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ON ESTIMATION OF REGULARITY FOR GAUSSIAN PROCESSES

DELPHINE BLANKE AND CÉLINE VIAL

Abstract. We consider a real Gaussian process X with unknown smoothness r0 where
r0 is a nonnegative integer and the mean-square derivative X(r0) is supposed to be locally
stationary of index β0. From n + 1 equidistant observations, we propose and study an
estimator of (r0, β0) based on results for quadratic variations of the underlying process.
Various numerical studies of these estimators derive their properties for finite sample size
and different types of processes, and are also completed by two examples of application to
real data.

1. Introduction

For a real stationary and non differentiable Gaussian process with covariance K(s, t) =

K(|t− s| , 0) such that K(t, 0) = K(0, 0) − A |t|2β0 + o(|t|2β0) as |t| → 0, the parameter
β0, 0 < β0 < 1, is closely related to the fractal dimension of the sample paths. This
relationship is developed in particular in the works of Adler (1981) and Taylor and Taylor
(1991) and it gave rise to an important literature around the estimation of β0. We refer in
particular to Constantine and Hall (1994), Istas and Lang (1997) and Kent and Wood (1997)
for estimators based on quadratic variations and their extensions. Still in this stationary
Gaussian framework, Chan et al. (1995) introduce a periodogram-type estimator whereas
Feuerverger et al. (1994) use the number of level crossings.

In this paper, our aim consists in the estimation of the couple (r0, β0) when the Gaussian
process is supposed to be r0-times differentiable with a locally stationary r0-th derivative of
regularity β0. Thus, we generalise the previous works in two ways:

(1) the process has an unknown regularity r0 to be estimated as well as the smoothness
β0,

(2) the process is not supposed to be stationary not even with stationary increments.

Our methodology is based both on the estimator of r0, say r̂0, proposed by Blanke and
Vial (2011) and on Kent and Wood (1997) for the estimation of β0. we give a new result
concerning the mean square error of r̂0 as well as almost sure rates of convergence of the

global regularity index Ĥ = 2(r̂0 + β̂0). As an application, we provide plugged-estimators,
based on lagrange piecewise interpolation, which are optimal in rate, for the relative problems
of integration and approximation of a discretised sample path.
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2 D. BLANKE AND C. VIAL

2. Methodology

2.1. Framework. Let X = {X(t), t ∈ [0, T ]} be a real Gaussian process observed at the
(n+1) equally spaced times iδn, i = 0, . . . , n for some positive sequence δn such that δn → 0
and nδn → T > 0. This process is supposed to satisfy the following assumptions.

Assumption 2.1 (A2.1). X has r0, r0 ∈ N0, continuous derivatives in quadratic mean with
X(r0) supposed to be locally stationary:

(2.1) lim
h→0

sup
s,t∈[0,T ],|s−t|≤h,s 6=t

∣∣∣∣∣
E
(
X(r0)(s)−X(r0)(t)

)2

|s− t|2β0
− d0(t)

∣∣∣∣∣ = 0

where β0 ∈]0, 1[ and d0 is a positive continuous function on [0, T ].

Here, local stationarity makes reference to Berman (1974)’s meaning. Assumption A2.1
implies in particular that the covariance function K(s, t) = Cov (X(s), X(t)) is also contin-
uously differentiable with K(r,r)(s, t) = Cov (X(r)(s), X(r)(t)), for r = 0, . . . , r0. Also, the
mean of the process µ(t) := EX(t) is a r0-times continuously differentiable function with
EX(r)(t) = µ(r)(t), r = 0, . . . , r0.

In this paper, we propose and study an estimator of the Hölder regularity index H =

2(r0 + β0), say Ĥ . To this aim, we need the following additional condition:

Assumption 2.2 (A2.2(p)). For either p = 1 or p = 2, K(r0+p,r0+p)(s, t) exists on [0, T ]2
∖
{s =

t} and satisfies for some Dp > 0:
∣∣K(r0+p,r0+p)(s, t)

∣∣ ≤ Dp |s− t|−(2p−2β0) .

Moreover, we suppose that the mean µ(·) admits a continuous derivative of order (r0 +1) on
[0, T ].

2.2. Specific examples. A first important example of process meeting our conditions is
the r0-fold integrated fractional Brownian motion. For r0 = 0, X = Wβ0 is the fractional

Brownian motion (i.e. with covariance K(s, t) = 1
2
(s2β0 + t2β0 − |s− t|2β0)). For r0 ≥ 1, we

have

X(t) =

∫ t

0

∫ ur0

0

∫ ur0−1

0

· · ·
∫ u2

0

Wβ0(u1) du1 du2· · · dur0, r0 ≥ 1

One gets d0(t) ≡ 1, and for β0 6= 1
2
, D1 = β0 |2β0 − 1| whileD2 = β0 |2β0 − 1| . . . |2β0 − 3|. For

special case of the Wiener process (β0 =
1
2
), we have K(r0+1,r0+1)(s, t) ≡ 0 on [0, 1]2

∖
{s = t}.

Another examples of processes may be found among those satisfying the conditions of
Sacks and Ylvisaker of order r0 (r0 ≥ 0). For Ω+ = {(s, t) ∈]0, 1[2: s > t} and Ω− = {(s, t) ∈
]0, 1[2: s < t}:

(a) K ∈ Cr0,r0([0, 1]2), on Ω+ ∪ Ω− L = K(r0,r0) has partial derivatives up to order p,
with either p = 1 or p = 2, continuous and continuously extendible to Ω+ and Ω− by
continuity.

(b) L
(1,0)
− (s, s)− L

(1,0)
+ (s, s) = α > 0, s ∈ [0, 1] where L

(1,0)
j is the extension of L(1,0) over

[0, 1]2, continuous on Ωj and on [0, 1]2\Ωj with j ∈ {−,+}.
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In this case, β0 = 1/2 with d0(t) ≡ α and these processes satisfy A 2.2(p) for p = 1, 2.

Another class of processes are stationary ones with spectral density ϕ such that: ϕ(λ) =
c0(1 + c1λ

2)−γ where γ > 1
2
, c0 > 0, c1 > 0. Then for γ − 1

2
6∈ N, one gets r0 =

[
γ − 1

2

]
and

β0 = γ − 1
2
− r0, and A 2.2(p), p = 1, 2 is satisfied at least for γ ∈ N. A typical process is

the Ornstein-Uhlenbeck one, with ϕ(λ) = 1
2π
(θ2+λ2)−1 and K(s, t) = (2θ)−1 exp(−θ |s− t|),

so γ = 1, r0 = 0, β0 = 1
2
and d0(t) ≡ 1. Following Lasinger (1993), one may construct

stationary processes with r0 ≥ 1 by r0-fold repeated integration.

Since all previous processes are stationary or with stationary increments, the function d0
is reduced to a constant. Of course, cases with non constant d0(·) may be also obtained. In
particular, we have processes with a smooth enough trend belong to our general class :

Lemma 2.1. Let Y be a zero mean process with given regularity (r0, β0) and asymptotic
function d0(t) ≡ Cr0,β0. For a positive function a ∈ Cr0+p([0, 1]) and m ∈ Cr0+p([0, 1])
(p = 1, 2), if X(t) = a(t)Y (t) + m(t), then X has regularity (r0, β0) with asymptotical
function Dr0,β0(t) = a2(t)Cr0,β0 and X satisfies A2.2(p).

2.3. Estimation of β0. Kent and Wood (1997) and Constantine and Hall (1994) use “di-
lation” quadratic variations to estimate the fractal index for stationary Gaussian process, not
differentiable in quadratic mean. Following this methodology, we define a global estimator
of H = 2(r0+β0) which is based on dilated quadratic variations and a consistent preliminary
estimator of r0.

First for integers r, r such that r ≥ r ≥ 1 and u ∈ N
∗, we consider the u-dilated quadratic

variations of X of order r:

(2.2) ∆
(u)
r,k X =

r∑

i=0

ai,rX((iu+ k)δn), k = 0, . . . , n− ur

where order r of the sequence (ai,r) means:

r∑

i=0

ai,r = 0,
r∑

i=1

ai,ri
r 6= 0, and if r ≥ 2,

r∑

i=1

ai,ri
p = 0 for p = 1, . . . , r − 1.

Also, for r = r0, r0 + 1, we assume that:

r∑

i=0

r∑

j=0

ai,raj,r |i− j|H 6= 0.

Note that, in the case where u = 1 and δn = n−1, ∆
(1)
r represents the classical finite

difference of order r. A typical example of sequence (aj,r) is given by aj,r =
(
r
j

)
(−1)r−j, with

r = r, for which one obtains, in particular,
r∑

j=0

aj,rj
r = r!. Another examples are furnished

by Daubechies wavelets D(2p) of order r = p with vanishing first moments of order 0 to
p− 1, and such that r + 1 = 2p (see Daubechies, 1992).
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Asymptotic properties of ∆
(u)
r,k X are important in the comprehension of our considered

estimators. From now on, we set:
(
∆

(u)
r X

)2
=

∑nr

k=0

(
∆

(u)
r,k X

)2

nr + 1
with nr := n− ur.

Proposition 2.1. Under Assumptions A2.1, one obtains:
(i) for r = r0 + 1, r0 + 2:

δ−H
n E

( (
∆

(u)
r X

)2 ) −−−→
n→∞

uHℓ(r, r0, β0)

where ℓ(r, 0, β0) = −1

2

r∑

i,j=0

ai,raj,r |i− j|H 1

T

∫ T

0

d0(t) dt while if r0 ≥ 1,

(2.3) ℓ(r, r0, β0) =
(−1)r0+1T−1

∫ T

0
d0(t) dt

2(2β0 + 2r0) · · · (2β0 + 1)

r∑

i,j=0

ai,raj,r |i− j|H .

(ii) for r0 ≥ 1 and r = 1, . . . , r0:

(2.4) δ−2r
n E

( (
∆

(u)
r X

)2 ) −−−→
n→∞

u2rℓ(r)

with

ℓ(r) =
(∑r

i=0 i
rai,r

r!

)2 1

T

∫ T

0

E
(
X(r)(t)

)2
dt.

Proposition 2.1 implies that a good choice of r (r = r0+1, r0+2) could provide an estimate
of H , at least with an adequate combination of u-dilated quadratic variations of X . To this
end, we propose a two steps procedure:

• We consider the consistent estimate of r0, say r̂0 derived in Blanke and Vial (2011)

and based on ∆
(1)
r,kX :

(2.5) r̂0 = min
{
r ∈ {2, . . . , mn} : n2r−2

(
∆

(1)
r X

)2 ≥ bn

}
− 2.

If the above set is empty, we fix r̂0 = l0 for an arbitrary value l0 6∈ N0. Here, mn → ∞
but if an upper bound B is known for r0, one has to choosemn = B+2. The threshold
bn is a positive sequence chosen such that : n−2(1−β0)bn → 0 and n2β0bn → ∞ for all
β0 ∈]0, 1[. For example, omnibus choices are given by bn = (lnn)α, α ∈ R.

• Next, we derive two family of estimators for H , namely Ĥ
(p)
n , with either p = 1 or

p = 2:

Ĥ(p)
n := Ĥ(p)

n (u, v) =
ln
((

∆
(u)
r̂0+pX

)2)− ln
((

∆
(v)
r̂0+pX

)2)

ln(u/v)

where u, v (u < v) are given integers, chosen by the statistician. Then, two estimators

β̂0

(p)
of β0 can be directly derived:

β̂0

(p)
= (Ĥ(p)

n − 2r̂0)/2, p = 1, 2.



REGULARITY ESTIMATION FOR GAUSSIAN PROCESSES 5

Remark 2.1. For r0 = r̂0 = 0, u = 1 and v = 2, β̂0

(p)
corresponds to the ordinary least

squares estimators defined in Constantine and Hall (1994) (with the choice p = 1) and Kent
and Wood (1997) (p = 2). Note that new estimators may be derived with other choices of
(u, v) such as (u, v) = (1, 4) which seems to perform well, see Section 3.2.

In Blanke and Vial (2011), an exponential bound is obtained for P(r̂0 6= r0) implying that,
almost surely for n large enough, r̂0 is equal to r0. Here, we complete this result with a
bound for the mean square error of r̂0.

Theorem 2.1. Under assumption A2.1 and A2.2(p), p = 1 or p = 2, we have

E(r̂0 − r0)
2 = O

(
m3

n exp
(
− ϕn(p)

))

where ϕn(p) is defined by

ϕn(p) = C1(r0)×
{
n1]0, 1

2
[(β0) + n(lnn)−1,1{ 1

2
}(β0) + n2−2β01] 1

2
,1[(β0) if p = 1

n if p = 2

for some positive constant C1(r0).

Remark that one may choose mn tending to infinity as slowly as wanted. Indeed, the
unique restriction is that r0 belongs to the grid {1, . . . , mn} for large enough n. From a
practical point of view, one may choose a preliminary fixed bound B, and, in the case where
the estimator return the non-integer value l0, replace B by B′ greater than B.

The bias of Ĥ
(p)
n will be controlled by a second-order condition of local stationarity, more

specifically we have to strengthen the relation (2.1) in:

(2.6) lim
h→0

sup
s,t∈[0,T ],|s−t|≤h,s 6=t

∣∣∣∣∣ |s− t|−β1

(
E
(
X(r0)(s)−X(r0)(t)

)2

|s− t|2β0
− d0(t)

)
− d1(t)

∣∣∣∣∣ = 0

for a positive β1 and continuous function d1.

Theorem 2.2. If relation (2.6) and assumption A2.2(p) are satisfied, we obtain

lim sup
n→∞

V (p)
n

∣∣∣Ĥ(p)
n −H

∣∣∣ ≤ C2(p) a.s.

where C2(p) is some positive constant and

V (1)
n = min

(
nβ1,

√
n

lnn
1]0, 3

4
[(β0) +

√
n

lnn
1{ 3

4
}(β0) +

n2(1−β0)

lnn
1] 3

4
,1[(β0)

)
,

V (2)
n = min

(
nβ1,

√
n

lnn

)
.
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Remark 2.2. Of course, since nδn −−−→
n→∞

T > 0, the previous result can be expressed in

terms of δn with:

V (1)
n = min

(
δ−β1
n ,

1√
δn ln(δ−1

n )
1]0, 3

4
[(β0) +

1√
δn ln(δ−1

n )
1{ 3

4
}(β0) +

δ
−2(1−β0)
n

ln(δ−1
n )

1] 3
4
,1[(β0)

)
,

V (2)
n = min

(
δ−β1
n ,

1√
δn ln(δ−1

n )

)
.

3. Applications and numerical results

All the numerical results are obtained on simulation of trajectories using two different
methods : for stationary processes or with stationary increments we use the procedure
described in Wood and Chan (1994) and for CARMA (continuous ARMA) processes, we
use Tsai and Chan (2000). Each of them consists in n equally spaced observation points on
[0, 1] and 1000 simulated sample paths. All computations have been performed with the R
software (R Core Team, 2012).

3.1. Simulation study : estimation of r0. This section is dedicated to the numerical
properties of two estimators of r0. We consider the estimator introduced by Blanke and Vial
(2011), defined in (2.5). Another estimator was introduced in Blanke and Vial (2008) and is
based on Lagrange interpolator polynomials, says r̃n. More precisely, for δn = n−1 et T = 1,
it is defined by

r̃n = min
{
r ∈ {1, . . . , mn} :

1

rñr

rñr−1∑

k=0

(
X
(2k + 1

n

)
− X̃r

(2k + 1

n

))2 ≥ n−2rbn

}
− 1

where ñr =
[

n
2r

]
and X̃r(s) is defined for all s ∈ [0, 1] and each r ∈ {1, . . . , mn} in the

following way : there exist k = 0, . . . , ñr − 1 such that s ∈ Ik := [2kr
n
, 2(k+1)r

n
] and the

interpolates of X(s) is defined by

X̃r(s) =

r∑

i=0

Li,k,r(s)X
(2(kr + i)

n

)
, with Li,k,r(s) =

r∏

j=0
j 6=i

(s− 2(kr+j)
n

)

(2(kr+i)
n

− 2(kr+j)
n

)
.

Both estimators use a critical value depending on n, here we choose bn = 1/ lnn, due to
convergence properties. Table 3.1 illustrates the strong convergence of both estimators and
shows that this convergence is valid even for small number of observation points n, up to
10 for the estimator r̂0. We may noticed that, for misspecified estimations our estimators
overestimate the number of derivatives. Remark also that, for identical sample paths, r̂0
seems to be more robust than r̃n. This behaviour was expected as the latter uses only half of
the observations for the detection of the jump in the quadratic mean. In these first results,
processes have fractal index β0 equals to 1/2, but alternative choices of β0 are of interest,
so we consider the fractional Brownian motion (in short fBm) and the integrated fractional
Brownian motion (in short ifBm), with respectively r̂0 = 0 and r̂0 = 1 and β0 ∈]0, 1[. Table
3.2 shows that r̂0 succeeds in estimating the regularity r0 = 0 even if the process is near
regularity r0 = 1, of course the number of observations must be sufficient and even more
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Table 3.1. Value of the empirical probability that r̂0 or r̃n equals r0 or r0+1 with

n = 10 or 25.

Wiener process, r0 = 0 CARMA(2,1), r0 = 1 CARMA(3,1), r0 = 2
Number of equally spaced observations n

event 10 25 10 25 10 25
r̃n = r0 0.995 1.000 0.913 1.000 0.585 0.999

r̃n = r0 + 1 0.005 0.000 0.087 0.000 0.415 0.001
r̂0 = r0 1.000 1.000 1.000 1.000 0.999 1.000

r̂0 = r0 + 1 0.000 0.000 0.000 0.000 0.001 0.000

Table 3.2. Value of the empirical probability that r̂0 or r̃n equals r0 for a fractional

Brownian motion or an integrated fractional Brownian motion of fractal index 2β0.

r̂0 = r0 r̃n = r0
number of equally spaced observations n

50 100 500 1000 1200 50 100 500 1000 1200
fBm β0

0.90 1.000 1.000 1.000 1.000 1.000 0.655 0.970 1.000 1.000 1.000
0.95 0.969 0.999 1.000 1.000 1.000 0.002 0.002 0.004 0.134 0.331
0.97 0.242 0.521 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
0.98 0.019 0.015 0.0420 0.5258 0.759 0.000 0.000 0.000 0.000 0.000

ifBm β0

0.02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.90 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.645 0.999 1.000
0.95 0.305 0.888 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
0.97 0.000 0.000 0.292 0.993 1.000 0.000 0.000 0.000 0.000 0.000

important for increasing values of r0 nd β0. This latter result is clearly apparent when one
compares the errors obtained for an ifBm with β0 = 0.95 and a fBm with β0 = 0.95. Finally,
we can see once more that r̃n is less robust against increasing β0 while it appears that, for
n = 2000 and each simulated path, r̂0 is able to distinguish processes with regularity (0, 0.98)
and (1, 0.02), a quite indiscernible difference.

3.2. Simulation study: estimation of H and β0. This part is dedicated to the numerical

properties of estimators Ĥ
(p)
n , for p = 1 or 2 using the values u = 1 and v = 4 (giving a

smaller variance than u = 1 and v = 2). It ends with real data examples.
For the numerical part, we focus on the study of fBm, ifBm and CARMA(3,1). Table 3.3

illustrates the performance of our estimators when β0, r0 are increasing by computing the
empirical mean-square error from our 1000 simulated sample paths and number of equally

spaced observation n = 1000. It appears that, contrary to Ĥ
(2)
n , the estimator Ĥ

(1)
n slightly

deteriorates for values of β0 greater than 0.8. This result is in agreement with the rate of
convergence established in Theorem 2.2 which depends on β0. The bias is negative and seems
to be unsensitive to the value of r0 but the mean-square error is slightly deteriorated from
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Table 3.3. Values of mean square error and bias (between brackets) for estimators Ĥ
(p)
n ,

for p = 1 or 2 and n = 1000.

fBm β0

0.2 0.5 0.8 0.9 0.95

Ĥ
(1)
n

0.0017
(−0.0020)

0.0019
(−0.0045)

0.0034
(−0.0120)

0.0054
(−0.0295)

0.0065
(−0.0448)

Ĥ
(2)
n

0.0030
(−0.0026)

0.0039
(−0.0038)

0.0040
(−0.0057)

0.0039
(−0.0069)

0.0039
(−0.0084)

ifBm β0

0.2 0.5 0.8 0.9 0.95

Ĥ
(1)
n

0.0032
(−0.0072)

0.0026
(−0.0047)

0.0041
(−0.0150)

0.0061
(−0.0342)

0.0073
(−0.0488)

Ĥ
(2)
n

0.0055
(−0.0106)

0.0051
(−0.0060)

0.0046
(−0.0060)

0.0044
(−0.0061)

0.0043
(−0.0061)

r0 = 0 to r0 = 1 in both cases. Finally, for β0 < 0.8, H
(1)
n seems preferable to Ĥ

(2)
n , possibly

due to a lower variance of this estimator. Nevertheless, both estimators perform globally
well on these numerical experiments.

Results of Theorem 2.2 are also illustrated in Table 3.4 where we have computed the

regression of ln(E|Ĥ(p)
n −H|) on lnn for various values of n and E|Ĥ(p)

n −H| estimated from
our 1000 simulated sample paths. As expected, the slope (corresponding to our arithmetical

rate of decay) is constant and approximatively equal to 0.5 for Ĥ
(2)
n while, for Ĥ

(1)
n , the

decrease is apparent for high values of β0. Finally, Figure 3.1 illustrates the behaviour of

the estimators Ĥ
(p)
n with p = 1 or 2, for different values of the regularity parameter β0. As

we can see, boxplots are similar for both estimators when β0 = 0.5 or β0 = 0.8 but with a

quite larger dispersion for Ĥ
(2)
n . For β0 = 0.95, Ĥ

(2)
n clearly outperforms Ĥ

(1)
n from n = 500

observations. Estimation appears more difficult for smaller values of n, but it is quite typical
in our considered framework.

Next, Table 3.5 illustrates the impact of estimating H when the order r in quadratic
variation is misspecified. Kent and Wood (1995), section 7, have already noticed that orders
r > 1 are relevant for smooth processes. In fact estimating H requires the knowledge of
r0 or an upper bound of it. On the other hand, working with a too high value of r0 may
induce artificial variability in estimation, so a precise estimation of r0 is important. Here,
our numerical results show that, if the order r of quadratic variation used for estimating H
is less than r0 + 1, then the quantity estimated is 2r and not H .

All previous examples are local stationary with a constant function d0. Processes meeting
our conditions but with no stationary increments may be constructed with Lemma 2.1. As
an example, from Y a standard Wiener process (r0 = 0, β0 = 0.5) or an integrated one
(r0 = 1, β0 = 0.5), we simulate X(t) = (tr0+0.7 + 1) Y (t) having the regularity (r0, 0.5),
Figure 3.2 illustrates a Wiener sample path and its transformation. Results are summarized
in Table 3.6. Comparing with Table 3.3, it appears that the estimation is only slightly
damaged for r0 = 1 but of the same order when r0 = 0. Non-stationary processes may also
be obtained by adding some smooth trend. To this aim, we used same sample paths as in
Table 3.3 with the additional trend m(t) = (1 + t)2, see Figure 3.3. We may noticed in
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Ĥ
(1)
n Ĥ

(2)
n

Figure 3.1. Each boxplot correspond to 1000 estimation of H by Ĥ
(1)
n on the

left and Ĥ
(2)
n on the right of the graph. Each realization consists in n equally

spaced observations on [0, 1] of a fBm with β0 = 0.5 (top), β0 = 0.8 (middle),
β0 = 0.95 (bottom), where n = 100, 250, 500, 750, 1000, 1250, 1500, 2000.

Table 3.7 that we obtain exactly the same results for the estimator Ĥ
(2)
n and that a slight

damage is observed for Ĥ
(1)
n .

Let us turn to examples based on real data sets. We first focus on roller height data
introduced by Laslett (1994), which consists in n = 1150 heights measure at 1 micron
intervals along a drum of a roller. This example was already studied in Kent and Wood
(1997), they noticed that local self similarity may hold at sufficiently fine scales, so the
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Table 3.4. Rates of convergence illustrated by linear regression for n in

{500, 750, 1000, 1250}.

Ĥ
(1)
n Ĥ

(2)
n

slope R2 slope R2

fBm β0 = 0.5 -0.488 0.998 -0.489 0.995
β0 = 0.6 -0.475 0.998 -0.488 0.995
β0 = 0.7 -0.426 0.994 -0.489 0.997
β0 = 0.8 -0.334 0.989 -0.491 0.997
β0 = 0.9 -0.225 0.990 -0.495 0.997
β0 = 0.95 -0.186 0.995 -0.503 0.997

ifBm β0 = 0.9 -0.302 0.987 -0.561 0.999
β0 = 0.95 -0.244 0.978 -0.559 0.999

Table 3.5. Mean value and standard deviation (between brackets) of the estima-

tor Ĥ
(p)
n based on quadratic variation of order r0 or r0−1 instead of r̂0+1 or r̂0+2.

Order r0 − 1 Order r0
number n of equidistant observations
100 500 100 500

ifBm β0 = 0.2 1.903
(0.064)

1.961
(0.025)

β0 = 0.5 1.955
(0.035)

1.992
(0.006)

β0 = 0.8 1.966
(0.024)

1.994
(0.004)

CARMA(3,1) 1.970
(0.0140)

1.994
(0.003)

3.919
(0.058)

3.985
(0.0109)

Table 3.6. Value of MSE and bias (between brackets) for non constant d0(·).

Wiener Integrated Wiener

Ĥ
(1)
n

0.0021
(−0.0032)

0.0032
(0.0061)

Ĥ
(2)
n

0.0043
(−0.0042)

0.0058
(−0.0091)

Table 3.7. Value of MSE and bias (between brackets) for estimators Ĥ
(p)
n , for

p = 1 or 2 in presence of a smooth trend.

fBm ifBm
β0 = 0.5 β0 = 0.8 β0 = 0.5 β0 = 0.8

Ĥ
(1)
n

0.0022
(0.0151)

0.0283
(0.1525)

0.0027
(0.0083)

0.0141
(0.0863)

Ĥ
(2)
n

0.0039
(−0.0038)

0.0040
(−0.0057)

0.0051
(−0.0060)

0.0046
(−0.0060)
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Figure 3.2. fBm with β0 = 0.5 (solid) and its transformation (dashed) used
in Table 3.6.

Figure 3.3. Sample path of a fBm with β0 = 0.8 (dashed line) and the same
with a trend m(t) = (1 + t)2 (solid line).

Table 3.8. Estimates in the roller height example

m Ĥ
(1)
n α̂

(0)
OLS Ĥ

(2)
n α̂

(1)
OLS

2 0.63 0.63 0.77 0.77
4 0.50 0.51 0.63 0.65
6 0.38 0.39 0.49 0.51
8 0.35 0.33 0.44 0.42
10 0.30 0.28 0.39 0.35

regularity r0 was supposed to be null. Indeed, our estimator r̂0, directly used on the data

with bn = 1/log(n), gives r̂0 = 0, with a value of n4−2
(
∆

(1)
2 X

)2
= 1172345. Next, we compute

the values obtained for the estimation of H by setting (u, v) = (1, m) in our estimators, with
m in {2, 4, 6, 8, 10}. In Table 3.8, values of estimates proposed by Constantine and Hall
(1994); Kent and Wood (1995, 1997) are also reported for comparison. These estimates

are obtained by considering ordinary least squares estimators α̂
(p)
OLS (with p adapted to the

regularity of the process, supposed to be known in their work). Note that, with Kent and
Wood’s notation, we have in this case H = 2β0 = α and for (u, v) = (1, 2), one gets

Ĥ
(1)
n = α̂

(0)
OLS and Ĥ

(2)
n = α̂

(1)
OLS but Ĥ and α̂ differ for other values of v. It should be observed

that our estimators present a similar sensitivity to the choice of m, with perhaps a slightly
greater robustness of our estimators against high values of m.
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Table 3.9. Estimates in the biscuit example

m = 2 m = 4 m = 6 m = 8 m = 10

Ĥ
(1)
n 3.60 (0.12) 3.67 (0.07) 3.65 (0.05) 3.62 (0.04) 3.59 (0.04)

α̂
(1)
OLS 3.60 (0.12) 3.67 (0.07) 3.66 (0.05) 3.63 (0.04) 3.60 (0.03)

Ĥ
(2)
n 2.84 (0.45) 3.69 (0.30) 3.83 (0.24) 3.84 (0.19) 3.83 (0.16)

α̂
(2)
OLS 2.84 (0.45) 3.67 (0.31) 3.91 (0.23) 3.98 (0.18) 3.99 (0.14)

(a) (b)

Figure 3.4. (a) Curve drawing reflectance in function of wavelength, varying
between 1100 and 2498. (b) Box-plots drawing the results for both estimators

on the right Ĥ
(1)
n on the left Ĥ

(2)
n for the 39 curves and (u, v) = (1, 4).

In order to compare the (empirical) variances of these estimators, we consider a second ex-
ample introduced by Brown et al. (2001). The experiment involved varying the composition
of biscuit dough pieces and data consist in near infrared reflectance (NIR) spectra for the
same dough. The 40 curves are graphed on the figure 3.4. Each represents the near-infrared
spectrum reflectance measure at each 2 nanometers from 1100 to 2498 nm, then 700 obser-
vation points for each biscuit. According to Brown et al. (2001), the observation 23 appears
as an outlier. We estimate r0 for each of the left 39 curves, using the threshold bn = 1,

which gives r̂0 = 1 for each curve and an averaged mean quadratic variation n2r−2
(
∆

(1)
r X

)2
equal to 0.33 when r = 2 and 122133 when r = 3, this explosion leads us to the choice

r̂0 = 3 − 2 = 1. We turn to estimation of H , to compare our estimators with α̂
(p)
OLS where

p = 1 corresponds to the choice (1,−2, 1) for aj,r and p = 2 to the choice (−1, 3,−3, 1). The
results are summarised in Table 3.9 and it appears that, for order r̂0 + 2 = 3, our estimator

Ĥ
(2)
n seems to be less sensitive to the choice of m. To conclude this part, it should be noticed

that for the 23rd curve, the choice m = 4 gives Ĥ
(1)
n = 3.64 and Ĥ

(2)
n = 3.55. It appears that,

in both cases, these values belong to the interquartile range obtained from the 39 curves, so
at least concerning the regularity, the curve 39 should not be considered as an outlier.

3.3. Plug-in estimation : results and simulation. A classical and interesting topic
is approximation and/or integration of a sampled path. An extensive literature may be
found on these topics with a detailed overview in the recent monograph of Ritter (2000).
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The general framework is as follows : let X = {Xt, t ∈ [0, 1]}, be observed at sampled
times t0,n, . . . , tn,n over [a,b], more simply denoted by t0, . . . , tn. Approximation of X(·)
consists in interpolation of the path on [a, b], while weighted integration is the calculus of

Iρ =
∫ b

a
X(t)ρ(t) dt for some positive and continuous weight function ρ. These problems

are closely linked, see e.g. Ritter (2000) p. 19-21. Closely to our framework of local
stationary derivatives, we may refer more specifically to works of Plaskota et al. (2004) for
approximation and Benhenni (1998) for integration. For sake of clarity, we give a brief
summary of their obtained results. In the following, we denote by H(r0, β0) the family
of Gaussian processes having r0 derivatives in quadratic mean and r0-th derivative with
Hölderian regularity of order β0 ∈]0, 1[. For measurable gi(·), we consider the approximation

An,g(t) =
n∑

i=0

X(ti)gi(t) and eρ(An,g) =
( ∫ b

a
E |X(t)−An,g(t)|2 ρ(t) dt

)1/2

will represent the

weighted and integrated L2-error. For X ∈ H(r0, β0) and known (r0, β0), Plaskota et al.
(2004) have shown that

0 < c(r0, β0) ≤ lim
n→∞

nr0+β0 inf
g
eρ(An,g) ≤ lim

n→∞
nr0+β0 inf

g
eρ(An,g) ≤ C(r0, β0) < +∞

for equidistant sampled times t1, . . . , tn and Gaussian processes defined and observed on the
half-line [0,+∞[. Of course, optimal choices of functions gi, giving a minimal error, depend
on the unknown covariance function of X .

Concerning weighted integration, the quadrature is denoted by Qn,d =
∑n

i=0X(ti)di with

well-chosen constants di (typically, one may take di =
∫ b

a
gi(t) dt). For known (r0, β0), a short

list of references could be:

- Sacks and Ylvisaker (1968, 1970) with r0 = 0 or 1, β0 =
1
2
and known covariance,

- Benhenni and Cambanis (1992) for arbitrary r0 and β0 =
1
2
,

- Stein (1995) for stationary processes and r0 + β0 <
1
2
,

- Ritter (1996) for minimal error, under Sacks and Ylvisaker’s conditions, and with
arbitrary r0.

Let us set eρ(Qn,d) =
(
E |Iρ −Qn,d|2

)1/2

, the mean square error of integration. In the

stationary case and for known r0, Benhenni (1998) established the following exact behaviour:
If ρ ∈ Cr0+3([a, b]) then for some given quadrature Qn,d∗(r0) on [a, b],

nr0+β0+
1
2 eρ(Qn,d∗(r0)) −−−→

n→∞
cr0,β0(

∫ b

a

ρ2(t)ψ−(2(r0+β0)+1)(t) dt)
1
2

where ψ is the density relative to the regular sampling {t1, . . . , tn}. Moreover, following Rit-
ter (1996), it appears that this last result is optimal under Sacks and Ylvisaker’s conditions.
Finally, Istas and Laredo (1997) have proposed a quadrature, requiring only an upper bound

on r0, with an error of order O
(
n−(r0+β0+

1
2
)
)
.

All these results shown the importance of well estimating r0 and motivate ourself to focus
on plugged-in interpolators, namely those using Lagrange polynomial of order estimating by
r̂0. More precisely, for equidistant sampling ti = iδn, i = 0, . . . , n, δn → 0, nδn → T > 0,
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Lagrange interpolation of order r ≥ 1 is defined by

(3.1) X̃r(t) =
r∑

i=0

Li,k,r(t)X
(
(kr + i)δn

)
, with Li,k,r(t) =

r∏

j=0
j 6=i

(t− (kr + j)δn)

(i− j)δn
,

for t ∈ Ik :=
[
krδn, (k + 1)rδn

]
, k = 0, . . . , ⌊n

r
⌋ − 2 and I⌊n

r
⌋−1 =

[
⌊(n
r
⌋ − 1)rδn, T

]
.

Our plugged method will consist in the approximation given by An,L(t) = X̃max(r̂0,1)(t),

t ∈ [0, T ], and quadrature by Qn,L =
∫ T

0
X̃r̂0+1(t) ρ(t) dt. Indeed, Lagrange polynomials are

of easy implementation and by the result of Plaskota et al. (2004), they reach the optimal
rate of approximation, n−(r0+β0) without requiring knowledge of covariance. Also we will
show that the associate quadrature has the expected rate n−(r0+β0+

1
2
). For unknown (r0, β0),

a first result of plugged approximation is derived in Blanke and Vial (2011): if Assumption
A2.1 holds, we have for T = 1, ρ ≡ 1 and some constant D(r0, β0):

lim
n→∞

n2(r0+β0)

∫ 1

0

E
(
X(t)− X̃max(r̂0,1)(t)

)2
dt = D(r0, β0).

In the weighted case and for T > 0, we obtain the following asymptotic bounds.

Theorem 3.1. Suppose that Assumption A2.1 holds and consider a positive and continuous
weight function ρ.

(a) Under condition A2.2(1), we have

eρ(app
(
r̂0)

)
:=

(∫ T

0

E

∣∣∣X(t)− X̃max(r̂0,1)(t)
∣∣∣
2

ρ(t) dt
)1/2

= O
(
δr0+β0
n

)
,

(b) if condition A2.2(2) holds:

eρ(int
(
r̂0)

)
:=

(
E

∣∣∣∣
∫ T

0

X(t)ρ(t) dt−
∫ T

0

X̃r̂0+1(t)ρ(t) dt

∣∣∣∣
2 )1/2

= O
(
δ
r0+β0+

1
2

n

)
.

In conclusion, expected rates for approximation and integration are reached by plugged
Lagrange piecewise polynomials. Of course if r0 is known, this last result holds true with r̂0
replaced by r0. The figure 3.3 is obtained using 1000 simulated sample paths observed in
equally spaced points on [0, 1]. This figure illustrates results of approximation for different
processes. The logarithm of empirical integrated mean square error (in short IMSE), i.e.
e21(app

(
r̂0)

)
is drawn in function of ln(n). We may notice that we obtain straight lines with

slope very near to −H = −2(r0 + β0). Since the Ornstein-Uhlenbeck process is a scaled
time-transformed Wiener proces, intercepts are different contrary to stationary versus non
stationary CARMA processes.

4. Proofs of theoretical results

4.1. Proof of Proposition 2.1. A. Let us begin with general expressions ofE
(
∆

(u)
r,k X∆

(u)
r,ℓ X

)

useful for the sequel.
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Figure 3.5. Logarithm of e21(app
(
r̂0)

)
, i.e. the IMSE in function of ln(n),

for different type of processes. The dashed line correspond to Brownian mo-
tion, long dashed line to O.U., dashed line to non stationary CARMA(2,1),
dotted-dashed line to stationary CARMA(2,1) and solid line to non stationary
CARMA(3,1). The small triangles near lines are here to indicate the theoretic
slope.

First for L(p,p)(s, t) = E
(
X(p)(s)X(p)(t)

)
(p ≥ 0), the relation (2.1) is equivalent to

(4.1) lim
h→0

sup
s,t∈[0,T ]

|s−t|≤h,s 6=t

∣∣∣∣∣
L(r0,r0)(s, s) + L(r0,r0)(t, t)− 2L(r0,r0)(s, t)

|s− t|2β0
− d0(t)

∣∣∣∣∣ = 0.

We set k̇ = kδn, k̇iu = (k + iu)δn, k̇iuv = (k + iuv)δn, ℓ̇ = ℓδn, ℓ̇ju = (ℓ + ju)δn and

ℓ̇juw = (ℓ+ juw)δn. Next, from the definition of ∆
(u)
r,k X given in (2.2), we get

E(∆
(u)
r,k X∆

(u)
r,ℓ X) =

r∑

i,j=0

ai,raj,rL
(0,0)(k̇iu, ℓ̇ju).

Case r0 = 0. As
∑r

i=0 ai,r = 0, we have:

(4.2) E(∆
(u)
r,k X∆

(u)
r,ℓ X) =

r∑

i=0

r∑

j=0

ai,raj,r

{
L
(0,0)(k̇iu, ℓ̇ju)−

1

2
L
(0,0)(k̇iu, k̇iu)−

1

2
L
(0,0)(ℓ̇ju, ℓ̇ju)

}
.
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Case r0 ≥ 1. We apply multiple Taylor series expansions with integral remainder. Next, the
properties

∑r
i=0 ai,ri

p = 0 for p = 0, . . . , r − 1 (and convention 00 = 1) induce :

(4.3) E(∆
(u)
r,k X∆

(u)
r,ℓ X) =

r∑

i,j=0

ai,raj,r(u
2ijδ2n)

r∗
∫∫

[0,1]2

(1− v)r
∗−1(1− w)r

∗−1

((r∗ − 1)!)2
L
(r∗,r∗)(k̇iuv, ℓ̇juw) dvdw

where we have set r∗ = min(r0, r) ≥ 1.

B. From expressions (4.2)-(4.3), we now derive the asymptotic behaviour of E
(
(∆rX(u))2

)
.

Case r0 ≥ 1, r = r0 + 1 or r = r0 + 2. In this case, r∗ = r0 ≤ r − 1. From (4.3) and the

property
∑r

i=0 ai,ri
r0 = 0, we may write

(4.4) E(∆
(u)
r,k X)2 =

r∑

i,j=0

ai,raj,r(u
2ijδ2n)

r0

∫∫

[0,1]2

(1− v)r0−1(1− w)r0−1

((r0 − 1)!)2

{
L
(r0,r0)(k̇iuv, k̇juw)

− 1

2
L
(r0,r0)(k̇iuv, k̇iuv)−

1

2
L
(r0,r0)(k̇juw, k̇juw)

}
dvdw

Using the property
∣∣∣k̇iuv − k̇juw

∣∣∣ = |iv − jw|uδn, we decompose E(∆
(u)
r,k X)2 into S1n(k) +

S2n(k) + S3n(k) where

S1n(k)= −
r∑

i,j=0

ai,raj,r(ij)
r0(uδn)

H

∫∫

[0,1]2

((1− v)(1− w))r0−1

2((r0 − 1)!)2
|iv − jw|2β0 d0(k̇) dvdw

S2n(k)= −
r∑

i,j=0

ai,raj,r(ij)
r0(uδn)

H

∫∫

[0,1]2

((1− v)(1− w))r0−1

2((r0 − 1)!)2
|iv − jw|2β0

{
d0(k̇juw)− d0(k̇)

}
dvdw

and S3n(k) is defined by

−
r∑

i,j=0

ai,raj,r(ij)
r0(uδn)

H

∫∫

[0,1]2

((1− v)(1− w))r0−1

2((r0 − 1)!)2
|iv − jw|2β0

[
−d0(k̇juw)

+
{
L
(r0,r0)(k̇iuv, k̇iuv) + L

(r0,r0)(k̇juw, k̇juw)− 2L(r0,r0)(k̇iuv, k̇juw)

|(iv − jw)uδn|2β0

}]
dvdw.

From the locally stationary condition (4.1), we get that
δ
−2(r0+β0)
n

nr + 1

nr∑

k=0

S3n(k) −−−→
n→∞

0. Con-

cerning S2n(k), uniform continuity and boundedness of the function d0 on [0, T ] implies

δ
−2(r0+β0)
n

nr + 1

nr∑

k=0

S2n(k) ≤ C(r, r0)

r∑

j=0

sup
w∈[0,1]

sup
t∈[0,(nr)δn]

|d0(t+ juwδn)− d0(t)| −−−→
n→∞

0.
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Finally, since nδn −−−→
n→∞

T :

δ
−2(r0+β0)
n

nr + 1

nr∑

k=0

S1n(k) −−−→
n→∞

uHℓ(r, r0, β0)

with

ℓ(r, r0, β0) =

−
r∑

i,j=0

ai,raj,r(ij)
r0

2((r0 − 1)!)2
( ∫

[0,1]2
((1− v)(1− w))r0−1 |iv − jw|2β0 dvdw

)
×

( 1
T

∫ T

0

d0(t) dt
)
.

Next by performing elementary but tedious multiple integrations by part and using the
property

∑r
j=1 aj,rj

p = 0 for p = 1, . . . , r − 1, we arrive at the following simpler form of

ℓ(r, r0, β0) given in (2.3):

ℓ(r, r0, β0) =
(−1)r0+1

∫ T

0
d0(t) dt

2T (2β0 + 2r0) · · · (2β0 + 1)

r∑

i,j=0

ai,raj,r |i− j|2r0+2β0 .

Case r0 = 0, r = r0 + 1 or r = r0 + 2. The proof is the same but starting from (4.2) (with
ℓ = k) rather than the relation (4.3).
Case r0 ≥ 1 and r = 1, . . . , r0. In this case, r∗ = r and starting again from the relation (4.3),
one gets

E(∆
(u)
r,k X)2 = u2r

r∑

i,j=0

ai,raj,r
(
ijδ2n)

r

∫∫

[0,1]2

(1− v)r−1(1− w)r−1

((r − 1)!)2
L
(r,r)(k̇iuv, k̇juw) dvdw.

The result follows from uniform continuity of L(r,r), r = 1, . . . , r0 and the property

E
(
X(r)(t)

)2
= L(r,r)(t, t).

4.2. Auxiliary results. The following lemmas give some useful results on the asymptotic

behaviour of Cr(k, ℓ) and C2
r(k, ℓ) with Cr(k, ℓ) = Cov

(
∆

(u)
r,k X,∆

(u)
r,ℓ X

)
.

Lemma 4.1. Suppose that Assumption A2.1 is fulfilled and let u be a positive integer.
(i) Under Assumption A2.2(1) and for r = r0 + 1 or r = r0 + 2, one obtains

max
k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)| =





O
(
n−H

)
if 0 < β0 <

1
2
,

O
(
n−H lnn

)
if β0 =

1
2
,

O
(
n−(2r0+1)

)
if 1

2
< β0 < 1 ;

and

nr∑

k=0

nr∑

ℓ=0

C
2
r(k, ℓ) =





O
(
n−2H+1

)
if 0 < β0 <

3
4
,

O
(
n−2H+1 lnn

)
if β0 =

3
4
,

O
(
n−(4r0+2)

)
if 3

4
< β0 < 1.
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(ii) Under Assumption A2.2(2) and for r = r0 + 2, one obtains max
k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)| =

O(n−H) and

nr∑

k=0

nr∑

ℓ=0

C
2
r(k, ℓ) = O(n−2H+1).

(iii) If r = 1, . . . , r0 (with r0 ≥ 1), then max
k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)| = O
(
n−2r+1

)
and

nr∑

k=0

nr∑

ℓ=0

C
2
r(k, ℓ) =

O
(
n−4r+2

)
.

Proof. Setting µ(t) = E
(
X(t)

)
, one has

Cr(k, ℓ) =
r∑

i,j=0

ai,raj,r
{
L
(0,0)(k̇iu, ℓ̇ju)− µ(k̇iu)µ(ℓ̇ju)

}
.

Similarly to (4.2)-(4.3), we get the expansion

(4.5) Cr(k, ℓ)=

r∑

i,j=0

ai,raj,r
(
u2ijδ2n

)r∗
∫∫

[0,1]2

(1− v)r
∗−1(1− w)r

∗−1

((r∗ − 1)!)2
K

(r∗,r∗)(k̇iuv, ℓ̇juw) dvdw

for r∗ = min(r0, r) ≥ 1 while if r0 = 0:

(4.6) Cr(k, ℓ) =

r∑

i=0

r∑

j=0

ai,raj,rK(k̇iu, ℓ̇ju).

(i) Case r0 ≥ 1, r = r0 + 1 or r = r0 + 2 and A2.2(1) satisfied. In this case r∗ = r0 and we
have the bound:

max
k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)| ≤ U1n(r, r0) + U2n(r, r0) + U3n(r, r0)

with U1n(r, r0) = max
k=ur+1,...,nr

k−ur−1∑

ℓ=0

|Cr(k, ℓ)|, U2n(r, r0) = max
k=0,...,n−2ur−1

nr∑

ℓ=k+ur+1

|Cr(k, ℓ)|

and U3n(r, r0) = max
k=0,...,nr

min(nr ,k+ur)∑

ℓ=max(0,k−ur)

|Cr(k, ℓ)|.

First, consider the sum U1n(r, r0)+U2n(r, r0) where |k − ℓ| ≥ ur+1. We have
∑r

i=0 ai,ri
r0 =

0 for r = r0 + 1 or r = r0 + 2 and (4.5) may be written as follows:

Cr(k, ℓ) =

r∑

i,j=0

ai,raj,r
(
u2ijδ2n

)r0
∫∫

[0,1]2

(1− v)r0−1(1− w)r0−1

((r0 − 1)!)2

{
K

(r0,r0)(k̇iuv, ℓ̇juw)

−K
(r0,r0)(k̇, ℓ̇juw)−K

(r0,r0)(k̇iuv, ℓ̇) +K
(r0,r0)(k̇, ℓ̇)

}
dvdw(4.7)
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and since [k̇, k̇iuv] and [ℓ̇, ℓ̇juw] are distinct for |k − l| ≥ ur + 1:

Cr(k, ℓ) =

r∑

i,j=0

ai,raj,r
(
u2ijδ2n

)r0
∫∫

[0,1]2

(1− v)r0−1(1− w)r0−1

((r0 − 1)!)2

×
∫ k̇iuv

k̇

∫ ℓ̇juw

ℓ̇

K
(r0+1,r0+1)(s, t) dsdtdvdw.

By this way, the condition A2.2(1) gives the bound

|U1n(r, r0) + U2n(r, r0)| ≤ C1(r, r0)δ
2r0
n ×

(
max

k=ur+1,...,nr

k−ur−1∑

ℓ=0

∫ k̇+urδn

k̇

∫ ℓ̇+urδn

ℓ̇

(t− s)−2(1−β0)dsdt

+ max
k=0,...,n−2ur−1

nr∑

ℓ=k+ur+1

∫ k̇+urδn

k̇

∫ ℓ̇+urδn

ℓ̇

(s− t)−2(1−β0)dsdt

)

involving, in turn, that

|U1n(r, r0) + U2n(r, r0)| ≤ C2(r, r0)n
−H

n∑

i=1

i−2(1−β0)

which is of order n−H if 0 < β0 <
1
2
, n−H lnn if β0 =

1
2
and n−2r0−1 if β0 >

1
2
.

Next, for U3n(r, r0) where |k − ℓ| ≤ ur, we proceed similarly as in the proof of Proposi-
tion 2.1, on basis of the following decomposition derived from (4.5):

Cr(k, ℓ) = −1

2

r∑

i,j=0

ai,raj,r

∫∫

[0,1]2

(
u2ijδ2n

)r0
(
(1− v)(1− w)

)r0−1

((r0 − 1)!)2

∣∣∣k̇iuv − ℓ̇juw

∣∣∣
2β0

{
L(r0,r0)(k̇iuv, k̇iuv) + L(r0,r0)(ℓ̇juw, ℓ̇juw)− 2L(r0,r0)(k̇iuv, ℓ̇juw)∣∣∣k̇iuv − ℓ̇juw

∣∣∣
2β0

− d0(ℓ̇juw)

}
dvdw

− 1

2

r∑

i,j=0

ai,raj,r

∫∫

[0,1]2

(
u2ijδ2n

)r0
(
(1− v)(1− w)

)r0−1

((r0 − 1)!)2

∣∣∣k̇iuv − ℓ̇juw

∣∣∣
2β0

d0(ℓ̇juw) dvdw

−
( r∑

i=0

ai,r

∫ 1

0

(uiδn)
r0
(1− v)r0−1

(r0 − 1)!

(
µ(r0)(k̇iuv)− µ(r0)(k̇)

)
dv

)

×
( r∑

j=0

aj,r

∫ 1

0

(ujδn)
r0
(1− w)r0−1

(r0 − 1)!

(
µ(r0)(ℓ̇juw)− µ(r0)(ℓ̇)

)
dw

)

The relation (2.1) gives a o(δHn ) for the first term while one obtains a O(δHn ) for the fol-
lowing ones, using uniform continuity of d0 and Cauchy-Schwarz inequality. The result is
U3n(r, r0) = O

(
n−H

)
as nδn → T > 0.
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Concerning

nr∑

k=0

nr∑

ℓ=0

C
2
r(k, ℓ), the proof is essentially the same and we outline only the main

steps. We start with

nr∑

k=0

nr∑

ℓ=0

C
2
r(k, ℓ) ≤ V1n(r, r0) + V2n(r, r0) + V3n(r, r0)

where V1n(r, r0) =

nr∑

k=ur+1

k−ur−1∑

ℓ=0

C
2
r(k, ℓ), V2n(r, r0) =

n−2ur−1∑

k=0

nr∑

ℓ=k+ur+1

C
2
r(k, ℓ) and V3n(r, r0) =

nr∑

k=0

min(nr ,k+ur)∑

ℓ=max(0,k−ur)

C
2
r(k, ℓ). From (4.7) and r = r0 + 1, Assumption A2.2(1) gives

V1n(r, r0) + V2n(r, r0) ≤ C ′
1(r, r0)δ

4r0
n ×

( nr∑

k=ur+1

k−ur−1∑

ℓ=0

(∫ k̇+urδn

k̇

∫ ℓ̇+urδn

ℓ̇

(t− s)−2(1−β0)dsdt
)2

+
n−2ur−1∑

k=0

nr∑

ℓ=k+ur+1

(∫ k̇+urδn

k̇

∫ ℓ̇+urδn

ℓ̇

(s− t)−2(1−β0)dsdt
)2

)

implying in turn that V1n(r, r0) + V2n(r, r0) ≤ C ′
2(r, r0)n

−2H+1
n∑

i=1

i−4(1−β0) which is of order

n−2H+1 if 0 < β0 <
3
4
, n−2H+1 lnn if β0 =

3
4
and n−4r0−2 if β0 >

3
4
. Next, from (4.5), one may

deduce that V3n(r, r0) = O(n−2H+1).
(i, followed) Case r0 = 0, r = r0 + 1 or r = r0 + 2 and A2.2(1) satisfied. Both results are
obtained by starting from (4.6) rather than (4.5).
(ii) Case where r0 ≥ 1, r = r0 + 2 and A2.2(2) holds. The single difference occurs for

terms U1n (resp. V1n) and U2n (resp. V2n). Since r = r0 + 2 and
∑r

i=1 i
r0+1ai,r0+2 =

0, one may add or subtract quantities as iuvδnK
(r0+1,r0)(k̇, ℓ̇juw), iuvδnK

(r0+1,r0)(k̇, ℓ̇) or

iju2vwδ2nK
(r0+1,r0+1)(k̇, ℓ̇) without changing the result of (4.7). Thus,

Cr(k, ℓ) =
r∑

i,j=0

ai,r0+2aj,r0+2

(
u2ijδ2n

)r0
∫∫

[0,1]2

(1− v)r0−1(1− w)r0−1

((r0 − 1)!)2

×
∫ k̇iuv

k̇

∫ ℓ̇juw

ℓ̇

∫ t

k̇

∫ s

ℓ̇

K
(r0+2,r0+2)(y, z) dydzdsdtdvdw.

By this way, the condition A2.2(2) gives the bound



REGULARITY ESTIMATION FOR GAUSSIAN PROCESSES 21

|U1n(r, r0) + U2n(r, r0)| ≤ C3(r, r0)δ
2r0
n ×

(
max

k=ur+1,...,nr

k−ur−1∑

ℓ=0

∫ k̇+urδn

k̇

∫ ℓ̇+urδn

ℓ̇

∫ t

k̇

∫ s

ℓ̇

(z − y)−2(2−β0)dydzdsdt

+ max
k=0,...,n−2ur−1

nr∑

ℓ=k+ur+1

∫ k̇+urδn

k̇

∫ ℓ̇+urδn

ℓ̇

∫ t

k̇

∫ s

ℓ̇

(y − z)−2(2−β0)dy dzdsdt

)

so that |U1n(r, r0) + U2n(r, r0)| ≤ C4(r, r0)n
−H

n∑

i=1

i−2(2−β0) = O
(
n−H

)
, for all β0 ∈]0, 1[. On

the other hand, one obtains that

|V1n(r, r0) + V2n(r, r0)| ≤ C ′
4(r, r0)n

−2H+1
n∑

i=1

i−4(2−β0) = O
(
n−2H+1

)
.

(ii, followed) Case r0 = 0, r = r0 + 2 and A2.2(2) satisfied. The same methodology applies
starting from (4.6) rather than (4.5).
(iii) Case r = 1, . . . , r0 (with r0 ≥ 1). The expansion (4.5) becomes

Cr(k, ℓ) =

r∑

i,j=0

airajr

∫∫

[0,1]2

(
iju2δ2n

)r ((1− v)(1− w))r−1

((r − 1)!)2
K

(r,r)(k̇iuv, ℓ̇juw) dvdw

and both results follow from uniform continuity of K(r,r) since r ≤ r0.
�

The next proposition gives general exponential bounds, involved in the proofs of our main
results.

Proposition 4.1. Suppose that Assumption A2.1 is fulfilled, let ηn(r) be some given positive
sequence and u ∈ N

∗.
(i) For r = r0 + 1 or r = r0 + 2 and if Assumption A2.2(1) is satisfied, one obtains for

(4.8) ψn(β0) = nH
1]0, 1

2
[(β0) + nH(lnn)1{ 1

2
}(β0) + nH+2β0−1

1] 1
2
, 3
4
[(β0)

+ nH+2β0−1(lnn)−1
1{ 3

4
}(β0) + n2r0+2

1] 3
4
,1[(β0),

ϕ1n(β0) = nH+1
1]0, 1

2
[(β0) + nH+1(lnn)−1

1{ 1
2
}(β0) + n2(r0+1)

1] 1
2
,1[(β0),(4.9)

ϕ2n(β0) = n2H+1
1]0, 3

4
[(β0) + n2H+1(lnn)−1

1{ 3
4
}(β0) + n4(r0+1)

1] 3
4
,1[(β0)(4.10)

and the conditions ψn(β0)ηn(r) → 0,

(4.11) P

( ∣∣∣(∆(u)
r X)2 − E

(
(∆

(u)
r X)2

)∣∣∣ ≥ ηn(r)
)
= O

(
exp

(
−D1(r)ϕ2n(β0)η

2
n(r)

))

while for ηn(r) such that ψn(β0)ηn(r) → ζ ∈]0,+∞]:

(4.12) P

( ∣∣∣(∆(u)
r X)2 − E

(
(∆

(u)
r X)2

)∣∣∣ ≥ ηn(r)
)
= O

(
exp

(
−D2(r)ϕ1n(β0)ηn(r)

))
.
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(ii) For r = r0 + 2 and if Assumption A2.2(2) holds, the condition nHηn(r) → 0 implies

(4.13) P

( ∣∣∣(∆(u)
r X)2 − E

(
(∆

(u)
r X)2

)∣∣∣ ≥ ηn(r)
)
= O

(
exp

(
−D3(r)n

2H+1η2n(r)
))

while if nHηn(r) → ζ ∈]0,∞]:

(4.14) P

( ∣∣∣(∆(u)
r X)2 − E

(
(∆

(u)
r X)2

)∣∣∣ ≥ ηn(r)
)
= O

(
exp

(
−D4(r)n

H+1ηn(r)
))
.

(iii) If r = 1, . . . , r0 (with r0 ≥ 1) and n2rηn(r) → ∞:

(4.15) P

( ∣∣∣(∆(u)
r X)2 − E

(
(∆

(u)
r X)2

)∣∣∣ ≥ ηn(r)
)
= O

(
exp

(
−D5(r)n

2rηn(r)
))

where Di(r)’s are positive constants not depending on n and ηn(r).

Proof. For all r ≥ 1, we may write

(4.16) P

( ∣∣∣(∆(u)
r X)2 − E

(
(∆

(u)
r X)2

)∣∣∣ ≥ ηn(r)
)
≤ S1 + S2

with S1 = P

( ∣∣∣∣∣

nr∑

k=0

(∆
(u)
r,k X − E(∆

(u)
r,k X))2 − Var (∆

(u)
r,k X)

∣∣∣∣∣ >
(nr + 1)ηn(r)

2

)
and

S2 = P

( ∣∣∣∣∣

nr∑

k=0

(E(∆
(u)
r,k X))

(
∆

(u)
r,k X − E(∆

(u)
r,k X)

)
∣∣∣∣∣ >

(nr + 1)ηn(r)

4

)
.

First, let {Yi}i=1,...,dn be an orthonormal basis for the linear span of {∆(u)
r,k X}k=0,...,nr

(so
that Yi are i.i.d. with density N (0, 1)). We can write

∆
(u)
r,k X − E

(
∆

(u)
r,k X

)
=

dn∑

i=1

Cov
(
∆

(u)
r,k X, Yi

)
Yi :=

dn∑

i=1

bk,iYi .

Next, if Y = (Y1, . . . , Ydn)
⊤, we obtain

nr∑

k=0

(∆
(u)
r,k X − E∆

(u)
r,k X)2 =

dn∑

i,j=1

ci,jYiYj = Y ⊤CY and
nr∑

k=0

Var (∆
(u)
r,k X) =

dn∑

i

ci,i

with ci,j =

nr+1∑

k=0

bkibkj so that for C =
(
ci,j

)
i=1,...,dn
j=1,...,dn

and B =
(
bk,j

)
k=0,...,nr+1
j=1,...,dn

, one gets

C = B⊤B where C is a real, symmetric and positive semidefinite matrix. There exists
an orthogonal matrix P such that diag(λ1, . . . , λdn) = P⊤CP , for λi eigenvalues of C. Then

we can transform the quadratic form as:
nr∑

k=0

(∆
(u)
r,k X − E(∆

(u)
r,k X))2 =

dn∑

i=1

λi(P
⊤Y )2i where

(P⊤Y )i denotes the i-th component of the (dn × 1) vector P⊤Y . Since
∑dn

i=1 cii =
∑dn

i=1 λi =

∑nr

k=0Var (∆
(u)
r,k X), we arrive at S1 = P

( ∣∣∣
dn∑

i=1

λi
(
(P⊤Y )2i −1

)∣∣∣ ≥ (nr + 1)ηn(r)

2

)
. Now, with
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the exponential bound of Hanson and Wright (1971), we obtain for some generic constant c:

S1 ≤ 2 exp

(
−c(nr + 1)ηn(r)×min

( 1

max(λi)
,
(nr + 1)ηn(r)∑

λ2i

))

Next, since B⊤B and BB⊤ have the same non zero eigenvalues, we write

max
i=1,...,dn

λi ≤ max
0≤k≤nr+1

nr+1∑

ℓ=0

∣∣∣E
(
∆

(u)
r,k X − E(∆

(u)
r,k X)

)(
∆

(u)
r,ℓ X − E(∆

(u)
r,ℓ X)

)∣∣∣

≤ max
0≤k≤nr+1

nr+1∑

ℓ=0

|Cr(k, ℓ)|

with Cr(k, ℓ) = Cov
(
∆

(u)
r,k X,∆

(u)
r,ℓ X

)
. Moreover

dn∑

i=1

λ2i =
dn∑

i=1

dn∑

j=1

cijcji =
nr+1∑

k=0

nr+1∑

ℓ=0

(
dn∑

i=1

bkibli)
2 =

nr+1∑

k=0

nr+1∑

ℓ=0

C
2
r(k, ℓ).

Finally

(4.17)

S1 ≤ 2 exp

(
−c(nr + 1)ηn(r) × min

((
max

0≤k≤nr+1

nr+1∑

ℓ=0

|Cr(k, ℓ)|
)−1

,
(nr + 1)ηn(r)

nr+1∑
k=0

nr+1∑
ℓ=0

C2
r(k, ℓ)

))

For the term S2 in (4.16), we employ the following exponential bound with Y ∼ N (0, σ2),
σ > 0: for all ε > 0,

P
(
|Y | ≥ ε

)
≤ min(1,

√
2σ2

πε2
)× exp

(
− ε2

2σ2

)
.

We set Y =
∑nr

k=0(E(∆
(u)
r,k X))

(
∆

(u)
r,k X −E(∆

(u)
r,k X)

)
and ε =

(
nr+1
4

)
ηn(r). We obtain that

Var (Y ) ≤ vn(r) with

vn(r) := n max
k=0,...,nr

(
E(∆

(u)
r,k X)

)2
max

k=0,...,nr

nr∑

ℓ=0

|Cr(k, ℓ)|(4.18)

so that

S2 ≤ min
(
1,

4
√
2vn(r)√

π(nr + 1)ηn(r)

)
exp

(
− (nr + 1)2η2n(r)

32vn(r)

)
.(4.19)
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Finally collecting the results (4.16)-(4.19), we obtain:

(4.20)

P

( ∣∣∣(∆(u)
r X)2 − E

(
(∆

(u)
r X)2

)∣∣∣ ≥ ηn(r)
)
= O

(
min

(
1,

√
vn(r)

nηn(r)

)
exp

(
− C(r)

n2η2n(r)

vn(r)

))

+O
(
exp

(
−C(r)nηn(r)×min

((
max

0≤k≤nr+1

nr+1∑

ℓ=0

|Cr(k, ℓ)|
)−1

,
nηn(r)

nr+1∑
k,ℓ=0

C2
r(k, ℓ)

)))

for some positive constant C(r), not depending on n nor ηn(r). Now from (4.20) and
Lemma 4.1, one may deduce all exponential bounds claimed in (4.11)-(4.15).
(i) Case r = r0 + 1 or r = r0 + 2 and A2.2(1) holds. First, for r = r0 + 1 or r = r0 + 2,
and since µ(.) is (r0 + 1)-times continuously differentiable, a Taylor decomposition of order

r0+1 (similarly to the derivation of (4.3)) gives E(∆
(u)
r,k X) = O(n−(r0+1)). Next, from (4.18)

and Lemma 4.1(i), one obtains vn(r) = O
(
n−2r0ϕ−1

1n (β0)
)
with ϕ1n(β0) given by the relation

(4.9), implying in turn that S2 = O
(
exp(−C(r)n2(r0+1)ϕ1n(β0))η

2
n(r)

)
. Moreover, for ψn(β0)

defined in (4.8) and ψn(β0)ηn(r) → 0, we have : S1 = O
(
exp

(
− C(r)ϕ2n(β0)η

2
n(r)

))

for, again, some generic positive constant C(r) and with ϕ2n(β0) given by (4.10). As a
consequence, one gets that S2 = o(S1) for all β0 ∈]0, 34 ] while S2 = O(S1) for β0 ∈]34 , 1[ (this
last case is of no interest since exponentials don’t converge toward 0).

On the other hand, if ψn(β0)ηn(r) → ζ ∈]0,+∞], one gets the claimed bound from (4.20)

since S2 is the worst of the same order as S1 = O
(
exp

(
− C(r)ϕ1n(β0)ηn(r)

))
.

(ii) Case r = r0 + 2 and Assumption A2.2(2) holds. In this case, Lemma 4.1(ii) implies that

vn(r) = O
(
n−(4r0+2β0+1)

)
for all β0 ∈]0, 1[, and if ψn(β0)ηn(r) → 0, S2 is again negligible

toward S1 = O
(
exp

(
− C(r)n2H+1η2n(r)

))
. The same conclusion holds for ψn(β0)ηn(r) →

ζ ∈]0,+∞], since the bound (4.20) results in S1 = O
(
exp

(
− C(r)nH+1ηn(r)

))
.

(iii) Case r = 1, . . . , r0 (r0 ≥ 1). For this case, we have E(∆
(u)
r,k X) = O(n−r) and, Lemma 4.1(iii)

implies that max
0≤k≤nr+1

nr+1∑

ℓ=0

|Cr(k, ℓ)| = O(n−2r+1). We get that vn(r) = O
(
n−4r+2

)
and

S1 = O
(
exp

(
− C(r)n2rηn(r)

))
. Next, the condition n2rηn(r) → ∞ implies

P

( ∣∣∣(∆(u)
r X)2 − E

(
(∆

(u)
r X)2

)∣∣∣ ≥ ηn(r)
)

= O
( 1

n2rηn(r)
exp

(
− C(r)n4rη2n(r)

))
+O

(
exp

(
−C(r)n2rηn(r)

))
.

and the first term is again negligible. �

4.3. Proof of Theorem 2.1.
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Proof. Recall that r̂0, defined by equation (2.5), is given by:

r̂0 = min
{
r ∈ {2, . . . , mn} : Bn(r) holds

}
− 2

where the event Bn(r) is defined by Bn(r) =
{
n2r−2

(
∆

(1)
r X

)2 ≥ bn
}
.

First remark that mn → ∞ guarantees that for n large enough, r0 + 2 ∈ {2, . . . , mn}.
From the definition of r0, we write

E
(
r̂0 − r0)

2 =
mn−2∑

r=0

(r − r0)
2
P
(
r̂0 = r

)
+ (l0 − r0)

2
P
(
r̂0 = l0

)

and





P
(
r̂0 = 0

)
= P

(
Bn(2)

)
if r = 0,

P
(
r̂0 = r

)
= P

(
Bc

n(2) ∩ · · · ∩Bc
n(r + 1) ∩Bn(r + 2)

)
if r = 1, . . . , mn − 2,

P
(
r̂0 = l0

)
≤ P

(
Bc

n(r0 + 2)
)
.

Next, setting
∑−1

0 · · · = ∑−1
1 · · · = ∑0

1 · · · ≡ 0, we have for all r0 ∈ N0:

E
(
r̂0 − r0

)2
= r2

0
P
(
Bn(2)

)
+

r0−1∑

r=1

(r − r0)
2
P
(
Bc

n(2) ∩ · · · ∩Bc
n(r + 1) ∩ Bn(r + 2)

)

+
mn−2∑

r=r0+1

(r − r0)
2
P
(
Bc

n(2) ∩ · · · ∩ Bc
n(r + 1) ∩Bn(r + 2)

)

+ (l0 − r0)
2
P
(
r̂0 = l0

)

≤
r0−1∑

r=0

(r − r0)
2
P
(
Bn(r + 2)

)
+ P

(
Bc

n(r0 + 2)
)( mn−2∑

r=r0+1

(r − r0)
2 + (l0 − r0)

2
)

≤ r2
0

r0−1∑

r=0

P
(
Bn(r + 2)

)
+O

(
P
(
Bc

n(r0 + 2)
)
m3

n

)

= O
(
T1n(r0)

)
+O

(
m3

nT2n(r0)
)

where we have set T1n(0) = 0 and

T1n(r0) =

r0+1∑

r=2

P
(
Bn(r)

)
, for r0 ≥ 1(4.21)

T2n(r0) = P
(
Bc

n(r0 + 2)
)
.(4.22)

Now, the study of terms T1n and T2n may be derived from Proposition 4.1.

Term T1n(r0) (when r0 ≥ 1).
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If r1 := r0 + 1 and
∑1

2 · · · ≡ 0, we have

T1n(r0) =

r0∑

r=2

P

((
∆

(1)
r X)2 ≥ bnn

2−2r
)
+ P

((
∆

(1)
r1 X)2 ≥ bnn

−2r0
)

=

r0∑

r=2

P

((
∆

(1)
r X)2 − E

(
∆

(1)
r X)2 ≥ bnn

2−2r − E
(
∆

(1)
r X)2

)

+ P

((
∆

(1)
r1 X)2 − E

(
∆

(1)
r1 X)2 ≥ bnn

−2r0 − E
(
∆

(1)
r1 X)2

)

For r = 2, . . . , r0 (r0 ≥ 2) and ηn(r) = bnn
2−2r − E

(
∆

(1)
r X)2, one obtains n2rηn(r) ∼ bnn

2 →
∞ by relation (2.4) of Proposition 2.1(ii). We make use of the bound (4.15) of Proposition 4.1
to obtain that the first term is of order O

(
exp(−D(r0) bnn

2)
)
. For the second term, we set

ηn(r0) = bnn
−2r0 − E

(
∆

(1)
r1 X)2. Proposition 2.1(i) implies that ψn(β0)ηn(r0) ≥ bnn

2β0 →
∞ for all β0 ∈]0, 1[, which gives, help to the exponential bound established in (4.12), a

O
(
exp

(
−D(r0)bn(n

2β0+1
1]0, 1

2
[(β0)+

n2

lnn
1{ 1

2
}(β0)+n

2
1] 1

2
,1[(β0)

))
for this term. To conclude,

we obtain that :

T1n(r0) = O
(
exp

(
−D(r0)bn

(
n2β0+1

1]0, 1
2
[(β0) +

( n2

lnn

)
1{ 1

2
}(β0) + n2

1] 1
2
,1[(β0)

)))
.

Term T2n(r0). We have for r2 = r0 + 2:

T2n(r0) = P

((
∆

(1)
r2 X

)2
< bnn

−2r0−2
)

= P

(
E

( (
∆

(1)
r2 X

)2 )−
(
∆

(1)
r2 X

)2
> E

( (
∆

(1)
r2 X

)2 )− bnn
−2r0−2

)
.

If we set ηn(r0) = E

( (
∆

(1)
r2 X

)2 ) − bnn
−2r0−2, the condition bnn

2β0−2 → 0 and Proposi-

tion 2.1(i) imply that ψn(β0)ηn(r0) ≥ nHηn(r0) → THℓ(r2, r0, β0) > 0 with ℓ(r2, r0, β0) given
in relation (2.3). For some positive generic constant D(r0) not depending on n, Proposi-
tion 4.1 with the bound (4.12) gives, if Assumption A2.2(1) holds:

T2n(r0) = O

(
exp

(
−D(r0)

(
n1]0, 1

2
[(β0) +

( n

lnn

)
1{ 1

2
}(β0) + n2(1−β0)1] 1

2
,1[(β0)

)))
,

while if Assumption A2.2(2) holds, the bound (4.14) results in:

T2n(r0) = O
(
exp(−D(r0)n)

)

for all β0 ∈]0, 1[. For p = 1, 2, we get that T1n(r0) = o
(
T2n(r0)

)
and the claimed result

follows. �

4.4. Proof of Theorem 2.2.
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Proof. We start the proof with, either p = 1 or p = 2, and thus denote by r̂p (resp. rp) the
quantity r̂0 + p (resp. r0 + p). For some rp ≥ rp, we set

(4.23) ln(β0, r0, p) = −1

2

1

(n− urp + 1)

n−urp∑

k=0

rp∑

i,j=0

ai,rpaj,rp(ij)
r0

×
∫∫

[0,1]2

(1− v)r0−1(1− w)r0−1

(r0 − 1)!2
|iv − jw|2β0 d0

(
(k + juw)δn

)
dvdw,

for all r0 ≥ 1. In the case where r0 = 0, we set

(4.24) ln(β0, 0, p) = −1

2

1

(n− urp + 1)

n−urp∑

k=0

rp∑

i,j=0

ai,rpaj,rp |i− j|2β0 d0(
k + ju

n
).

For some r̂p ≥ r̂p, we consider the following decomposition :

ln(u/v)Ĥ(p)
n = ln

( nH

n− ur̂p + 1

n−ur̂p∑

k=0

(
∆

(u)
r̂p,k

X
)2 − (uT )Hln(β0, r0, p) + (uT )Hln(β0, r0, p)

)

− ln
( nH

n− vr̂p + 1

n−vr̂p∑

k=0

(
∆

(v)
r̂p,k

X
)2 − (vT )Hln(β0, r0, p) + (vT )H ln(β0, r0, p)

)

Hence

(4.25) ln(u/v)(Ĥ(p)
n −H) = Fn(u)− Fn(v) + o(Fn(u) + Fn(v))

with

Fn(u) =
nH

(
∆

(u)
r̂p
X
)2 − (uT )H ln(β0, r0, p)

(uT )H ln(β0, r0, p)
=
F1,n,p(u) + F2,n,p(u) + F3,n,p(u)

(uT )Hln(β0, r0, p)

where F1,n,p(u) = nH
((

∆
(u)
r̂p
X
)2−

(
∆

(u)
rp Xk

)2)
, F2,n,p(u) = nH

((
∆

(u)
rp X

)2−E

( (
∆

(u)
rp X

)2 )
)

and F3,n,p(u) = nH
E

( (
∆

(u)
rp X

)2 )− (uT )H ln(β0, r0, p).

(i) Study of F1,n,p(u). We show in this part that, almost surely for n large enough,
F1,n,p(u) ≡ 0 for p = 1, 2 (as a consequence of r̂0 = r0, a.s. for n large enough). For
this, we proceed similarly as in Blanke and Vial (2011), and as previously, we set

Bn(r) =
{
n2r−2

(
∆

(1)
r X

)2 ≥ bn
}
.

First, we have
{
{r̂0 = 0} = Bn(2) if r0 = 0,

{r̂0 = r0} = Bc
n(2) ∩ · · · ∩ Bc

n(r0 + 1) ∩Bn(r0 + 2) if r0 ≥ 1

so that {
{r̂0 6= r0} = Bc

n(2) if r0 = 0

{r̂0 6= r0} = Bn(2) ∪ · · · ∪Bn(r0 + 1) ∪Bc
n(r0 + 2) if r0 ≥ 1.



28 D. BLANKE AND C. VIAL

Then, for all r0 ≥ 0 and n large enough: P(r̂0 6= r0) ≤ T1n(r0) + T2n(r0) with T1n(r0) and
T2n(r0) defined in (4.21)-(4.22). We have shown that T1n = o

(
T2n(r0)

)
and T2n(r0) has an

exponential decreasing. This implies that
∑

nP(r̂0 6= r0) <∞, so, almost surely for n large
enough, r̂0 = r0. As a consequence:

(4.26) F1,n,p(u) ≡ 0

for p = 1 or p = 2, a.s. for n large enough.

(ii) Study of F2,n,p(u). We apply directly Proposition 4.1 with p = 1 or p = 2. For

p = 1, we have: P

(
|F2,n,1(u)| ≥ ε

)
= P

( ∣∣∣
(
∆

(u)
r1 X

)2 − E

( (
∆

(u)
r1 X

)2 )∣∣∣ ≥ n−Hε
)
. Next, for

ηn = n−Hε1n(β0) where

ε := ε1n(β0) = ε0

( lnn
n

) 1
2
1]0, 3

4
[(β0) + ε0

( lnn

n1/2

)
1{ 3

4
}(β0) + ε0

( lnn

n2(1−β0)

)
1] 3

4
,1[(β0),

ε0 > 0, we get that ψn(β0)ηn → 0 for β0 ∈]0, 3
4
[, ψn(β0)ηn → ζ > 0 if β0 = 3

4
while

ψn(β0)ηn → ∞ for β0 ∈]34 , 1[. From (4.11)-(4.12), we may deduce that for all β0 ∈]0, 1[,

P

(
|F2,n,1(u)| ≥ ε1n(β0)

)
= O

(
exp(−D1(r1)ε

2
0 lnn)

)

which gives, for ε0 chosen large enough,
∑

n

P
(
|F2,n,1(u)| ≥ ε1n(β0)

)
< +∞ so that, almost

surely,

(4.27) lim sup
n→∞

ε−1
1n (β0) |F2,n,1(u)| < +∞.

For p = 2, one may apply the bound (4.13) with ε2n = ε0

( lnn
n

) 1
2
to get the same result

for all β0 ∈]0, 1[ and ε0 large enough: almost surely,

(4.28) lim sup
n→∞

ε−1
2n |F2,n,2(u)| < +∞.
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(iii) Study of F3,n,p(u). From (4.3) and proceeding similarly as in (4.4) in the case r0 ≥ 1,
we get

nH
E

( (
∆

(u)
rp X

)2 ) ∼ THδ−H
n E

( (
∆

(u)
rp X

)2 )

= TH

n−urp∑

k=0

rp∑

i,j=0

δ−2β0
n

ai,rpaj,rp(u
2ij)r0

n− urp + 1

∫∫

[0,1]2

(
(1− v)(1− w)

)r0−1

((r0 − 1)!)2
L
(r0,r0)

(
k̇iuv, k̇juw

)
dvdw

= (uT )H ln(β0, r0, p)− (uT )H
n−urp∑

k=0

rp∑

i,j=0

ai,rpaj,rp(ij)
r0

2(n− urp + 1)

∫∫

[0,1]2

(
(1− v)(1− w)

)r0−1

((r0 − 1)!)2

× |iv − jw|2β0

{
L(r0,r0)(k̇iuv, k̇iuv) + L(r0,r0)

(
k̇juw, k̇juw

)
− 2L(r0,r0)

(
k̇iuv, k̇juw

)
∣∣∣k̇iuv − k̇juw

∣∣∣
2β0

− d0(k̇juw)

}
dvdw

with ln(β0, r0, p) given by (4.23). Next, we introduce condition (2.6) by adding and subtract-
ing the function d1:

nβ1

(
nH

E

( (
∆rpX

(u)
)2 )− (uT )Hln(β0, r0, p)

)
=

− (uT )H+β1

2

n−urp∑

k=0

rp∑

i,j=0

ai,rpaj,rp(ij)
r0

(n− urp + 1)

∫∫

[0,1]2

(
(1− v)(1− w)

)r0−1

((r0 − 1)!)2
|iv − jw|2β0+β1

×
{ L

(r0,r0)(k̇iuv,k̇iuv)+L
(r0,r0)

(
k̇juw,k̇juw

)
−2L(r0,r0)

(
k̇iuv,k̇juw

)

|k̇iuv−k̇juw|2β0 − d0(k̇juw)

∣∣∣k̇iuv − k̇juw

∣∣∣
β1

− d1(k̇juw)

}
dvdw

− (uT )H+β1

2

n−urp∑

k=0

rp∑

i,j=0

ai,rpaj,rp(ij)
r0

(n− urp + 1)

∫∫

[0,1]2

(
(1− v)(1− w)

)r0−1

((r0 − 1)!)2
|iv − jw|2β0+β1

d1(k̇juw) dvdw.

The condition (2.6) implies the convergence of the inner braces to 0 (uniformly in v, w, k),
so for p = 1 or p = 2, the uniform continuity of function d1 gives:

(4.29) nβ1F3,n,p(u) −−−→
n→∞

−(uT )H+β1

2

rp∑

i,j=0

ai,rpaj,rp(ij)
r0

×
∫∫

[0,1]2

(
(1− v)(1− w)

)r0−1

((r0 − 1)!)2
|iv − jw|2β0+β1 dvdw × (

1

T

∫ T

0

d1(t) dt).

Finally, the case r0 = 0 is treated similarly, starting from (4.2) instead of (4.3).
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Conclusion. To conclude, one may note that the denominator term, ln(β0, r0, p), defined in
(4.23)-(4.24), converges to the nonzero term:

ln(β0, r0, p) −−−→
n→∞

−1

2

rp∑

i,j=0

ai,rpaj,rp(ij)
r0

×
∫∫

[0,1]2

(1− v)r0−1(1− w)r0−1

(r0 − 1)!2
|iv − jw|2β0 dvdw

1

T

∫ T

0

d0(t) dt

for r0 ≥ 1 while if r0 = 0, ln(β0, r0, p) −−−→
n→∞

−1

2

rp∑

i,j=0

ai,rpaj,rp |i− j|2β0
1

T

∫ T

0

d0(t) dt.

Relation (4.25) and expressions established in (4.26)-(4.29) lead to the final result.
�

4.5. Proof of Theorem 3.1.

Proof. First, we set r̃0 = max(r̂0, 1) and, for r̂0 and X̃r(·) respectively defined in (2.5) and

(3.1), we adopt the simpler convention that r̂0 = l0 ⇒ X̃r̃0(·) = X̃mn−1(·) and X̃r̂0+1(·) =

X̃mn
(·). Also, we will make use of the following lemma:

Lemma 4.2. For any Gaussian variable Y , E(Y 4) ≤ 3
(
E(Y 2)

)2
.

4.5.1. Study of e2ρ(app
(
r̂0)

)
. We may write

(
X(t)− X̃r̃0(t)

)2
=

mn−2∑

r=0

(
X(t)− X̃r̃0(t)

)2
1{r̂0=r} +

(
X(t)− X̃r̃0(t)

)2
1{r̂0=l0}

=

mn−2∑

r=0

(
X(t)− X̃r(t)

)2
1{r̂0=r} +

(
X(t)− X̃mn−1(t)

)2
1{r̂0=l0}

where r = max(r, 1) and for r0 = max(r0, 1),

(
X(t)− X̃r̃0(t)

)2 ≤
(
X(t)− X̃r0(t)

)2
+ 1{r̂0 6=r0}

mn−1∑

r=0,r 6=r0

(
X(t)− X̃r(t)

)2

Using Cauchy-Schwarz inequality:

e2ρ(app
(
r̂0)

)
≤

∫ T

0

E
(
X(t)− X̃r0(t)

)2
ρ(t) dt

+
(
P(r̂0 6= r0)

) 1
2

mn−1∑

r=0,r 6=r0

∫ T

0

(
E
(
X(t)− X̃r(t)

)4) 1
2
ρ(t) dt
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turning to, by lemma 4.2,

e2ρ(app
(
r̂0)

)
≤ sup

t∈[0,T]

(
E
(
X(t)− X̃r0(t)

)2)
∫ T

0

ρ(t) dt

+
√
3
(
P(r̂0 6= r0)

) 1
2

mn−1∑

r=0,r 6=r0

sup
t∈[0,T ]

(
E
(
X(t)− X̃r(t)

)2)
∫ T

0

ρ(t) dt.

Study of the term sup
t∈[0,T ]

(
E
(
X(t)− X̃r(t)

)2)
, r = 1, . . . , mn. We have

sup
t∈[0,T ]

(
E
(
X(t)− X̃r(t)

)2)
= max

k=0,...,⌊n
r
⌋−1

sup
t∈Ik

(
E
(
X(t)− X̃r(t)

)2)
.

First, suppose that r0 ≥ 1. We use the decomposition established in Blanke and Vial (2008,
lemma 4.1) to obtain, for t ∈ Ik and r∗ = min(r, r0):

E
(
X(t)− X̃r(t)

)2
=

r∑

i,j=0

Li,k,r(t)Lj,k,r(t)
(ijδ2n)

r∗

((r∗ − 1)!)2

∫∫

[0,1]2

(
(1− v)(1− w)

)r∗−1

×
{
L
(r∗,r∗)(krδn+(t− krδn)v, krδn+(t− krδn)w)−L

(r∗,r∗)(krδn+(t− krδn)v, krδn+ jδnw)

− L
(r∗,r∗)(krδn + iδnv, krδn + (t− krδn)w) + L

(r∗,r∗)(krδn + iδnv, krδn + jδnw)
}
dvdw.

For r = 1, . . . , r0 − 1, (r0 ≥ 2), we get that

E
(
X(t)− X̃r(t)

)2
=

r∑

i,j=0

Li,k,r(t)Lj,k,r(t)
(ijδ2n)

r

((r − 1)!)2

∫∫

[0,1]2

(
(1− v)(1− w)

)r−1

∫ krδn+(t−krδn)v

krδn+iδnv

∫ krδn+(t−krδn)w

krδn+jδnw

L
(r+1,r+1)(s, t) dsdt.

As L(r+1,r+1)(·, ·) is continuous, we obtain the bound: E
(
X(t) − X̃r(t)

)2
= O

(
δ2r+2
n

)
. For

r = r0, . . . , mn, we arrive at

E
(
X(t)− X̃r(t)

)2
=

r∑

i,j=0

Li,k,r(t)Lj,k,r(t)
(ijδ2n)

r0

((r0 − 1)!)2

∫

[0,1]2

(
(1− v)(1− w)

)r0−1

×
{
L
(r0,r0)(krδn+(t− krδn)v, krδn+(t− krδn)w)−L

(r0,r0)(krδn+(t− krδn)v, krδn+ jδnw)

− L
(r0,r0)(krδn + iδnv, krδn + (t− krδn)w) + L

(r0,r0)(krδn + iδnv, krδn + jδnw)
}
dvdw.

Adding and subtracting terms like 1
2
L
(r0,r0)(krδn + (t − krδn)v, krδn + (t − krδn)v) and

1
2
L(r0,r0)(krδn+(t−krδn)w, krδn+(t−krδn)w), or 1

2
L(r0,r0)(krδn+(t−krδn)v, krδn+(t−krδn)v)

and 1
2
L(r0,r0)(krδn+jδnv, krδn+jδnv), ..., we make use four times of the Hölderian regularity

condition (4.1) to obtain, using the bound Li,k,r(t) ≤ rr, that

- for r = r0, sup
t∈[0,T ]

E
(
X(t)− X̃r0(t)

)2
= O

(
δ2(r0+β0)
n

)
,
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- for r = r0 + 1, . . . , mn, sup
t∈[0,T ]

E
(
X(t)− X̃r(t)

)2
= O

(
m2(mn+r0+β0)

n δ2(r0+β0)
n

)
.

Next, for r0 = 0, we observe that above results hold true starting from

E
(
X(t)− X̃r(t)

)2
=

r∑

i,j=0

Li,k,r(t)Lj,k,r(t)
{
L(t, t)− L(t, krδn + jδn)

− L(krδn + iδn, t) + L(krδn + iδn, krδn + jδn)
}
.

Collecting these result, and using the exponential upper bound established in Blanke and
Vial (2011) for P(r̂0 6= r0), we arrive at the final result, help to the logarithmic order of mn.

4.5.2. Study of e2ρ(int
(
r̂0)

)
. Since

∫ T

0

(
X(t)− X̃r+1

)
ρ(t) dt is again a Gaussian variable, in a

similar way as for approximation, we get the bound:

e2ρ(int
(
r̂0)

)
≤

⌊ n
r0+1

⌋−1∑

k=0

⌊ n
r0+1

⌋−1∑

ℓ=0

∫

Ik

∫

Iℓ

E
(
X(t)− X̃r0+1(t)

)(
X(s)− X̃r0+1(s)

)
ρ(t)ρ(s) dsdt

+
√
3
(
P(r̂0 6= r0)

) 1
2

mn∑

r=0,r 6=r0

(
sup

t∈[0,T ]

(
E
(
X(t)− X̃r+1(t)

)2) 1
2
)2( ∫ T

0

ρ(t) dt
)2
.

Study of the term E
(
X(t)− X̃r0+1(t)

)(
X(s)− X̃r0+1(s)

)
, (s, t) ∈ Iℓ×Ik. Again from lemma

4.1 of Blanke and Vial (2008), we get

E
(
X(t)− X̃r0+1(t)

)(
X(s)− X̃r0+1(s)

)

=

r0+1∑

i,j=0

Li,k,r0+1(t)Lj,k,r0+1(s)
(ijδ2n)

r0

((r0 − 1)!)2

∫∫

[0,1]2
((1− v)(1− w))r0−1

×
{
L
(r0,r0)(k(r0 + 1)δn + (t− k(r0 + 1)δn)v, ℓ(r0 + 1)δn + (t− ℓ(r0 + 1)δn)w)

− L
(r0,r0)(k(r0 + 1)δn + (t− k(r0 + 1)δn)v, ℓ(r0 + 1)δn + jδnw)

− L
(r0,r0)(k(r0 + 1)δn + iδnv, ℓ(r0 + 1)δn + (t− ℓ(r0 + 1)δn)w)

+ L
(r0,r0)(k(r0 + 1)δn + iδnv, ℓ(r0 + 1)δn + jδnv)

}

For non-overlapping intervals Ik and Iℓ, that is |k − l| ≥ 2, we make use of Condition A2.2(2)
four times, by adding and subtracting the necessary terms, noting that

r0+1∑

i,j=0

Li,k,r0+1(t)Lj,ℓ,r0+1(s)(iδn)
r1(jδn)

r2 = (t− k(r0 + 1)δn)
r1(s− ℓ(r0 + 1)δn)

r2
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with either ri = r0 or ri = r0 + 1 for i = 1, 2. By this way, we get

⌊ n
r0+1

⌋−1∑

k,ℓ=0

|k−ℓ|≥2

∫

Ik

∫

Iℓ

E
(
X(t)− X̃r0+1(t)

)(
X(s)− X̃r0+1(s)

)
ρ(t)ρ(s) dsdt

= O
(
δ2(r0+β0+1)
n

⌊ n
r0+1

⌋−1∑

k,ℓ=0

|k−ℓ|≥2

∣∣ |k − ℓ| − 1
∣∣−2(2−β0)

)
= O

(
nδ2(r0+β0+1)

n

)
= O

(
δ2(r0+β0)+1
n

)
.

For overlapping intervals Ik and Iℓ, that is |k − l| ≤ 1, we make use of Cauchy-Schwarz in-
equality to obtain the same bound as above. Since the second part of e2ρ(int

(
r̂0)

)
is negligible,

we obtain the claimed result. �
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