,
∂i1ψκ

∂κi1

∣

∣

∣

κ=k0

,..., ∂
im−1ψκ
∂κm−1

∣

∣

∣

∣

κ=k0

|x

) ,

(45)

where the ∂ijψκ
∂κij

∣∣∣
κ=k0

, j = 0, ...,m − 1, are the m first non-zero derivative of ψκ with respect to the spectral

parameter κ at the value κ = k0. In our case, for k0 = 0, we have

ψk (x) =

∞∑

n=0

(−1)
n x2n+1

(2n+ 1)!
(k)

2n
, (46)

The sequence of the ij is given by ij = 2j, j ≥ 0 with

(
∂2jψκ (x)

∂κ2j

)

κ=0

= (−1)
j x

2j+1

2j + 1
(47)

and the Matveev formula for the potential gives

V (x;m) = 2
(
lnW

(
x, x3, ..., x2m−1 | x

))′′
. (48)
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Darboux’s result is readily recovered by using standard properties of the Wronskians26 which allow us to write

W
(
x, x3, ..., x2m−1 | x

)
= xm

(
dy

dx

)m(m−1)/2

W
(
1, y, ..., ym−1 | y

)∣∣
y=x2 = xm(m+1)/22m(m−1)/2

m−1∏

j=1

j!, (49)

that is, V (Nm)(x) = VB(x;m) = m (m+ 1) /x2.

More interesting is the case of the eigenfunctions. Since ψ
(Nm)
k is a solution of

ψ′′ (x) +

(
k2 −

m(m+ 1)

x2

)
ψ (x) = 0, (50)

satisfying the Dirichlet boundary condition at the origin, it can then be written as

ψ
(Nm)
k (x) ∼ x1/2Jm+1/2(kx) =

√
2

π
xjm(kx), (51)

where Jm+1/2 (x) and jm (x) are the usual Bessel and spherical Bessel functions24,25.
But from the second Matveev’s formula we also have

ψ
(Nm)
k (x) =

W
(
x, x3, ..., x2m−1, sin(kx)/k | x

)

W (x, x3, ..., x2m−1 | x)
. (52)

This can be considered as a Wronskian version of the Rayleigh formula for Bessel functions24. Indeed, the same
handling as before26 applied to the Wronskian at the numerator of Eq(52) gives

W
(
x, x3, ..., x2m−1, sin(kx)/k | x

)
= 2m(m+1)/2x(m+1)(m+2)/2W

(
1, y, ..., ym−1, g(y) | y

)
, (53)

where y = x2 and g(y) = sinc(kx) = sin(kx)/kx. Then

W
(
x, x3, ..., x2m−1, sin(kx)/k | x

)
= 2m(m+1)/2x(m+1)(m+2)/2



m−1∏

j=1

j!


 g(m)(y) (54)

and with Eq(49), we finally obtain

ψ
(Nm)
k (x) =

xm+1

2m

(
1

x

d

dx

)m
sin c(kx). (55)

V. CONCLUSION

In this letter we have shown how to recover in a simple way the content of the Gaillard-Matveev theorem which
provides a Wronskian representation for the TDPT potentials. This is directly achieved by combining the Crum
formula and shape invariance arguments applied to specific singular extensions of the constant potential. The same
reasoning can be adapted to obtain Wronskian representations for the eigenfunctions of the Bessel potentials. This
confluent case necessitates to employ Matveev’s generalized Wronskians, obtaining then a Wronskian version of the
Rayleigh formula.
In3, Gaillard and Matveev also consider the case of the discrete Darboux-Pöschl-Teller potentials (DDPT), for

which they give Casoratian representation formulas. A treatment of these discrete systems by the preceding approach
will be the object of further investigations.
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and their difference extensions”, J. Phys. A: Math. Gen. 42, 404009 (2009).

4 J. Casahorran, “A family of supersymmetric quantum mechanics models with singular superpotentials”, Phys. Lett. B 156,
425-428 (1991).

5 P. K. Panigrahi and U. P. Sukhatme, “Singular superpotentials in supersymmetric quantum mechanics”, Phys. Lett. A 178,
251-257 (1993).

6 M. Robnik, “Supersymmetric quantum mechanics based on higher excited states”, J. Phys. A 30, 1287-1294 (1997).
7 I. F. Marquez, J. Negro and L.M. Nieto, “Factorization method and singular hamiltonians”, J. Phys. A: Math. Gen. 31,
4115-4125 (1998).

8 I. Marquette, “Singular isotonic oscillator, supersymmetry and superintegrability”, SIGMA 8, 063 (2012).
9 Y. Grandati and A. Bérard, “Rational solutions for the Riccati-Schrödinger equations associated to translationally shape
invariant potentials”, Ann. Phys. 325, 1235-1259 (2010).
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