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Abstract The paper investigates the effect of soil-structure interaction on the
dynamic response of structures. A non-parametric probabilistic formulation for
the modelling of an uncertain soil impedance is used to account for the usual
lack of information on soil properties. Such a probabilistic model introduces the
physical coupling stemming from the soil heterogeneity around the foundation.
Considering this effect, even a symmetrical building displays a torsional motion
when submitted to earthquake loading. The study focuses on a multi-story
building modeled by using equivalent Timoshenko beam models which have
different mass distributions. The probability density functions of the maximal
internal forces and moments in a given building are estimated by Monte Carlo
simulations. Some results on the stochastic modal analysis of the structure are
also given.

Keywords soil-structure interaction · uncertainties · internal forces · seismic
loads

1 Introduction

This paper deals with the simulation of the dynamic response of a building un-
der seismic loads with uncertainties on the soil-structure interaction modeling.
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The soil-structure interaction is often taken into account under the assump-
tion of a rigidly moving foundation. Then, the relation between the degrees of
freedom of the foundation and the forces and moments applied by the soil on
the foundation are then modeled by a soil impedance matrix that can be com-
puted by integration of the three-dimensional equations of elasticity within
a half-space soil domain or estimated by simplified methods. In [1], for in-
stance, an easy-to-use engineering model is built to obtain an estimation of
the impedance from a compilation of complete computations. It involves simple
analytical equations for evaluating the impedance matrix, taking into account
the shape of the foundation and the nature of the soil. The ground around and
below the foundation is however neither homogeneous nor isotropic and few
informations are usually available about the real soil properties. This usual
lack of information on dynamic soil properties induces uncertainties on the
soil-structure interaction. Such uncertainties have to be taken into account in
order to improve the ability of the numerical model for prediction. Obviously,
the definition of the seismic loadings include also many uncertainties. In this
paper, we restrict the study to uncertainties coming from the foundation soils.

Among the different methods that are available in the literature, the proba-
bilistic approach is the most suitable for modeling these uncertainties. A para-
metric probabilistic approach would consist in modeling the uncertain param-
eters of soil impedance model by random variables or random fields. Such an
approach has been proposed by [2] for a Winkler [3] foundation model. It has
been shown that a coupling between translation and torsion of the foundation
could then occur even if the foundation has symmetry geometrical properties.
Another example of parametric probabilistic formulation of the uncertainties
on the soil interaction parameters can be found in [4] where the uncertain
mechanical properties of the soil are modeled by random fields. Nevertheless,
it is obvious that a parametric probabilistic approach cannot be used to model
the uncertainties that are not related to parameters of the model. This is the
case if mechanical simplifications are assumed for the construction of the soil
impedance model. These simplifications are usually due to a high complexity
level of the real physical soil impedance or it can also be due to a lack of ex-
perimental measurements on the properties of the soil and of the foundation.
Nevertheless, a non-parametric probabilistic formulation allows to quantify
these uncertainties. It consists in modeling the uncertain soil impedance by a
random matrix for which the probability distribution is explicitly constructed
by using the information theory [5,6,7,8]. In such an approach, the parameters
of the soil impedance are not modeled by random variables or random fields
anymore. Such a construction has been introduced in [9,10] for the general-
ized mass, stiffness and damping matrices of a mechanical dynamical system
and extended in [11]for modelling uncertainties in the case of nonlinear dyn-
namics of building submitted to seismic loads. In this paper, we extend this
non-parametric probabilistic formulation to the uncertainties related to the
soil impedance matrix modeling, along the lines introduced by [12]. The infor-
mation theory is used to construct the probabilistic model of the random soil
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impedance matrix, but contrarily to [12], a simplified version of the impedance
is used, which is nearer to the usual engineering practice.

In section 2, an engineering model for the soil structure interaction is pre-
sented. Then, two simplified mechanical models of multi-story buildings with
a rigid foundation are considered. These models involve Timoshenko beams.
A widely used beam model in engineering is a ”lumped mass model” (referred
to as model 1 in the paper) made up of masses that are located at the top
ends of weightless Timoshenko beam elements. A more sophisticated lumped
mass model allowing torsional effects to be taken into account can be found
in [13]. In this paper, we present a new Timoshenko beam model with a ho-
mogeneous mass distribution (referred to as model 2 in the paper). Then, a
non-parametric probabilistic model of the uncertain soil impedance is con-
structed. The random dynamic model for the soil structure interaction is then
constructed by replacing the soil impedance matrix by a random matrix for
which the probability density function is constructed by using the maximum
entropy principle [5,6,7,8] with the available information (that is related with
the algebraic properties of the impedance matrix: its mean value defined by the
engineering model and algebraic conditions for the existence of a second order
random solution of the random model). Then, some computational results are
presented for a multi-story building. The probability density functions of the
maximal internal forces and moments inside a building are estimated by the
use of the Monte Carlo method [14].

2 Deterministic model of the structure and of the soil-structure

interaction

2.1 Impedance of the soil-structure interaction

In this section, the deterministic model (which will be considered hereafter
as the mean model in the probability sense) used for modeling a multi-story
building with a rigid foundation and with soil-structure interaction under seis-
mic load is presented. Hereafter, the foundation is considered as a rigid body.
Consequently, the impedance in the frequency domain is a complex symmetric
6×6 matrix [Z(ω)] = [KS ]+iω [DS ] where [KS ] and [DS ] are positive-definite
symmetric matrices that characterize the stiffness and the damping of the soil
interaction. From a general point of view, these matrices are frequency de-
pendent [1]. However, in the following, we use the approximation that these
matrices are frequency independent. Such an approximation is indeed very
often used by engineers.

2.2 Mass matrix of the foundation and added mass matrix of the
soil-structure interaction

The inertia of the foundation is defined by a positive-definite symmetric 6× 6
matrix [Mf ] which is block diagonal. The first 3 × 3 block is the diagonal
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matrix mf [I3] where mf is the mass of the foundation and [I3] is the iden-
tity matrix of R3. The last 3× 3 block is the inertia matrix of the foundation
with respect to the axes (Oe1), (Oe2) and (Oe3). In addition, let the positive-
definite symmetric 6×6 matrix [Ma] be the added mass matrix corresponding
to the mass of the soil activated by the foundation due to soil-structure inter-
action. We then introduce the positive-definite symmetric 6 × 6 matrix [MS ]
which is written as [MS ] = [Mf ] + [Ma].

2.3 Model 1 for the structure: lumped mass beam model

The occurrence of an earthquake is modeled by introducing a far free-field
ground motion. This free-field motion is characterized by an accelerogram
ag(t) = (a1(t), a2(t), a3(t)) in which a1(t), a2(t) and a3(t) are the acceleration
components of the free-field ground motion along axes (Oe1), (Oe2) and (Oe3).
The displacement of the foundation is then described with respect to a non-
inertial frame that moves with the free-field soil acceleration.

It can be considered that the constitutive equations of a multi-story build-
ing are asymptotically equivalent to the constitutive equations of a Timo-
shenko beam or a flexure beam [15,16]. Consequently, Timoshenko beam mod-
els are widely used in order to compute the dynamical response of multi-story
buildings.

A commonly used model is the lumped mass beam model (see Figure 1) for
which the ceilings are connected by weightless Timoshenko beams and each
ceiling is represented as a rigid body. Let u0(t) ∈ R

3 and θ0(t) ∈ R
3 be the

displacement vector and the rotation vector of the center of the foundation.
The displacement vector of the node located at the center of the n-th ceiling
is denoted by un(t) = (un,1(t), un,2(t), un,3(t)) and the rotation vector of the
n-th ceiling is denoted by θn(t) = (θn,1(t), θn,2(t), θn,3(t)). The building (with
its foundation) is therefore modeled by Nsto + 1 rigid bodies (Nsto ceilings
and one foundation) and the number of degrees of freedom of the beam model
is NDOF = 6 (Nsto + 1). Then, the effective stiffness parameters of the beam
element are obtained from the properties of constitutive elements.

The reduced lumped mass beam model is built by using the modal represen-
tation; it means that the displacement along the structure u(t) = (u0(t),θ0(t),
. . . , uNsto

(t), θNsto
(t)) ∈ R

NDOF is given by:

u(t) ≃

N
∑

α=1

qα(t)Φα , (1)

where qα(t) are the generalized coordinates of u(t) within the basis of eigenvec-
tors Φα = (φ0,α, . . . ,φNsto,α) of the building with its foundation coupled with
the soil. More details on the construction of this reduced lumped mass beam
model can be found in Appendix A. Let the vector q(t) = (q1(t), . . . , qN (t))
be the vector of the generalized coordinates. Then, it can be shown that

([M ] + [MS ]) q̈(t) + [DS ] q̇(t) + ([K ] + [KS ]) q(t) = f(t) + fS(t) (2)
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with the initial conditions

q(0) = 0 and q̇(0) = 0 (3)

where the positive-definite symmetric N × N real matrices [M ], [MS ], [DS ],
[KS ], the positive symmetric N × N real matrix [K ] and the vectors of the
generalized external forces f(t) and fS(t) are explicitly given in Appendix A.

2.4 Model 2 for the structure: Timoshenko beam model with a homogeneous
mass distribution

Hereinafter, an alternative Timoshenko beam model is presented. The build-
ing is modeled by only one equivalent Timoshenko beam with a homoge-
neously distributed mass. The foundation is connected to the lower part of
the beam. Since the inertia of the Timoshenko beam is taken into account,
the Timoshenko beam dynamic equations are used. The kinematics is then
described by the displacement field uG(x1, t) = (u1(x1, t), u2(x1, t), u3(x1, t))
of the center G(x1) of the cross section located at position x1 and by the ro-
tation of the cross section θ(x1, t) = (θ1(x1, t), θ2(x1, t), θ3(x1, t)) . The beam
section displacement field u is a rigid displacement field that can be written as
u(x1, x2, x3, t) = uG(x1, t)+θ(x1, t)×(0, x2, x3). The boundary value problem
of the beam model is then written as

ρSü1 − S E u′′
1 = −ρS a1 (4)

ρSü2 −Gk2 S(u
′′
2 − θ′3) = −ρS a2 (5)

ρSü3 −Gk3 S (u′′
3 + θ′2) = −ρS a3 (6)

ρI1θ̈1 −GI1 θ
′′
1 = 0 (7)

ρI2θ̈2 +Gk3 S (u′
3 + θ2)− E I2 θ

′′
2 = 0 (8)

ρI3θ̈3 −Gk2 S (u′
2 − θ3)− E I3 θ

′′
3 = 0 (9)

These equations involve the inertia parameters and the stiffness parameters of
the equivalent beam. The mass per unit length is ρS and the mass moment
of inertia per unit length with respect to the axes of Rg are ρ I1, ρ I2 and ρ I3.
The axial stiffness is SE, the shearing stiffnesses are Gk2 S and Gk3 S, the
torsion stiffness is GI1 and the bending stiffnesses are E I2 and E I3.
The internal force fint(x1, t) and the internal moment mint(x1, t) are written
as

fint(x1, t) =





S E u′
1

Gk2S (u′
2 − θ3)

Gk3S (u′
3 + θ2)



 , mint(x1, t) =





GI1 θ
′
1

E I2 θ
′
2

E I3 θ
′
3



 (10)

Since the top of the building (x1 = h) is free, we then have the boundary
conditions

fint(h, t) = 0 and mint(h, t) = 0 (11)
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The lower part of the building is connected with the rigid foundation which is
coupled with the soil. We then have

[MS ] ü0(t) + [DS ] u̇0(t) + [KS ]u0(t) = f0(t)− [MS ] a(t) (12)

where u0(t) = (uG(0, t),θ(0, t)) and f0(t) = (fint(0, t),mint(0, t)) are the vec-
tor of the degrees of freedom and the vector of the internal forces and moments
of the beam at x1 = 0 and where a(t) = (a1(t), a2(t), a3(t), 0, 0, 0). Moreover,
at time t = 0, the structure is at rest; so we have the initial conditions

u(x1, 0) = 0 and u̇(x1, 0) = 0 for all x1 ∈ [0, h] . (13)

The reduced Timoshenko beam model with a homogeneous mass distribu-
tion is built with the approximation on u = (u1, u2, u3, θ1, θ2, θ3)

u(x1, t) ≃

N
∑

α=1

qα(t)Φα(x1) , (14)

where qα(t) are the generalized coordinates of u(x1, t) within the basis of
eigenfunctions Φα for the structure with its foundation coupled with the soil.
More details on the construction of this reduced Timoshenko beam model
with a homogeneous mass distribution can be found in Appendix B. Let
q(t) = (q1(t), . . . , qN (t)) be the vector of the generalized coordinates. Then, it
can be shown that

([M ] + [MS ]) q̈(t) + [DS ] q̇(t) + ([K ] + [KS ]) q(t) = f(t) + fS(t) (15)

with the initial conditions

q(0) = 0 and q̇(0) = 0 (16)

where the positive-definite symmetric N × N real matrices [M ], [MS ], [DS ],
[KS ], the positive symmetric N × N real matrix [K ] and the vectors of the
generalized external forces f(t) and fS(t) are explicitly given in Appendix B.

It may be noticed that both reduced models defined by Eqs. (2) and (15)
have the same form, allowing to use a systematic method for building the
probabilistic model in the following section.

3 Probabilistic model for the soil-structure interaction and the

response of the building

3.1 Stochastic soil-structure interaction modeling

The non-parametric probabilistic model (see for instance [9] and [10]) consists
in substituting the deterministic matrices [MS ], [DS ] and [KS ] by random ma-
trices [MS ], [DS ] and [KS ]. The probabilistic model of these random matrices
is constructed by using the maximum entropy principle with the available in-
formation: the mean values of these random matrices, the algebraic properties
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of the mass, stiffness and damping random matrices (symmetry, definiteness,
etc.), and conditions for the solution to have a finite second order moment.
It is shown in the previously quoted papers that the probability density func-
tions p[MS ], p[DS ] and p[KS ] of those random matrices with respect to the

measure dÃ = 2nS(nS−1)/4
∏

1≤i≤j≤n[A]ij (with nS = 6) on the set M+ of the
symmetric positive nS × nS real matrices are then written as

p[MS ]([A]) = 1M+([A]) cM (det[A])λM−1 exp{−
nS − 1 + 2λM

2
tr([MS ]

−1[A])} ,

(17)

p[DS ]([A]) = 1D+([A]) cD (det[A])λD−1 exp{−
nS − 1 + 2λD

2
tr([DS ]

−1[A])} ,

(18)

p[KS ]([A]) = 1K+([A]) cK (det[A])λK−1 exp{−
nS − 1 + 2λK

2
tr([KS ]

−1[A])} ,

(19)
where 1M+([A]) is equal to 1 if [A] belongs to M+ and is equal to zero if [A] does
not belong to M+; tr(·) is the trace operator; cM, cD and cK are normalization
constants; λM, λD, λK are positive real parameters that depend on the statis-
tical fluctuation of random matrices [MS ], [DS ] and [KS ]. Appendix C briefly
describes how samples [MS(a)], [DS(a)] and [KS(a)] with probability density
functions p[MS ], p[DS ] and p[KS ] can be numerically computed in practice.

3.2 Stochastic reduced model of the building under seismic loads

The uncertainties on the soil-structure interaction are taken into account by
substituting into both reduced models defined by Eqs. (2) or (15), the ma-
trices [MS ], [DS ], [KS ] and vector fS(t) by random matrices [MS ], [DS ], [KS ]
and random vector FS(t). The random matrices are obtained by projection of
random matrices [MS ], [DS ] and [KS ] (defined in previous section) onto the
deterministic modes. Thus [MS ], [DS ] and [KS ] are random definite-positive
symmetric N × N matrices whose components are [MS ]βα = ΦT

0,β [MS ]Φ0,α,

[DS ]βα = ΦT
0,β [DS ]Φ0,α and [KS ]βα = ΦT

0,β [KS ]Φ0,α (for model 1) and

[MS ]βα = Φβ(0)
T [MS ]Φα(0), [DS ]βα = Φβ(0)

T [DS ]Φα(0) and [KS ]βα =
Φβ(0)

T [KS ]Φα(0) (for model 2). Similarly, the components of random vector

FS(t) are random variables {FS(t)}β = −Φ0,β
T [MS ] a(t) (for model 1) and

{FS(t)}β = −Φβ(0)
T
[MS ] a(t) (for model 2).

Consequently, the solution of such a stochastic system of differential equa-
tions is a random vector Q(t) such that,

([M ] + [MS ]) Q̈(t) + [DS ] Q̇(t) + ([K ] + [KS ]) Q(t) = f(t) + FS(t) , (20)

with the initial conditions

Q(0) = 0 and Q̇(0) = 0 . (21)
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The random displacement of the structure is given by:

U =

N
∑

α=1

Qα Φα , (22)

where Q1, . . . , QN are the random components of the random solution Q and
where Φ1, . . . ,ΦN are the N (deterministic) eigenvectors (for model 1) and
eigenfunctions (for model 2) introduced in the previous sections.

3.3 Construction of the stochastic response by using the Monte Carlo
simulations

The Monte Carlo simulations are used in order to calculate some statistical
quantities related to the probabilistic response of the uncertain dynamical
system. The method consists in constructing a given number NS of samples
of random matrices [MS ], [DS ] and [KS ] with probability density functions
p[MS ], p[DS ] and p[KS ]. For each occurence [MS(a)], [DS(a)] and [KS(a)] of
the random matrices, the sample Q(t; a) of random vector Q(t) is computed
as the solution of:

([M ] + [MS(a)]) Q̈(t; a) + [DS(a)] Q̇(t; a) + ([K ] + [KS(a)]) Q(t; a)

= f(t) + FS(t; a) , (23)

with the initial conditions

Q(0; a) = 0 and Q̇(0; a) = 0 , (24)

For model 1, components of samples [MS(a)], [DS(a)] and [KS(a)] are

[MS(a)]βα = ΦT
0,β [MS(a)]Φ0,α ,

[DS(a)]βα = ΦT
0,β [DS(a)]Φ0,α ,

[KS(a)]βα = ΦT
0,β [KS(a)]Φ0,α .

For model 2, components of samples [MS(a)], [DS(a)] and [KS(a)] are

[MS(a)]βα = Φβ(0)
T [MS(a)]Φα(0) ,

[DS(a)]βα = Φβ(0)
T [DS(a)]Φα(0) ,

[KS(a)]βα = Φβ(0)
T [KS(a)]Φα(0) .

Similarly, the random components of vector FS(t; a) are

{FS(t; a)}β = −Φ0,β
T [MS(a)] a(t) , for model 1 ,

{FS(t; a)}β = −Φβ(0)
T
[MS(a)] a(t) , for model 2 .
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Then samples U(t; a) (for model 1) or U(t, x1; a) (for model 2) are given by:

U(a) =

N
∑

α=1

Qα(a)Φα , (25)

where Q1(a), . . . , QN (a) are the components of sample vector Q(a).
The maximal internal moments and forces over the whole structure and

during the seismic load for each model are random variables denoted by
V1, V2, V3 andM1,M2,M3. Sample values V1(a), V2(a), V3(a) andM1(a),M2(a),M3(a)
are calculated for each sample U(a) of the displacement field. Finally, sta-
tistical quantities related to the probabilistic response of the uncertain dy-
namical system are calculated by using usual tools of the statistic with a
large enough number NS of samples U(a1), . . . ,U(aNS

), V1(a1), . . . , V1(aNS
),

V2(a1), . . . , V2(aNS
), V3(a1), . . . , V3(aNS

) and M1(a1), . . . ,M1(aNS
), M2(a1),

. . . , M2(aNS
) and M3(a1), . . . ,M3(aNS

).

4 Numerical results

In this section, the stochastic mechanical beam model is applied to the case
of a standard multi-story building.

4.1 Description of the building

The building under study is a 8-stories building. Figure 2 shows a schema of
the building and its foundation. Every story is 30m long (e2 direction), 14m
wide (e3 direction) and has a height Hsto = 2.7m so that the total height of
the building is h = Nsto×Hsto = 21.6m. All stories are identical and therefore
the stiffness beam parameters are computed by using a finite element compu-
tation of a story where the walls, the floor and the ceiling are meshed with
Reissner-Mindlin plate finite elements. They are assumed to be made up of an
isotropic material for which Young’s modulus is 32 GPa, the shearing modulus
is 13 GPa and the mass density is 2500 kg.m−3. For the sake of simplicity
the anisotropy induced by the reinforced concrete elements has not been taken
into account.

The seismic acceleration due to the earthquake is decribed by using a signal
record from the Parkfield earthquake which occurred on September 28, 2004
in the Parkfield area close to Vineyard Canyon in California with a moment-
magnitude of 6.0. The 3 components of the seismic accelerogram have been
measured in Donna Lee station [17] at 14.5 km from the epicenter. For more
information about the 2004 Parkfield event, the reader should refer to [18]. The
P-wave and S-wave velocity were measured in the area by Boore [19] using lay-
ered soil models. The data are available at http://quake.usgs.gov/∼boore/.
From the S-wave velocity and P-wave velocity measured in Vineyard Canyon
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area a shearing modulus of 162 MPa and a Young’s modulus of 440MPa

were obtained for the soil properties .
Figure 3-a shows the acceleration signal, the Fourier transform modulus and
the ridges of the wavelet transform for the transverse component e2 of the
seismic acceleration signal t 7→ ag(t). Ridges are curves in the time frequency
plane localizing the concentration of energy. The norm of the complex wavelet
transform of the studied signal is maximal on these curves (see [20] for more
details on that technique) . These curves are plotted in gray scale so that the
darker the ridges are, the higher is the energy. The process favors the high
frequencies components which can be obtained from short durations, which
explains that the most energy ridges appear at high frequencies. The first
part of the signal ([0, 4]s) contains low frequency energetic components in
the horizontal directions which can also be observed on the elastic response
spectra (figure 3-b). During the next time period ([4, 12]s) there is a con-
tribution in the range [3, 14]Hz. The highest frequencies contribution in the
range [14, 20]Hz are shorter and are fluctuating, consequently they are never
predominant across time.

A global response of the structure can be studied by introducing the dy-
namic magnification factor [15] H(ω) such that, for all ω in R,

H(ω) =
1

N
‖ ([K ] + [KS ]) [A(ω)]

−1)‖F , (26)

where [A(ω)] = −ω2 ([M ] + [MS ]) − i ω [DS ] + ([K ] + [KS ]) is the reduced
dynamic stiffness of the structure with its foundation coupled with the soil
and where ‖ · ‖F is the Froebenius norm of matrices.

Figure 4 displays the function ω 7→ H(ω). It can be seen from this figure
that the mode whose eigenfrequency is 1.9Hz for the homogeneous mass dis-
tribution model, is directly excited at the beginning of the earthquake. In the
following stage, two other modes are excited. The wavelet transform presents
eventually no relevant energetic frequency contributions after 15s.

4.2 Results for the stochastic model

To illustrate the method, the sensitivity of the maximal internal forces and
moments with respect to the uncertainties is now studied. As introduced in
subsection 3.3, V1, V2, V 3 and M1,M2,M3 are the random maximal values of
the internal forces and moments over the whole structure during the appli-
cation of the seismic loading. They are obtained for both stochastic reduced
beam models presented in section 3.2. The Monte Carlo numerical method
[14] is used in order to calculate the mean values, standard deviations and the
probability density functions of these random variables in order to quantify
their uncertainties. The values of the dispersion coefficients which have been
used are : δM = 0.2, δD = 0.5, δK = 0.5. The values of dispersion coefficients
can be identified in solving a statistical inverse problem if experimental mea-
surements are available (see, for instance [22]). However, in the case of seismic
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studies, such a procedure cannot be uses. These coefficients are estimated by
the experience of the engineer, due to dispersion on soil data for example.
Hereinafter, a sufficiently large amount of samples in the Monte Carlo method
have been constructed in order to reach convergence on the statistic estima-
tions [21] of the mean, standard deviation and probability density functions.
As an example, the convergence of the mean value with respect to the number
of realizations is shown in Figure 5. The stochastic convergence is reached by
taking all the eigenvectors up to 500Hz, i.e N = 108.

The graphs of the estimations of probability density functions of V1, V2, V3,
M1, M2 and M3 are shown in figure 6 for which NS ≥ 10000 samples were used
to reach convergence. Some internal forces or moments present an important
dispersion; the randommomentM3 presents, for instance, a standard deviation
of 25% with respect to its mean value. The largest dispersion is given by the
random torsional momentM1 which is completely due to randommodeling and
could not be computed with a deterministic approach or a parametric modeling
of the impedance which would not take into account a spatial variability of the
soil properties under the foundation. A substantial effect of the random soil
structure interaction is the global rise of the mean internal forces and moments
compared to the deterministic values. The effect is stronger with the lumped
mass model where the random internal force V3 and the corresponding random
bending moment M2 respectively increase by 17% and 45%. The beam model
with homogeneous mass distribution presents increases of 4% and 18% for the
same force and moment.

5 Conclusions

Soil-structure interaction can modify the dynamic response of a building un-
der earthquakes in the low frequency range. A non-parametric modeling was
used to introduce model uncertainties in an easy-to-use engineering model of
soil-structure interaction. The model leads to a significant torsion within the
building, even if the structure and its foundation are symmetrical.
All stochastic computations are performed by using a Monte Carlo simulation
which requires solving many times the dynamic equations of the structure .
The simplified beam model used for the building mechanical modeling and the
simple SSI model allow to perform a sufficient number of such computations .
It has been observed that the random soil-structure interaction can produce
an increase of internal forces compared to the deterministic results.

A Reduced lumped mass beam model

In order to exhibit the contribution of matrices [MS ], [DS ] and [KS ] to the lumped mass
beam model (model 1), we first introduce matrices [M ] and [K] which are the mass matrix
and the stiffness matrix of a lumped mass beam model for which the boundary conditions
are the following: (1) the top of the building is free and (2) the foundation is weightless and
free. These boundary conditions imply that matrices [M ] and [K] are (not definite) positive
symmetric NDOF ×NDOF real matrices.
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Then a weak formulation that allows to explicit the relation between this set of matrices
is written as: Find u(t) = (u0(t), θ0(t), . . . ,uNsto

(t), θNsto
(t)) belonging in R

NDOF such that
for all v = (v0,Θ0, . . . ,vNsto

,ΘNsto
) ∈ R

NDOF ,

v
T [M ] ü(t) + vT

0 [MS ] ü0(t) + vT
0 [DS ] u̇0(t)

+ v
T [K] u(t) + vT

0 [KS ]u0(t) = −vT [M ] a(t)− vT
0 [MS ] ä0(t) . (A.1)

Let ω1 ≤ . . . ≤ ωN be the N first eigenfrequencies which are solutions of the generalized
eigenvalue problem: find Φ = (φ0, . . . ,φNsto

) ∈ R
NDOF and ω > 0 such that, for all

v ∈ R
NDOF ,

v
T [K]Φ+ vT

0 [KS ]φ0 − ω2
v
T [M ]Φ− ω2 vT

0 [MS ]φ0 = 0 . (A.2)

Let Φk = (φ0,k, . . . ,φNsto,k) ∈ R
NDOF be the k-th eigenvector associated with k-th small-

est eigenfrequency ωk. Eigenvectors are such that Φβ [M ]Φα + φT
0,β [MS ]φ0,α = δαβ and

Φβ [K]Φα + φT
0,β [KS ]φ0,α = ω2

αδαβ where δαβ = 1 if α = β and δαβ = 0 if α 6= β. The

reduced model is built with the approximation

u(t) ≃
N
∑

α=1

qα(t)Φα , (A.3)

where qα(t) are the generalized coordinates of u(t) within the basis of eigenvectors Φα. Let
the vector q(t) = (q1(t), . . . , qN (t)) be the vector of the generalized coordinates. Then, it
can be shown that

([M ] + [MS ]) q̈(t) + [DS ] q̇(t) + ([K ] + [KS ]) q(t) = f(t) + fS(t) (A.4)

with the initial conditions

q(0) = 0 and q̇(0) = 0 (A.5)

where the positive-definite symmetric N × N real matrices [M ], [MS ], [DS ], [KS ] and the
positive symmetric N × N real matrix [K ] are such that [M ]βα = Φβ [M ]Φα, [MS ]βα =

ΦT
0,β [MS ]Φ0,α, [DS ]βα = ΦT

0,β [DS ]Φ0,α and [K ]βα = Φβ [K]Φα, [KS ]βα = ΦT
0,β [KS ]Φ0,α.

It should be noted that we also have [M ]βα + [MS ]βα = δαβ and [K ]βα + [KS ]βα =
ω2
αδαβ . The components of vectors of the generalized forces f(t) and fS(t) are {f(t)}β =

−ΦT
β [M ] a(t) and {fS(t)}β = −Φ0,β

T [MS ] a(t).

B Reduced Timoshenko beam model

A weak formulation for an explicit relation between matrices [MS ], [DS ] and [KS ] and
the bilinear forms of the Timoshenko beam model with a homogeneous mass distribution
(model 2) is presented hereinafter. Let C be a space of sufficiently regular functions. The
weak formulation of the problem is written as: Find u = (u1, u2, u3, θ1, θ2, θ3) ∈ C such that
for all v ∈ C,

m(ü, v) + v(0)T [MS ] ü(0, t) + v(0)T [DS ] u̇(0, t)

+ k(u, v) + v(0)T [KS ] u(0, t) = f(t, v)− v(0)T [MS ] a(t) (B.1)
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where the positive-definite symmetric bilinear form m(·, ·), the positive symmetric bilinear
form k(·, ·) and the linear form f(·) are defined on C × C and C such that

m(u, v) = ρS

∫ h

0
u1(x1) v1(x1) dx1 + ρS

∫ h

0
u2(x1) v2(x1) dx1

+ ρS

∫ h

0
u3(x1) v3(x1) dx1 + ρ I1

∫ h

0
u4(x1) v4(x1) dx1

+ ρ I2

∫ h

0
u5(x1) v5(x1) dx1 + ρ I3

∫ h

0
u6(x1) v6(x1) dx1

(B.2)

k(u, v) = Gk2 S

∫ h

0
u′

2(x1) v
′

2(x1) dx1 +Gk3 S

∫ h

0
u′

3(x1) v
′

3(x1) dx1

+ E I2

∫ h

0
u′

5(x1) v
′

5(x1) dx1 + E I3

∫ h

0
u′

6(x1) v
′

6(x1) dx1

+Gk2 S

∫ h

0
u6(x1) v6(x1) dx1 +Gk3 S

∫ h

0
u5(x1) v5(x1) dx1

+Gk3 S

∫ h

0
u5(x1) v

′

3(x1) dx1 +Gk3 S

∫ h

0
u′

3(x1) v5(x1) dx1

−Gk2 S

∫ h

0
u6(x1) v

′

2(x1) dx1 −Gk2 S

∫ h

0
u′

2(x1) v6(x1) dx1

+ S E

∫ h

0
u′

1(x1) v
′

1(x1) dx1 +GI1

∫ h

0
u′

4(x1) v
′

4(x1) dx1 (B.3)

f(t, v) = −ρS

∫ h

0
v(x1)

T
a(t) dx1 (B.4)

where for the seek of simplicity, uk, k = 4, 5, 6 are used instead of θ1, θ2, θ3 and similarly
vk, k = 4, 5, 6 are used for the rotations associated to vk.

Let ω1 ≤ . . . ≤ ωN be the N first eigenfrequencies which are solutions of the generalized
eigenvalue problem: find Φ ∈ C and ω > 0 such that, for all v ∈ C,

k(Φ, v) + v(0)T [KS ]Φ(0)− ω2 m(Φ, v)− ω2
v(0)T [MS ]Φ(0) = 0 (B.5)

Let {Φ1, . . . ,ΦN} be the N eigenfunctions associated with eigenfrequencies ω1 ≤ . . . ≤ ωN .
Eigenfunctions are such that m(Φα,Φβ) + Φβ(0)

T [MS ]Φα(0) = δαβ and k(Φα,Φβ) +

Φβ(0)
T [KS ]Φα(0) = ω2

αδαβ where δαβ = 1 if α = β and δαβ = 0 if α 6= β. The reduced
model is built with the approximation

u(x1, t) ≃
N
∑

α=1

qα(t)Φα(x1) , (B.6)

where qα(t) are the generalized coordinates of u(x1, t) within the basis of eigenfunctions Φα.
Let the vector q(t) = (q1(t), . . . , qN (t)) be the vector of the generalized coordinates. Then,
it can be shown that

([M ] + [MS ]) q̈(t) + [DS ] q̇(t) + ([K ] + [KS ]) q(t) = f(t) + fS(t) (B.7)

with the initial conditions

q(0) = 0 and q̇(0) = 0 (B.8)
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where the positive-definite symmetric N × N real matrices [M ], [MS ], [DS ], [KS ] and the
positive symmetric N ×N real matrix [K ] are such that

[M ]βα = m(Φα,Φβ) , [MS ]βα = Φβ(0)
T [MS ]Φα(0) ,

[DS ]βα = Φβ(0)
T [DS ]Φα(0) , [K ]βα = k(Φα,Φβ) ,

[KS ]βα = Φβ(0)
T [KS ]Φα(0) .

It should be noted that we also have [M ]βα+[MS ]βα = δαβ and [K ]βα+[KS ]βα = ω2
αδαβ .

The components of vectors of the generalized forces f(t) and fS(t) are {f(t)}β = f(t,Φβ)

and {fS(t)}β = −Φβ(0)
T [MS ] a(t).

C Probabilistic model of the random matrices

In this appendix, we present the construction of the probabilistic model of the random
matrices involved by the nonparametric probabilistic formulation of the model uncertainties.
It has been shown in [9,10] that the probabilistic model of random matrices [MS ], [DS ] and
[KS ] can be constructed using the information theory with the available information (see
section 6.2) yielding

[MS ] = [LM ]T [GM][LM ] , [DS ] = [LD]T [GD][LD] ,

[KS ] = [LK ]T [GK][LK ] .

in which the (nS×nS) upper triangular matrices [LM], [LD], [LK], with nS = 6, correspond
to the Cholesky factorizations [MS ] = [LM]T [LM], [DS ] = [LD]T [LD], [KS ] = [LK]T [LK]
and where [GM], [GD], [GK] are random matrices for which the probability density func-
tions p[GM], p[GD], p[GK] are such that

p[GM]([G]) = 1
M+ ([G]) c(δM) (det[G])b(δM) exp{−a(δM)tr[G]} ,

p[GD]([G]) = 1
M+ ([G]) c(δD) (det[G])b(δD) exp{−a(δD)tr[G]} ,

p[GK]([G]) = 1
M+ ([G]) c(δK) (det[G])b(δK) exp{−a(δK)tr[G]} ,

where 1
M+ ([G]) is equal to 1 if [G] belongs to M

+ (the set of all the nS × nS symmetric
positive matrices) and is equal to zero if [G] does not belong to M+, tr[G] is the trace of matrix
[G], a(δ) = (nS+1)/(2δ2), b(δ) = a(δ)(1−δ2), c(δ) = (2π)−nS(S−1)/4a(δ)nS a(δ)/

∏n+1
j=1 Γ (αj(δ))

in which αj(δ) = a(δ) + (1− j)/2 and where Γ is the Gamma function.
Then, it has then shown in [9,?] that random matrices [GM], [GD], [GK] can be written

as
[GM] = [LM]T [LM] , [GD] = [LD]T [LD] , [GK] = [LK]T [LK] ,

where [LM], [LD] and [LK] are random upper triangular (nS × nS) real matrix such that

(1) for j < j′, [LM]jj′ , [LD]jj′ and [LK]jj′ are real-valued Gaussian random variables

with zero mean and variance equal to σM = δM /
√
nS + 1, σD = δD /

√
nS + 1 and σK =

δK /
√
nS + 1;

(2) for j = j′, [LM]jj′ , [LD]jj′ and [LK]jj′ are positive-valued random variables written as

[LM]jj′ = σM

√

2VM,j , [LD]jj′ = σD

√

2VD,j where VM,j , VD,j and VK,j are positive-
valued Gamma random variables whose probability density function pVM,j

, pVD,j
, pVK,j

are written as

pVM,j
(v) = 1

R+ (v)
vαj(δM) e−v

Γ (αj(δM)
, pVD,j

(v) = 1
R+ (v)

vαj(δD) e−v

Γ (αj(δD)
,

pVK,j
(v) = 1

R+ (v)
vαj(δK) e−v

Γ (αj(δK)
.
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Then, N statistical independent realizations of random matrices [MS ], [DS ] and [KS ] are
constructed such that

[MS(a1)] = [LM]T [GM(a1)] [LM] , . . . , [MS(aN ] = [LM]T [GM(aN )] [LM]

[DS(a1)] = [LD]T [GD(a1)] [LD] , . . . , [DS(aN )] = [LD]T [GD(aS)] [LD]

[KS(a1)] = [LK]T [GK(a1)] [LK] , . . . , [KS(aN )] = [LK]T [GK(aN )] [LK]
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Fig. 1 Lumped mass model of the building and its foundation

Fig. 2 Schema of the building and its foundation
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Fig. 3 (a) - Representation of the e2-component. (b) - Elastic response for the 3 components
of the earthquake accelerogram with damping ratios 1% (dashed line), 5% (dash-dooted line)
and 10 % (solid line).
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Fig. 4 Graph of the dynamic magnification factor function for the beam models with
homogeneous mass (solid line) and the lumped mass model (dashed line). Horizontal axis ω
in Hz. Vertical axis: dynamic magnification factor H(ω)

Fig. 5 Convergence of the mean value of V3 for a modal reduction using eigenfrequencies
upto 50Hz, 100Hz, 200Hz, 300Hz, 500Hz and 800Hz (black to light gray curve). Hori-
zontal axis: number of samples in the Monte Carlo method. Vertical axis: Estimation of the
second order moment of the shear force V3.
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Fig. 6 Probability density functions for the maximal internal forces and moments in the
building for (a) - the lumped mass beam model (b) - the beam model with a homogeneous
mass distribution. The diamonds on the domain axes mark the deterministic values.


