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Abstract.  

The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a 

growing number of research teams. This paper proposes an original technique to model the insolation time series 

based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) 

model. While ANN by its non-linear nature is effective to predict cloudy days, ARMA techniques are more 

dedicated to sunny days without cloud occurrences. Thus, three hybrids models are suggested: the first proposes 

simply to use ARMA for 6 months in spring and summer and to use an optimized ANN for the other part of the 

year; the second model is equivalent to the first but with a seasonal learning; the last model depends on the error 

occurred the previous hour. These models were used to forecast the hourly global radiation for five places in 

Mediterranean area. The forecasting performance was compared among several models: the 3 above mentioned 

models, the best ANN and ARMA for each location. In the best configuration, the coupling of ANN and ARMA 

allows an improvement of more than 1%, with a maximum in autumn (3.4%) and a minimum in winter (0.9%) 

where ANN alone is the best.  

 

Keywords: Time Series, Artificial Neural Networks, ARMA, Prediction, Global radiation, Hybrid model  
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Nomenclature 

CI (t) Clearness index at time t CSI(t) Clear sky index at time t 

X(t) 
Radiation time series at time t 

[Wh/m²] 
CSI-PC(t)

Clear sky index corrected by periodic 

coefficients at time t 

H0(t) 
Extraterrestrial solar radiation 

coefficient [Wh/m²] 
p,q Order of ARMA(p,q) 

ISC Solar constant [Wh/m²] L Lag operator 

E0 
Eccentricity of the Earth 

trajectory 
 

i Parameters of the AR model, 

iParameters of the MA model 

 Declination [rad] i 
Autocorrelation factor estimation for 

time lag i 

 Latitude [rad] ii 
Estimation of partial autocorrelations 

for time lag i 

i Hour angle [rad] R Cross-correlation estimation 

Hgh,clearsky
Clear sky global horizontal 

radiation [Wh/m²] 
endo

e
 e lags endogenous for ANN 

 
Global total atmospheric optical 

depth 
N

n
 n lags of nebulosity for ANN 

b
 

Fitting parameter of the Solis 

clear sky model 
P

ps
 ps lags of pressure for ANN 

h
 

Solar elevation angle (rad) RP
pc

 pc lags of precipitation for ANN 

nbH 
Number of effective hour  

uses in one year (h) 
 Prediction with AR and ANN model of 

the global radiation at time (t) [Wh/m²] 

 

Prediction with AR model of the 

global radiation at time (t) and with 

a training set limited to the spring 

and summer seasons [Wh/m²] 

 

Prediction with ANN model of the 

global radiation at time (t) and with a 

training set limited to the autumn and 

winter seasons [Wh/m²] 

IC(t) Interval Confidence at time t   



 4 

 

1 Introduction 

Solar radiation is one of the principal energy sources for physical, biological and chemical processes, 

occupying the most important role in many engineering applications. The process of converting sunlight to 

electricity without combustion allows to create power without pollution. It is certainly one of the most interesting 

topics in solar energy area. Thereby it is necessary to create some prediction models to use ideally this 

technology. By considering their effectiveness, it will be possible for example to identify the most optimal 

locations for developing a solar power project or to maintain the grid stability in solar and conventional power 

management system. Thus the solar energy forecasting is a process used to predict the amount of solar energy 

available in the current and near terms. The horizon we studied in this article is directly related to the renewable 

PV energy integration. Indeed, the intermittence of this renewable energy source penalizes and limits its 

incorporation on the grid. In France for example, the threshold is fixed to 30% related to the total electrical 

energy supplied. In order to modify this boundary, authorities and managers need tools allowing to estimate the 

energy deficit (associated to cloud occurrence concerning the PV part of the total renewable energy). There are 

essentially two solutions; the first is related to the storage of the previous excess energy in order to smooth the 

PV production and the second is related to a rapid switch (done by the grid manager) to a non-intermittent 

energy source (often from fossil fuel in PV case). It is essential to anticipate the global radiation decrease (or 

increase) for an ideal transition. The time delay between power up and electricity provision depends on the 

technique used. For example in the case of gas turbine, the running time is 30 minutes and about 1 hour for 

combustion engines. So it is necessary for the grid manager to know the PV energy prediction at least one hour 

ahead. Several methods have been developed by experts around the world and the mathematical formalism of 

Times Series (TS) has been often used. TS is a set of numbers that measures the status of some activity over 

time. It is the historical record of some activity, with measurements taken at equally spaced intervals with a 

consistency in the activity and the method of measurement. Some of the best predictors found in literature are 

Auto-Regressive and Moving Average (ARMA) [1-2], Bayesian inferences [3-4], Markov chains [5-6], k-

Nearest-Neighbors predictors [7-8] or artificial intelligence techniques as the Artificial Neural Network (ANN) 

[9-11]. Although these methodologies are potentially good in many areas, we observed in our previous studies 
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on global radiation prediction [12-13] that ANN and ARMA methods were the most interesting. We have also 

demonstrated that an optimized ANN with endogenous and exogenous inputs can forecast the global solar 

radiation time series with acceptable errors. However ARMA was very competitive and even outperformed ANN 

in some cases. So we decided to investigate the contribution of a hybrid model to the global radiation prediction 

problem, combing ANN and ARMA. Many authors have already studied successfully the coupling between 

ANN and different traditional computing technologies in solar energy area. Most of the time, thee technologies 

used are fuzzy logic, wavelet-based analysis, genetic algorithm, ARMA and ANN methods [10,14-17]. The main 

reason for this success seems to be the synergy of each computational property that makes them suitable for 

particular problems and not for others. In our case, we have coupled a linear process (ARMA) which describes 

well the “ordinary” solar radiation (clear sky) and a non-linear process with endogenous and exogenous input 

(ANN). Thus, we developed a hybrid ANN-ARMA method which seems more appropriate to predict the cloudy 

skies (“extraordinary sequence”). Inspired by biological neural networks the ANN methodology is able to solve 

a variety of problems in decision making, optimization, control and obviously prediction and more particularly 

time series prediction [9, 18-21]. As the univariate ARMA model, ANNs can be considered as one of the 

referenced predictors among t ime series forecasting methods.  

The paper is organized as follow: Section 2 describes the data we have used. In section 3, before proposing a 

hybrid model of ARMA and ANN techniques, we recall the need to make stationary a time series and we present 

three approaches to make stationary data. Finally to conclude this section we present preliminary results 

comparing ANN and ARMA, which led us to imagine a hybrid method. The section 4 includes final results and 

experiences conducted during this study and showing that forecasting results can significantly be improved by 

selecting ANN or ARMA models according to their performances. The section 5 concludes and suggests 

perspectives.  

2 The data  

The study proposes a new method to forecast solar radiation in Mediterranean area for the next hour (h+1 

prediction). The approach is based on the hypothesis that global solar radiation can be computed using 

endogenous and exogenous meteorological parameters. The interest of this horizon is primordial in the case of 

conventional power management to maintain the grid stability (in France and more specifically in Corsica 25% 

of the electrical consumption is related to renewable energy). 



 6 

The radiation time series (Wh.m
-2

) are measured for five seaside meteorological stations maintained by the 

French meteorological organization (Météo-France) which offersaccess to data: Ajaccio (41°5’N and 8°5’E, 4 

m.a.s.l), Bastia (42°3’N, 9°3’E, 10 m.a.s.l), Montpellier (43.6°N and 3.9°E, 2 m.a.s.l), Marseille (43.4°N and 

5.2°E, 5 m.a.s.l) and Nice (43.6°N and 7.2°E, 2 m.a.s.l). These stations are equipped with pyranometers and 

standard meteorological sensors (pressure, cloudiness, etc.). The stations are located near the sea with relief 

nearby and under a Mediterranean climate characterized by hot summers with abundant sunshine and mild, dry 

and clear winters. This specific geographical configuration makes cloudiness difficult to forecast. The data 

representing the global horizontal solar radiation were measured on an hourly basis from January 1998 to 

December 2007 (10 years). The first eight years have been used to parameterize our models and the last two 

years to test them. Note that in the presented study, only the hours between 8:00AM and 04:00PM (true solar 

time) are considered, the others hours are not interesting from the energy point of view, and it is very 

complicated to make stationary the measures of sunrise and sunset with a ratio to trend (multiplicative scheme 

detailed in the next section). Note that, although only the data for nine daytime hours are considered the time 

series used during all the experiments are continue without gaps for the rejected samples, e.g. the data pair for 

t=9 (last hour of the first day) and t=10 (first hour of the second day) is handled as any other data pair through 

the day. A first treatment allows us to clean the series of non-typical points related to sensor maintenances or 

absence of measurement. Less than 4 % of measurements were missing and replaced by the hourly average for 

the given hour. The other meteorological parameters studied are pressure (P, Pa; hourly average and gradient*), 

cloudiness (N, Octas) and rain precipitations (RP, mm). Although other weather data were available, we focused 

on these three variables that have been most significant in the experiments carried out in previous works [22-23]. 

Figure 1 shows the localization in Mediterranean area of the five weather stations studied.  

 

                                                           
* Difference between the mean pressure of hour h and hour h-1 
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3  

4  

5 Figure 1. The five studied stations marked in the Mediterranean sea: Ajaccio, Bastia , Montpellier 

, Marseille  and Nice. 

6 Time series forecasting models 

A time series [21] is a collection of time ordered observations xt, each one being recorded at a specific time t 

(period). Time series can appear in a wide set of domains such as Finance, Production or Control, just to name a 

few. In first approximation, a time series model ( x̂ t) assumes that past patterns will occur in the future. In fact a 

time series model could be used only to provide synthetic time series statistically similar to the original one. The 

modeling of the series begins with the selection of a suitable mathematical model (or class of models) for the 

data. Then, it is possible to predict future values of measurements [24]. Before proposing a hybrid ANN/ARMA 

model, we recall the need to make stationary a time series. We present three approaches to make stationary data 

available (the comparison of these methodologies will be presented in section 4 dedicated to the results). Then 

we recall the definitions and principles of ARMA and ANN techniques and their generic configuration which led 

us to build a hybrid method presented in the last sub-section.  
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6.1 The need to stationarize  

The prediction of the solar energy time series on the earth’s surface can be perturbed by the non-stationarity 

of the signal and the periodicity of the phenomena. While ARMA methods explicitly require that the data are 

stationary, there are very few references in the literature and sometimes contradictory [25-27] relating the benefit 

of making data stationary in ANN methodologies. In our case, we have used physical phenomena in an attempt 

to overcome the seasonality of the resource (determinist component). We propose three approaches to make 

stationary data available: the first is based on the Clearness Index (CI) [28], the second on a Clear Sky Index 

(CSI) [29], the third is a variant of the previous one with Periodic Coefficients (PC) [2].  

The first methodology based on the Clearness Index (CI(t)) is defined as the ratio between the total ground 

radiation (called X(t)) and extraterrestrial radiation (H0(t)) :  

  )(coscos)(cossin)(sin/)()(/)()( 00 tttEItXtHtXtCI isc     Equation 1 

The required parameters to compute CI(t) are classical incelestial mechanics [2]. The second methodology is 

based on the clear sky model with the CSI. Several methods allow to determine this model. In our case, we have 

used the simplified “Solis clear sky” [30] model based on radiative transfer calculations and the Lambert-Beer 

relation [31]. This expression of the atmospheric transmittance is valid with polychromatic radiations, however 

when dealing with global radiation, the Lambert-Beer relation is only an approximation because of the back 

scattered effects. According to Mueller et al. [30], this model remains a good fitting function of the global 

horizontal radiation. The use of this model requires fitting parameter (b), extraterrestrial radiation (H0(t)) and 

solar elevation (h). In this case, the clear sky global horizontal irradiance (Hgh,clearsky) reaching the ground is 

defined by: 

))(sin(.).()( )))((sin/(

0, thetHtH th

clearskygh

b      Equation 2 

We have validated the Solis model on a horizontal global radiation with a series of tests considering one year 

of daily solar radiation data that are not presented in this paper [10]. We obtain a relation of stationarization 

where X(t) is the global radiation measure and CSI(t) is the new time series (clear sky index):  

))(sin(.).()()( )))((sin/(

0 thetHtXtCSI thb
     Equation 3 

The third methodology is also based on CSI but adding Periodic Coefficients (CSI+PC). Indeed, experiences 

show that the CSI can be not very convincing for some hours of some days. This is especially true, when the 

shading mask changes measurements, the CSI is not effective, and do not allow to make the time series 



 9 

stationary. Like in economic research studies [2], it is possible to use the Periodic Coefficients (PC) in order to 

overcome the stationary problem like, for example, this daily single effects related to the shading mask. The 

method consists to estimate trend by moving averages and fixed coefficients. The chronological series is 

composed of n cycles (10 years), each comprising p periods (9x365 hours = 3285 hours = nbH in the following, 

the other hours of the day are taken equal to zero). Firstly, we proceed by eliminations of seasonality following a 

multiplicative scheme:  

a) Estimation of trend by calculating centered moving averages over p periods (MM(t) is the average);  

b) Calculation of CSI’(t) = CSI(t) / MM(t)  ratio; 

c) Calculation of the seasonal adjustment (from periodic coefficients; PC) of previous ratio by average on  

PC(t) =  < CSI’(t)>10 years  (the PC(t) is a series of nbH numbers); 

d) Calculation the TS seasonally corrected by the ratio: CSI *(t) = CSI(t) / PC(t) (modulo nbH).  

Thus, the new series (CSI *(t)) is without seasonality, due to these seasonal coefficients. The impact of the 

use of seasonal adjustments is apparent on the autocorrelogram (Figure 2).  

 

 

Figure 2. Autocorrelogram of the time series studied for the Ajaccio station. 1-original series ;2-CSI ;3-CSI 

and PC. 

 

We can observe the effect of stationarization on the time series. On the original series, we can see that there is a 

daily periodic component, the use of ratio to trend (CSI) decreases the links between the hours CSI(t) and CSI(t-

1), ...., CSI(t-8), that represent the stationarity within the day, but the daily seasonality is not corrected (peak at t-

9 and t-10). Only with the use of periodic coefficients (CSI+PC), we get a series made stationary. However, 

Figure 2 does not mean that the CSI+PC method is the best for our methodology and the other two methods have 

to be eliminated, more particularly in the case of ANN. Indeed, all three methods will involve different settings 

on ANNs and therefore different architectures. That is why the impact of the three methods on the quality of 

prediction is presented in section dedicated to the results.  
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6.2 The ARMA model 

The ARMA techniques [1] are reference estimators in the prediction of global radiation field. It is a stochastic 

process coupling an autoregressive component (AR) to a moving average component (MA). The model is 

usually then referred to as the generic ARMA(p,q) model where p is the order of the autoregressive part and q is 

the order of the moving average part. Finally, the combined ARMA (p,q) model is given by the following 

equation (with the lag operator L formalism, e.g. itt

i xxL  ):  

t

q

i

i

it

p

i

i

i LxL  .)1(.)1(
11  

      Equation 4 

Where, xt is a time series, φ and θ are the parameters of the autoregressive and moving average parts, L is the 

lag operator and is an error term distributed as a Gaussian white noise. The optimization of these parameters 

must be made depending on the type of the series studied. In this study, we chose to use Matlab© software. The 

criterion adopted to consider when an ARMA model "fits" to the time series is the normalized Root Mean 

Square Error (nRMSE) described by the equation 5 (x represents the measurement and y the prediction):  

)>(x)²(< / >y)²-(x< = nRMSE       Equation 5 

This measure is generated by the prediction of two years of radiation not used during the ARMA parameters 

calculation step (years 2006-2007). Residual autocorrelogram tests have been computed to verify white noise 

error terms. Table 1 shows for each of the five stations the optimal ARMA type obtained, the values of 1 and 2 

and some features as the value of the loss function and the Akaike’s Final Prediction Error (FPE). These both 

last features are often used with ARMA modeling, the first is related to the quadratic error and the second 

simulates the cross validation situation where the model is tested on another data set (this notion outperforms the 

classical nRMSE or loss function because the overfitting and the model complexity are take into account). The 

algorithm used is the Yule-Walker fitting method [1]. 

Station 
ARMA type 

(p,q) 1 2 Loss function Akaike’s FPE 

Ajaccio (1,0) 0.5435 0 0.078 0.078 

Bastia (1,0) 0.5838 0 0.077 0.077 

Montpellier (1,0) 0.5178 0 0.099 0.099 

Marseille (2,0) 0.4176 0.1350 0.090 0.090 

Nice (1,0) 0.5248 0 0.087 0.087 

Table 1. Optimal ARMA and some features obtained for each of the five stations with the centered CSI. 
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We can observe that we obtained a different ARMA(p,q) type for Marseille. However all the models 

presented are very simples: less than 2 parameters (p≤2 and q=0) are sufficient models. Moreover, we can see 

that values of the loss function and the Akaike’s FPE are equal, obviously because the ARMA model are 

constructed with few parameters and the prediction test covers a wide period. Note that, these both features are 

only done for information and their values were not used during the optimization step. The results of nRMSE are 

done in the section 4. Moreover, Table 1 shows only the result for CSI, concerning the CSI+PC and non 

processed series (original series) the results are equivalent.  

6.3 ANN for time series prediction 

Artificial neural networks (ANN) are intelligent systems that have the capacity to learn, memorize and create 

relationships among data [9]. An ANN is made up by simple processing units, the neurons, which are connected 

in a network by a large number of weighted links where the acquired knowledge is stored and over which signals 

or information can pass. We have chosen to study a particular ANN architecture called Multi Layer Perceptron 

(MLP) because it has been the most used architecture both in the renewable energy domain and in the time series 

forecasting [25, 32-34]. A well known, difficult and consuming-time task is to find the best network 

configuration and its parameters. The more common and important accepted optimization parameters are: 

number of input neurons, number of hidden layer and neurons, type of activation functions, type of 

normalization of data and the type of learning algorithm. In recent studies [12, 13, 22, 23], we have developed an 

optimization process composed by three independent and chronological subparts: 

1. Choice of the endogenous lags (time-delays between network nodes) number: past values of the 

global radiation time series are added as inputs of the ANN architecture;  

2. Choice of the exogenous lags numbers for each meteorological parameter available: cloudiness, 

pressure, precipitation;  

3. Optimization of the ANN: data normalization, hidden neurons number, parameters of the learning 

algorithm, etc.  

The  

Figure 3 presents the generic MLP architecture obtained after several experiments cited above. The obtained 

characteristics are: one hidden layer, the activation functions are hyperbolic tangent (hidden) and linear (output), 

the Levenberg-Marquardt learning algorithm (with max fail parameter equal to 5 to the validation, decrease 
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and increase respectively to 0.1 and 0.001, and goal equal to zero). Inputs are normalized on {-1,1}. The 

Matlab© training, validation and testing data sets were respectively set to 90%, 10% and 0% for the first eight 

years (1998-2005). The test has been done separately on the last two years (2006-2007). So the ratio is 72% for 

training, 8% for validation and 20% for testing.  

 

 

 

Figure 3: Generic architecture of the MLP 

 

From this generic architecture, it is now possible to start our optimization process. Thus the first step of this 

process consists in determining the number of endogenous time lags. We have used autocorrelation criteria and a 

validation test based on the student T-test [35]. Only the lags with an autocorrelation different from zero are 

considered and put as input of the network. The partial autocorrelations (PACF noted ii ), are obtained from 

theoretical autocorrelation factor (ACF i ) equation. Generally it is easier to use its recursive formula:  
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       Equation 6 

 

The second step of the optimization process consists in determining the number of exogenous input nodes 

(exogenous data are not pretreated with a stationarization process). For this purpose, the correlation measure is 

computed in order to determine which of the exogenous parameters are to consider. The correlation between two 

variables (cross-correlation) reflects the degree to which the variables are linked (considering the limitation that 

correlation criteria can only detect linear dependencies between variables). The most common correlation 

measure is the Pearson’s correlation. A correlation of +1 (or -1) means that there is a perfect positive (or 

negative) linear relationship between variables and a value of 0 implies that there is no linear correlation between 

the variables. The Pearson correlation coefficient (R) between two variables is defined from covariance and 

variance of the two variables. For a series, the estimation of R is given by: 

   


N

k

N

k kk

N

k kk yyxxyyxxR
1 1

22

1
)()())((   Equation 7 

Generally, a Pearson correlation between -0.5 and 0.5 indicates a weak or a non association between 2 variables. 

The link to the Student test (T-test) shows that the score R may be used as a statistic test to assess the 

significance of a variable. In our experiments, the limit of significance according to the T-test indicates a 

threshold very low. Indeed, the limit is below 0.1 for the sample above 1000 elements and for an alpha level of 

0.05. Obviously, this methodology is not appropriate in our case because the threshold for the coefficient R 

should be more important to select a limited number of exogenous inputs. Indeed we have chosen an R threshold 

equal to 50% for the cloudiness and 15% for other. Thereby only the higher correlation will be chosen. In the 

cloudiness case, a threshold below 50% is chosen because it is the average of the PACF in the first lag. The 

cloudiness and the global radiation are similar: when one increases, the other decreases. So to be considered, the 

exogenous data must provide additional information not already presents in the endogenous data. A threshold 

below 50% suggests that no additional information is available. Concerning exogenous parameters P and RP, 

adjustable thresholds have been tested. We have noted that a threshold more than 20% is so restrictive that no 

exogenous data would be eligible. On the other hand, the decrease of this threshold (less than 10%) is 

responsible of the increase of the nodes number, making the net too complicated. Taking into account both the 

parsimony and the efficiency for the ANN, a threshold equal to 15% represents the best compromise. 
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The last and third step of the optimization process consists in determine the number of neurons in the hidden 

layer. For this, we used a method based on the experience: the configuration giving the best results is kept for the 

following experiments. An example of the result of the overall optimization process is given in the Figure 4: ten 

hidden neurons were chosen in this case and the 95% Confidence Interval (CI95%) was computed after eight 

simulations. 

 

Figure 4. Example of optimization for the number of neurons for only one hidden layer. 

 

For example, in the case of the Ajaccio station, we obtained a MLP with 10 endogenous inputs (radiation at time 

t, t-1, t-2, …, t-9), 2 exogenous inputs (cloudiness at time t and t-1), 1 hidden layer with 15 neurons and 1 output 

neuron (irradiation at time t+1). In the following we adopt a canonical form for the ANN architecture: 

(endo
e
,N

n
,P

ps
,RP

pc
)x H x S, where e, n, ps and pc are the number of neurons in relation with endogenous data, 

cloudiness, pressure and rain precipitation. H and S are respectively the neuron number of the hidden layer and 

the output layer. Table 2 presents the canonical forms of the best exogenous and endogenous ANN architectures 

obtained for each of the five stations studied.  

 

Station Best exogenous architecture Best endogenous architecture 

Ajaccio (endo
10

,N
2
,P

1
,RP

1
)x15x1 (endo

10
)x15x1 

Bastia (endo
10

,N
2
,P

1
,RP

1
)x15x1 (endo

10
)x10x1 

Montpellier (endo
10

,N
2
,P

1
)x10x1 (endo

10
)x10x1 
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Marseille (endo
10

,N
1
, P

1
)x15x1 (endo

10
)x10x1 

Nice (endo
10

,N
1
, RP

1
)x15x1 (endo

10
)x10x1 

Table 2. Best ANN exogenous and endogenous architectures obtained for each of the five stations and with 

CSI methodology. 

 

It should be noted that the best results were obtained with the CSI methodology: all the details of the 

comparison of stationarization methodologies are presented in the Table 3 of the section 4 dedicated to the 

results.  

6.4 Building a hybrid method with ANN and ARMA  

Based on the results summarized in previous sub-sections and in our previous studies, we propose to combine 

Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) models from simple rules 

based on the analysis of hourly data series. Three models are proposed: the first proposes simply to use AR 

models for six months in spring and summer and to use an optimized ANN for the other part of the year (model 

A); the second model is equivalent to the first but with a seasonal learning (model B); the last model depends on 

the error occurred the previous hour (model C). Figure 5 shows the overall scheme of the proposed hybrid 

methods. 

 

 

Figure 5. Overall scheme of the proposed hybrid methods. 
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The first model studied, A, is deterministic: six months of the year are predicted with an AR and the other six 

months with an ANN with endogenous and exogenous inputs. We can summarize this method with the following 

rule:  

  Equation 8 

The second model, B, is equivalent to the first, but learning is seasonal: the learning of ANN is done only in 

autumn and winter and for the AR only in the spring and summer. We can summarize this method with the 

following rule:  

 Equation 9 

The third model, denoted Model C, is a stochastic model which depends on the prediction error at the 

previous hour. We can summarize this method with the following rule where is the residue of the prediction: 

 Equation 10 

 

All these rules have been elaborated by the observations of the results obtained with the mono-predictors 

ANN and ARMA. Furthermore the next section presents results obtained using the three hybrid models on the 

five stations studied.  

7 Experiments and results  

This section includes all the results and experiments conducted during this study. First, we present the 

influence of the three stationarization methodologies on ANN and ARMA configurations. Then, we compare 

performance of ANNs and ARMA models against a persistence model (e.g. persistence of irradiance; the 

irradiance at time t-1 is equal to irradiance at time t), a clear sky model and a simple average through a basic 

method of ranking. The result of this ranking has formed the basis of the hybrid method presented in the 

previous section. Finally, we present results obtained with hybrid models on the 5 stations studied.  

7.1 Influence of the time series stationarity on ANN configuration  

In this sub-section, we present and compare the influence of the three methodologies presented in section 3.1 

on an ANN predictor. As ARMA methods require explicitly that data have to be stationary and many works have 
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already treated this problem [1-2], we do not present the influence of the stationarization methodologies on 

ARMA methods. However, it should be noted that the best results for ARMA models were obtained with the 

CSI methodology but results obtained with CSI or CSI+PC were quite similar.  

On the Table 3, the performances of the three stationarization methodologies are compared against an ANN 

trained with a non-stationary time series: CV is the coefficient of variation (dispersion rate; ratio between the 

standard deviation and the mean) and the error is represented by the nRMSE (defined from expectation value E 

by   ; best nRMSE are in bold). We can see that the CSI methodology 

minimizes the prediction error for the five cities studied, followed by the CI methodology, the CSI+PC 

methodology and the non-stationary time series. In fact, contrary to an ARMA predictor, stationarity does not 

affect much the prediction error (gap ~ 0.5% of nRMSE). In addition, the interpretation of CV is difficult: we see 

that if its value is high, the prediction error is high, but the opposite is not observed on this table. 

Station 

Lat/Long/Alt 
Stationarity  ANN Architecture CV nRMSE 

Ajaccio 

41.5°/8.5°/4m 

none (endo
10

,N
2
)x15x1 0.61 0.171 

CI (endo
10

,N
3
,P

1
)x15x1 0.44 0.169 

CSI (endo
10

,N
2
,P

1
,RP

1
)x15x1 0.46 0.167 

CSI + PC (endo
1
,N

2
,P

1
,RP

1
)x5x1 0.38 0.172 

Bastia 

42.3°/9.3°/10m 

none (endo
10

,N
2
)x10x1 0.64 0.201 

CI (endo
10

,N
3
)x15x1 0.46 0.199 

CSI (endo
10

,N
2
)x10x1 0.48 0.196 

CSI + PC (endo
1
,N

2
)x3x1 0.44 0.200 

Montpellier 

43.6°/3.9°/2m 

none (endo
10

,N
1
)x15x1 0.63 0.170 

CI (endo
10

,N
3
)x15x1 0.45 0.165 

CSI (endo
10

,N
2
,P

1
)x10x1

 
0.49 0.164 

CSI + PC (endo
1
,N

2
,P

1
)x5x1 0.40 0.168 

Marseille 

43.4°/5.2°/5m 

none (endo
10

,N
1
)x10x1 0.60 0.155 

CI (endo
10

,N
2
,P

1
)x15x1 0.42 0.149 

CSI (endo
10

,N
1
, P

1
)x15x1 0.45 0.149 

CSI + PC (endo
1
,N

1
,P

1
)x8x1 0.35 0.151 

Nice 

43.6°/7.2°/2m 

none (endo
10

, N
1
)x15x1 0.63 0.169 

CI (endo
10

,N
2
)x10x1 0.44 0.169 

CSI (endo
10

,N
1
, RP

1
)x15x1 0.46 0.166 

CSI + PC (endo
1
,N

1
, RP

1
)x3x1 0.38 0.172 

Table 3. Comparison of CI, CSI and CSI + PC on the forecasting against a non-stationary time series. 
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Furthermore we can see that CSI+PC methodology makes neural networks architecture much simpler: only a 

single neuron endogenous and a maximum of 8 neurons in the hidden layer. However the prediction errors are 

not improved and it seems that there is no need to improve the CSI methodology with PC in this context of 

prediction. In the ARMA methodology the results obtained with CSI and CSI+PC are also similar. In the next 

only the CSI methodology has been used for ANN or ARMA.  

7.2 Comparison of forecasting models ANN and ARMA 

In this sub-section, we compare the performances of ANNs, ARMA, persistence and clear sky models and a 

simple average. The interested reader can find more details on these models in [22]. Concerning the ANN 

models, we have studied a MLP with only endogenous variables and a MLP with endogenous and exogenous 

variables. In ARMA, we used the Yule Walker algorithm derived from the analysis of correlograms available on 

the Matlab© software. For ARMA and ANN, the data are made stationary with the use of CSI methodology as 

proposed in section 4.1. 

For each of these models, we chose to consider annual results but also seasonal result in order to have a better 

comprehension of the phenomena. Thus, it can be seen in Table 4 that there is no interest to use methods like 

ANN with endogenous and exogenous variables in summer. Indeed, because there are rarely clouds during this 

period, a linear process like ARMA seems sufficient. We can therefore conclude that the use of ANN with 

exogenous variables is only interesting during short periods where a lot of clouds on the sky are observed 

(essentially in autumn and winter). However Bastia, Montpellier and Nice are the city where the annual error is 

minimized mainly by the use of a simple auto-regression (respectively nRMSE=17.7%, nRMSE=16% and 

nRMSE=16.2%).  

 

Station  Model Annual Winter Spring Summer Autunm 

Ajaccio 

Persistence 35.3 55.9 32.2 32.3 36.9 

Clear Sky 41.8 66.9 39.4 37.9 43.2 

Average 32.5 51.3 29.9 28.6 33.9 

ARMA 16.9 25.7 15.9 14.4 19.3 

ANN endo  17.1 23.8 16.3 15.8 18.3 

ANN exo  16.7 23.8 16.3 15.8 17.6 

Bastia 

Persistence 39.6 50.2 41,9 34,5 37,7 

Clear Sky 45,9 62,4 48,7 38,9 42,5 

Average 35,7 48,1 37,3 29,8 36,5 

ARMA 17.7 23.4 18.2 15.7 18.8 

ANN endo  19.4 22.5 21.5 17.2 19.9 
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ANN exo  19.6 22.4 21.4 17.6 20.1 

Montpellier 

Persistence 37.3 44.1 36.0 30.5 47.2 

Clear Sky 43.2 55.9 36.8 34.0 61.3 

Average 34.9 41.9 32.6 27.9 47.8 

ARMA 16.0 20.1 14.4 13.3 20.5 

ANN endo  16.5 18.6 14.6 15.0 18.3 

ANN exo  16.4 18.3 14.7 15.1 17.8 

Marseille 

Persistence 32.7 40.1 31.9 23.5 43.7 

Clear Sky 40.0 56.0 38.2 31.6 49.7 

Average 29.9 39.9 28.9 21.3 39.7 

ARMA 15.4 21.4 14.8 12.5 19.7 

ANN endo  15.2 18.3 14.5 13.3 18.1 

ANN exo  14.9 18.3 14.4 12.8 17.0 

Nice 

Persistence 35.2 41.6 39.4 29.2 41.8 

Clear Sky 40.8 51.5 41.7 33.2 48.3 

Average 31.7 40.2 33.6 27.1 38.4 

ARMA 16.2 20.6 16.2 14.4 18.6 

ANN endo  16.8 18.5 18.3 16.7 15.9 

ANN exo  16.6 18.2 17.7 16.3 15.0 

 

Table 4. Performance comparison (nRMSE in % and in bold for the best configurations) of ANNs, ARMA 

models, persistence model, a clear sky model and a simple average for the hour and the day considered. 

 

We see also, that no predictor seems unanimous but that persistence, clear sky simulation and average 

methods are the worst predictors (nRMSE close to or greater than 30% for all the studied towns). It is noted that 

rules to establish what the best predictor is, appears to depend on the season. To identify these rules, we have 

developed a simple method of ranking in which the best predictor has the smallest nRMSE. Thus, we have 

assigned a point rating system: 1 point for the best predictor, 2 points for the second, ... and 6 points for the 

worst. We hypothesized that the prediction error produces the same damage for a network manager regardless of 

the season. The interest to weight prediction methods according to the seasons will be broached as perspectives 

in the conclusion section. The operation was repeated for the five stations and for each season (see table 5). The 

best predictor is the one that has the fewest score: minimum is 5 points and maximum is 30 points. 

 

Models  Winter Spring Summer Autumn 

ANN exo 1
st
 (5 pts) 2

nd
 (10 pts)  2

nd
 (12 pts) 1

st
 (7 pts) 

ANN endo 2
nd

 (8 pts) 3
rd

 (12 pts) 2
nd

 (12 pts) 2
nd

 (10 pts) 

ARMA  3
rd

 (15 pts) 1
st
 (7 pts) 1

st
 (5 pts) 3

rd
 (13 pts) 

Average 4
th

 (20 pts) 4
th

 (20 pts) 4
th

 (20 pts) 4
th

 (20 pts) 

Persistence 5
th

 (25 pts) 5
th

 (25 pts) 5
th

 (25 pts) 5
th

 (25 pts) 

Clear Sky 6
th

 (30 pts) 6
th

 (30 pts) 6
th

 (30 pts) 6
th

 (30 pts) 
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Table 5. Ranking and scores obtained by the predictors depending on the season. 

  

The clear sky model, the persistence and the average are for the 5 city ranked last. During seasons of high cloud 

cover (winter and autumn), an ANN with exogenous variables (meteorological data) gives the best results. 

Concerning the two other seasons where clouds are rarer (spring and summer), the ARMA model is the most 

efficient. These results encouraged us to develop a hybrid model based on the analysis of hourly data series and 

seasons presented in previous section and whose results are presented below.  

7.3 Results of the hybrid models 

Table 6 shows the results obtained by the 3 hybrid models (A, B, C) on the 5 stations studied. The comparison 

of performances is computed in % of nRMSE annually and for each season.  

 

 

Station Model Annual Winter Spring Summer Autumn 

Ajaccio 

A  15.9 23.8 15.9 14.4 17.6 

B  16.4 24.3 15.9 14.4 17.6 

C  

2157 ARMA / 4413 ANN 
15.3 21.1 15.0 14.3 16.0 

Bastia 

A  17.7 23.4 18.2 15.7 18.8 

B  17.9 22.4 18.2 15.7 20.0 

C  

2675 ARMA / 3895 ANN 
17.7 21.3 19.0 16.1 17.9 

Montpellier 

A  15.5 18.3 14.4 13.3 17.8 

B  15.7 19.1 14.5 13.4 18.4 

C  

2293 ARMA / 4277 ANN 
15.1 17.2 13.5 13.4 17.1 

Marseille 

A  14.7 18.3 14.8 12.5 17.0 

B  15.0 19.4 14.8 12.4 18.7 

C 

2000 ARMA / 4570 ANN 
13.7 17.5 13.2 11.5 16.0 

Nice 

A  15.3 18.2 16.2 14.4 15.0 

B  15.7 19.5 16.2 14.4 16.2 

C  

2077 ARMA / 4493 ANN 
15.1 16.2 16.3 14.9 14.2 

 

Table 6. Seasonal performance comparison (nRMSE in % and in bold for the best results) of hybrid models. 
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We can see that the results have improved significantly through the use of hybrid methods A and C. Method 

B, is certainly as effective, but the truncating data learning penalizes this method. It would certainly try it with a 

quantity of data more consistent to really test it. Considering annual results, method C is the most effective for 

the five stations, the distribution of predictions is 1/3 for ARMA and 2/3 for ANN. We see that this method 

saves more than 1% related to the non-hybrid methods (see table 3). The figure 6 shows the average gain of 

nRMSE related to the use of the hybrid (model C) compared to the best ANN (dark gray bar) and AR (gray bar) 

for all the station. The maximum is in autumn (3.4% better than ARMA) and the minimum is in winter, when the 

hybrid method is less interesting than an ANN method (0.9% worse than ANN). With AR in summer, this is the 

only case where the hybrid method is less interesting than conventional forecaster.  

 

Figure 6. Average gain of nRMSE related to the use of the hybrid model C compared to ANN and AR. 

 

The Figure 7 (on the left) presents the comparison between measures and forecast with Model C for the 

hourly global horizontal radiation (curve type y=x). We see quite clearly that the model C is very effective to 

predict global radiation: the coefficient of determination between the simulated data and the measurements is 

about 0.95.  
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Figure 7. Comparison between measures and forecasts with Model C (left), and reliability of the 

prediction for the hybrid model C (right, see text for description levels). 

 

To characterize the quality of hybrid model we have developed a confidence parameter. Each prediction 

calculated from the hybrid model is linked to a reliability index t): 100% represents the fact that we are sure of 

the prediction value, 0% corresponds to an error higher than the real radiation value. This computing is done 

during the training step of the MLP. During the prediction process, the simulator gives for each hour two 

parameters: the h+1 horizon global radiation and the confidence we can give to this value. The computing 

method of the reliability index is represented by the Eq. 9 (the negative values which correspond to a prediction 

error of 100% are replaced by 0, e.g. if )()(ˆ txtx   > )(tx , then )(t = 0, else )(t = equation 11). An 

average done on the training sample allows to transform this series to a new series of efficiency, for each hour 

and each day of the year, of 3285 elements (3285=365x9). 
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 )(/)()(ˆ1.100)( txtxtxt         Equation 11 

 

Figure 7 (on the right) presents the reliability of the prediction for the hybrid model C: the 3500 hours on the 

axis corresponds to the year of prediction, the green line is the average, the red line is the trend and the blue lines 

are the average +/- standard error. We see on this figure that the maximum one-year trend of reliability is 

situated in the summer, and it exceeds 80%. In winter, it drops below 70%. The average annual reliability is 

about 80% but some predictions are accompanied by very low reliability, especially in winter (<30%).  

Figure 8 presents also the comparison between the prediction (red crosses) and the measures (black line) for a 

period between June and July 2006. The confidence interval (average ± IC) is computed from the reliability 

index according to Eq. 12: 

 1)().100/1().(ˆ)(  ttxtIC         Equation 12 

This transformation is a renormalization of the reliability: thus, t= 100% corresponds to a IC(t) = 0, and 

t= 0% correspond to a IC(t) = )(ˆ tx . The IC represents the average error computed for each hour of the year 

during the training step of the MLP. This parameter is so computed through a height years interval that is an 

important historical sample making the average exploitation possible. The IC used is not ideal, but allows to 

quantify the hours of the year where usually the prediction is good or on the contrary bad. This information is 

very important for a grid manager who needs predictions. Note that this parameter (IC) should not be confused 

with the "conventional" Confidence Interval (called CI) used in statistics and estimated from the standard 

deviation, the confidence level and the sample size.  

The first part of the windows (Figure 8) is typically the profile of sunny days without cloud cover (hours 1 to 

37). The model is very efficient. Some hours have very low values of radiation (< 400 Wh/m²) but the forecast 

with the hybrid methodology is very powerful. Concerning the central and last parts of the plot where the 

profiles seem indicate cloudy days (hours > 37), we can see that the model is again reliable. Note that in general 

the prediction ± IC includes correctly the measure but sometimes not at all (hour 43 or 41). This is the 

consequence of the IC computing methodology which is based on an average prediction error (during MLP 

training): the extraordinary cloud occurrences (in time or opacity) are not included in the model.  
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8  

9 Figure 8. Comparison between the prediction (red crosses with confidence intervals) and the measures 

(black line). The corresponding reliability of each measure is done on the upper curve (period between the 

200
th

 and the 211
th

 day (June-July 2006). 

10 Conclusion 

In this paper, we proposed to combine Artificial Neural Network (ANN) and Auto-Regressive and Moving 

Average (ARMA) models from simple rules based on the analysis of hourly data series. We used data taken from 

five meteorological ground stations located in Mediterranean area. Before to find the best ARMA and ANN 

configurations, three approaches to make stationary the time series have been presented and compared. A 

methodology based on the clear sky index has been selected because it minimized the prediction error for the 

five cities studied. From these data made stationary, we developed best ARMA and ANN configurations from 

which three hybrid models have been proposed and driven: the first model proposes simply to use ARMA for six 

months in spring and summer and to use an optimized ANN for the other part of the year; the second model is 

equivalent to the first but with a seasonal learning; the last model depends on the error occurred the previous 

hour. These models were used to forecast time series data of hourly global horizontal radiation for five places in 

Mediterranean area. The forecasting performance was compared among several models: the three above 
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mentioned models, the best ANN and ARMA for each location. In the best configuration, the coupling of ANN 

and ARMA allows an improvement of more than 1%, with a maximum in autumn (3.4%) and a minimum in 

winter where an ANN alone is the best (0.9%). These results show clearly that the complexity of the extended 

methodology presented here, does not yet allow a meaningful gain. Ideally, we should ask each grid manager 

from when the gain is significant (policy energy and installed capacities of available PV farms should for 

example be taken into account). If this gain is about 3%, the use of hybrid method (like presented here) is 

certainly irrelevant, the alone ANN method would be more appropriated. On the contrary, for a gain widely 

upper than 3% the hybrid method would be relevant. All this shows the limits of forecast procedures purely 

based on onsite dataIn future studies, it would be very relevant to add to our optimized ANN new data as 

geographical features or forecast meteorological data, derived from the ALADIN model for example. In 

addition, the study of an approach for forecasting 24-h of solar irradiance using several MLP connected has to be 

done. Finally, as noted in sub-section 4.2, it should be interesting to study the possible contribution of Multiple 

Criteria Decision Aiding (MCDA) methods [36] in order to rank several prediction methods. The use of these 

methods in the solar energy domain is not new [37-38] and they can be a scientific basis for the definition of 

decision criteria that have to be elaborated with energy managers.  
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Figure 1. The five studied stations marked in the Mediterranean sea: Ajaccio, Bastia, Montpellier , Marseille  and 
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Figure 2. Autocorrelogram of the time series studied for the Ajaccio station. 1-original series; 2-CSI; 3-CSI and 

PC. 

Figure 3. Generic architecture of the MLP 

Figure 4. Example of optimization for the number of neurons for only one hidden layer. 

Figure 5. Overall scheme of the proposed hybrid method. 

Figure 6. Average gain of nRMSE related to the use of the hybrid model C compared to ANN and AR. 

Figure 7. Comparison between measures and forecasts with Model C (left), and reliability of the prediction for 

the hybrid model C (right). 

Figure 8. Comparison between the prediction (red stars with confidence interval) and the measures (black line). 

The corresponding reliability of each measure is done on the upper curve (period between the 200th 

and the 211th day (June-July 2006). 

 

 

List of tables 

 

Nomenclature 

Table 1. Optimal ARMA and some features obtained for each of the five stations with the centered CSI. 

Table 2. Best ANN exogenous and endogenous architectures obtained for each of the five stations and with CSI 

methodology. 

Table 3. Comparison of CI, CSI and CSI with PC on the forecasting against a non-stationary time series. 

Table 4. Performance comparison (nRMSE in % and in bold for the best configurations) of ANNs, ARMA 

models, persistence model, a clear sky model and a simple average for the hour and the day 

considered. 

Table 5. Ranking and scores obtained by the predictors depending on the season. 

Table 6. Seasonal performance comparison (nRMSE in % and in bold for the best results) of hybrid models 

 


