
HAL Id: hal-00750343
https://hal.science/hal-00750343v1

Submitted on 10 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bus-based MPSoC security through communication
protection: A latency-efficient alternative

Pascal Cotret, Jérémie Crenne, Guy Gogniat, Jean-Philippe Diguet

To cite this version:
Pascal Cotret, Jérémie Crenne, Guy Gogniat, Jean-Philippe Diguet. Bus-based MPSoC security
through communication protection: A latency-efficient alternative. FCCM 2012 (20th Annual IEEE
International Symposium on Field-Programmable Custom Computing Machines), Apr 2012, Toronto,
Canada. pp.200-207. �hal-00750343�

https://hal.science/hal-00750343v1
https://hal.archives-ouvertes.fr

Bus-based MPSoC security through communication protection: A latency-efficient

alternative

Pascal Cotret∗, Jérémie Crenne†, Guy Gogniat∗, Jean-Philippe Diguet∗

∗Laboratoire Lab-STICC, Université de Bretagne-Sud, Lorient (France)

name.surname@univ-ubs.fr
†Laboratoire LIRMM, Université Montpellier 2, Montpellier (France)

jeremie.crenne@lirmm.fr

Abstract—Security in MPSoC is gaining an increasing at-
tention since several years. Digital convergence is one of the
numerous reasons explaining such a focus on embedded systems
as much sensitive and secret data are now stored, manipulated
and exchanged in these systems. Most solutions are currently
built at the software level; we believe hardware enhancements
also play a major role in system protection. One strategic point is
the communication layer as all data goes through it. Monitoring
and controlling communications enable to fend off attacks before
system corruption. In this work, we propose an efficient solution
with several hardware enhancements to secure data exchanges
in a bus-based MPSoC. Our approach relies on low complexity
distributed firewalls connected to all critical IPs of the system.
Designers can deploy different security policies (access right,
data format, authentication, confidentiality) in order to protect
the system in a flexible way. To illustrate the benefit of such a
solution, implementations are discussed for different MPSoCs
implemented on Xilinx Virtex-6 FPGAs. Results demonstrate a
reduction up to 33% in terms of latency overhead compared to
existing efforts.

Keywords-communication; security; MPSoC; bus; cryptogra-
phy; external memory; firewall; latency

I. INTRODUCTION

In daily life as in many industrial environments, electronic

devices (smartphones, computers...) manage numerous infor-

mation that must be protected from potential attackers. These

devices generally perform high-performance algorithms in

a single chip while manipulating sensitive data (passwords,

private information).

For these systems, a trade-off between area, latency and

memory consumption is mandatory when building secu-

rity mechanisms to meet implementation requirements while

guaranteeing an efficient protection against attacks. Reconfig-

urable technologies such as FPGAs can be a good candidate

to build such systems as they embed processors, memories

and application-specific IPs in a single chip with moderate

development costs [1]. A way to reduce the performance

impact of security mechanisms is to consider hardware solu-

tions and to develop a distributed protection [2]. One strategic

point is the on-chip communication architecture as all data is

exposed to its structure. Thus it is of paramount importance

to protect these data exchanges in order to keep critical

information within the system. Indeed many attacks can be

detected through a thorough monitoring of data exchanges

within the system. The goal of this work is to propose a

solution based on security-enhanced interfaces between IPs

in a MPSoC implemented on a FPGA technology.

The paper is organized as follows. Section II presents

related work. Section III details the threat model. Section IV

describes our contribution and Section V proposes several

results. Section VI highlights main perspectives.

II. RELATED WORK

In the literature, several studies have addressed the security

of embedded systems [3]. At the communication level, these

systems can be protected either by software or hardware

mechanisms. Software solutions generally do not request

additional hardware but offer low efficiency in terms of

latency which can be critical for applications where reactivity

is essential to fend off attacks. From an hardware point of

view, several solutions have been proposed depending on the

communication architecture: network-on-chip (NoC) or bus.

Regarding NoC-based architectures, Evain et al. [4] propose

a solution where security controls are done in each network

interface in a distributed manner. A management unit gathers

all information from network interfaces according to a user-

defined security policy. Fiorin et al. [5] propose an alternative

to this work by adding probes within the interface structure

to refine the protection mechanisms. Each security-enhanced

interface, considered as a trusted component, is composed

by a set of probes, protection units and a kernel providing

network management services. These probes can block in-

coming traffic according to parameters stored in an embedded

context-addressable memory. A security manager collects

information from individual security-enhanced interfaces to

detect any collision or error in the traffic.

For bus-based communication architectures, one of the most

significant work was done by Coburn et al. [6]. This approach

is similar to Fiorin’s work and is based on SEI (Security En-

forcement Interface) implemented in each interface between

an IP and the bus. Each SEI computes information from the

data handled by the IP and sends it to a global manager

(SEM, Security Enforcement Module). The main limitation of

this solution is that all controls are performed in the SEM. It

leads to a latency penalty which should be avoided to mitigate

security overhead.

Other works provide solutions for the protection of embedded

systems: Huffmire et al. [7] introduce the approach of physi-

2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4699-5/12 $26.00 © 2012 IEEE

DOI 10.1109/FCCM.2012.42

200

cal isolation using moats and drawbridges; ARM proposes

a commercial architecture name Trustzone [8] which is

based on a normal/secure separation using a secure kernel

and an access driver. This work is an in-depth description

and implementation study of the solution introduced in [2].

It takes advantages of both NoC/bus-based approaches by

proposing hardware security enhancements distributed on

each IP with low-latency control features. This approach

targets bus-based MPSoCs where a limited number of IPs

are connected together.

Table I
QUALITATIVE COMPARISON

SECA Fiorin Our work
[6] [5]

HW resources SEI, SEM Probes, LF, CF
protection units

Security Monitoring Monitoring Monitoring
enhancement and verification and verification and verification

Crypto. No No Yes
features

Threat Wide range of Mainly buffer Wide range of
model soft. attacks overflow soft. attacks

Distributed / Centralized Distributed Distributed
Centralized

Our solution aims to be a latency-efficient protection mech-

anism with an additional cryptographic layer for protection of

external memory units (see Table I). Our solution only relies

on hardware enhancements (LF and CF as will be explained

in Section IV) and does not require modification at the

application level neither in the operating system. Compared to

existing efforts, we address a wide range of software attacks

through a distributed approach and handle cryptographic

features to deal with confidentiality and authentication.

The key contributions of this paper include:

• Design and demonstration of dedicated firewalls.

• Promotion of flexible security policy (access right, data

format, authentication, confidentiality).

• Development of several applications to analyze security

overheads.

III. THREAT MODEL

A. Attack vectors

This work considers that attackers can only tamper with

the embedded system using logical attacks (side-channel

and other physical threats are not considered). Besides that,

it is assumed that the target FPGA is trusted. Therefore,

the only way to access the system is through the external

memory and the external bus (Figure 1). A solution would

be to encrypt and authenticate the whole external memory.

Unfortunately, this solution has a high cost in terms of

resources consumption and latency overhead [9]. For many

applications, building a flexible solution where only the most

critical code and/or data sections to be stored in the external

memory are protected with cryptographic services is a good

choice. Other parts of the memory can be in plaintext or only

authenticated [10].

In this case, attackers still have possibilities to compromise

the system by tampering non protected parts of the external

memory. Indeed, when code and/or data are protected, any

change will be detected; but if code and/or data are considered

uncritical, no check is performed. Thus, such solutions need

to be extended and system designers need other mechanisms

to monitor system activity and detect any abnormal behavior.

This work proposes to address this point. All communications

are checked by security mechanisms mentioned further as

firewalls. This additional layer of security provides an effi-

cient solution while maintaining a good area/latency trade-off.

B. Security policies

Security enhancements presented in this work are based

on built-in Security Policies (SP) stored in trusted memory

units which include a set of parameters required for ab-

normal behavior detection (see Section IV-D). Basically, it

contains read/write access specifications (read/write, write-

only, read-only), authorized data format (i.e. 8, 16 and 32 bits)

and cryptographic information (confidentiality/authentication

modes, encryption key and MAC). Threat model defined in

[2] is covered using these parameters. Timestamp tags are

used to monitor the access time to the external memory (to

detect replay attacks). Spoofing and relocation attacks are also

addressed (using address and authentication primitives).

IV. HARDWARE FIREWALLS

In order to prevent any MPSoC system from the threat

model previously defined, firewalls are implemented within

the system. This section first presents an overview of these

blocks. Then a detailed analysis of their architecture from an

hardware point of view with latency and memory requirement

information is proposed.

A. Overview of the solution

AXI-4 Communication Bus

LF

Proc.

LF LF

Proc. Proc.

LF LF LF

IP IP IP

C

F

 Plaintext

Authentication

only

Confidentiality

+ authentication

...

Plaintext

Confidentiality

+ authentication

External Memory

FPGA (trusted) untrusted

code

or data

Mem.

ctrl

Figure 1. Embedded distributed architecture with security enhancements

The target system is composed of processors, internal

memories, dedicated IPs embedded within an FPGA and

connected to an external memory. All resources within the

FPGA are connected to a bus based on the AXI communi-

cation standard from ARM. We propose to add a specific

interface to each resource (IP or processor) in order to

build a secure gateway to the bus. Using these interfaces

(also known as firewalls in this work), we can monitor all

201

communications before they reach the bus and propagate

within the system. Figure 1 shows such a system with

internal resources and an external memory. Each resource

is connected to a specific interface called Local Firewall

providing services for read/write access control and so on.

The external memory is also connected to a specific interface

called Cryptographic Firewall adding cryptographic features

(confidentiality, authentication...). As security parameters can

be applied only to specific parts of IPs (defined through

security policies), firewalls are also responsible for filter-

ing access to/from the external memory. This feature is of

paramount importance when plaintext data or code (which

may not have been ciphered) is manipulated. In this case, even

processors executing malicious code (that could have been

stored in plaintext in the external memory) can be blocked

by firewalls. Any illegal read or write access will be detected

and discarded.

Security Policies are stored in Block RAMs (memory blocks

embedded within the FPGA) which are considered as trusted

(no attack is taken into account).

B. Common blocks

Each firewall is composed of several blocks (such as Secu-

rity Builder and Firewall Interface) connected to each others

(Figure 2). While Security Builder is the core managing

security policies, Firewall Interface is the crossing point with

the external world. It acts as a bridge between the system

AXI-4 communication bus and the associated IP (custom

IP, I/O controller, external memory controller). The whole

firewall structure is considered as trusted, the only untrusted

area is the external bus and the external memory itself (i.e.

everything beyond the external memory controller).

Firewall Interface

Security Builder

Reading

Module

BRAM_addr

Corr.

Table

Checking

Module

SP

AXI4_addr

AXI4_format

AXI4_rnw

check_out

Crypto

Module

Finite State

Machine

Decision

Module

Synchronization

Module

AXI-4 AXI-4

AXI4_data AXI4_data

AXI4_handshake AXI4_handshake

Block

RAM

Block

RAM

AXI Communication

Bus
IP

IP

(custom, vendor)

Memory

controller

External

Memory

DDR

physical bus
...

plaintext

auth. only

conf + auth.

...

plaintext

conf. + auth.

2

C

UntrustedTrusted

Specific to

Cryptographic

Firewall

datapath

1

Figure 2. Structure of a firewall

1) Firewall Interface: Firewall Interface is tagged 1 in

Figure 2. Two main tasks are performed by a Firewall

Interface (FI):

• Once a data is declared as valid, the FI transmits the

data to the target element (communication bus or IP), it

is performed by the Decision Module.

• The FI synchronizes handshake communication sig-

nals (such as AXI WSTRB, AXI WLAST, AXI WVALID,

AXI RREADY...) in order not to misbehave communica-

tion traffic (duplication or omission of data). Synchro-

nization Module is based on a set of flip-flops where the

clock input signal (i.e. a rising edge) is the acknowledg-

ment signal check out sent by the Security Builder when

all the SP-checking operations are completed.

As all these flip-flops are connected in parallel, the latency

of Firewall Interface is two clock cycles for a 32-bit data (one

for the Decision Module and one for the synchronization).

For N 32-bit data (without burst or pipeline management),

the equation is:

latency(N) = N ∗ 2. (1)

In case pipeline is activated (not yet considered in this work),

the equation for an m-stage pipeline architecture becomes

latency(N) = m+N − 1. Firewall Interface would need 2

cycles for the first data and 1 cycle for each following data

(while datan is processed by the Synchronization Module,

datan+1 is processed by the Decision Module).

2) Security Builder: Security Builder is the main compo-

nent of firewalls (tagged 2 in Figure 2). It is based on four

modules:

• Correspondence Table (CorrTable). Security Policies

are stored in a trusted Block RAM (left side of Figure 2)

and can be identified by an address. CorrTable defines

the SP address for a given bus target address space in

1 clock cycle. For instance, bus address 0x1234ABCD

(in the address space [0x12340000;0x1234FFFF]) is

managed by the Security Policy located at BRAM ad-

dress 0xFF00FF00. The correspondence between these

addresses will be performed in the CorrTable module.

• Reading Module (ReadMod). ReadMod is responsible

for reading the Security Policy from the dedicated Block

RAM and extracting the security parameters to be sent

to the Checking Module. For a single 32-bit data, a

read buffer is filled in 1 clock cycle then SP parameters

extraction (to be sent to the Checking Module) requires

1 additional cycle.

• Checking Module (CheckMod). In fact, the Checking

Module is a set of individual comparators specific to

each security parameter (read/write, format...) defined in

the Security Policies and computed in parallel (Figure

3). Inverters allow the output to be an overall flag. If

Firewall

Interface

AXI4_rnw

Checking Module

sp_rnw

sp_format

sp_param

reading

Module
data_b

Communication

Bus

AXI4_format

AXI4_param

1 clock cycle

Compa-

rator

Inverter

check_out

Figure 3. Checking module

202

inputs of a comparator do not match, output signal goes

high. A Security Policy requires 1 clock cycle to be

verified.

• Finite State Machine (FSM). FSM manages the algo-

rithm running in each firewall.

Timing diagram in Figure 4 represents the behavior of the

Security Builder. According to the timing diagram, the verifi-

Figure 4. Security Builder timing diagram

cation of a single 32-bit data takes 4 clock cycles. Therefore,

checking N 32-bit data without pipeline is defined by this

equation:

latency(N) = N ∗ 4 (2)

In case pipeline is activated (not yet considered in this work),

the equation for an m-stage pipeline architecture becomes

latency(N) = 3N − m(m − 2). At this stage, the only

difference between Local and Cryptographic Firewall is the

Security Builder. As Security Policies do not contain the

same security parameters, Reading Module and Checking

Module have a different structure (see IV-D). Furthermore,

another block (trustworthy for cryptographic operations) is

implemented in CF.

C. Cryptographic Module

CPT0

Ek

CPT1

Ek

PT1

CT1

multH multH

AAD

multH

TAG

PT

C+I

I only

C

mode

I

mode

Ciphertext

address

Plaintext

tag

data
External

Memory

MAC

memory

AXI-4 communication

bus

1 cycle

10 cycles

Reading

Module

+

Block

RAM

Timestamp

Memory

data

1 cycle

mux

mux

demux

incr

(+1)
32

32 32

32

32

32

32

32

32

32

32

32

Cryptographic

Key

Reading

Module

+

Block RAM

Figure 5. AES-GCM architecture for a 32-bit data in write mode

The solution presented in this work provides flexible cryp-

tographic services based on the AES-GCM algorithm [11].

As shown in Figure 5, a single core has been developed

to perform ”confidentiality and authentication” or ”authen-

tication only” (mux and demux ports are routed according

to Security Policy parameters related to confidentiality and

authentication modes Cmode and Imode); keys needed for

encryption/decryption are sent by the Security Builder (as for

MAC information). In Figure 5, encryption of a 32-bit data

(Ek uses a 128-bit key and a 128-bit vector containing the

32-bit data padded with zeros), is done in 10 clock cycles and

authentication is done in 2 clock cycles (through 2 multipliers

multH [10]). The overall latency for a set of N 32-bit data

protected by confidentiality and authentication is:

latency(N) = 10 + (10 + 2) ∗N (3)

Using the AES-GCM algorithm, firewalls can perform low-

latency cryptographic features with an acceptable resources

consumption. Especially for authentication, AES-GCM takes

2 clock cycles while implementation of hash functions such as

MD5 (respectively SHA-2) takes 64 (respectively 80) cycles

to do so. The tag issued from the AES-GCM core is not

ciphered since it is stored in a trusted embedded memory

(Block RAM) separated from the SP memory. As Block

RAMs are dual-port memories, one port is left empty for

further reconfiguration by a dedicated processor.

D. Security Policies

Each firewall (Local and Cryptographic) has its own 16KB

Block RAM containing Security Policies directly connected

to the Reading Module. Security Policies are indexed by

the Correspondence Table previously defined. Local Firewall

SP is stored on a single 32-bit block while Cryptographic

Firewall SP is stored on 6 blocks (LF and CF in Figure 6).

Each block is indexed by an address (for instance, address 0)

which helps the Reading Module to know where to read the

first block of the target Security Policy. In case of reading a

Cryptographic Firewall Security Policy, a few logic is added

to the Reading Module in order to read all the SP blocks only

knowing the address of the first block.

Figure 6 shows a layout of Block RAMs containing Security

LF1

TAG address3 4 Key(127 downto 0)

1 2

LF Security

Policy memory
Detailed contents

32

bits

address=0

address=1

address=n

[…]

LF3

zero-pad

31 0

3 4

Key(127 downto 96)

31 0

Key(95 downto 64)

31 0

Key(63 downto 32)

31 0

Key(31 downto 0)

31 0

TAG address

31 0

[…]

31 0

zero-pad

31 0

1 2

1: Read/Write access (2 bits)

2: Allowed format (2 bits)

3: Confidentiality mode (1 bit)

4: Integrity mode (1 bit)

Local Firewall SP

Cryptographic Firewall SP

zero-pad
CF1

CF1

CF1

CF1

CF1

CF1

[…]

CF Security

Policy memory

LF2

address=2

@0

@n

@n+6

[…]

Figure 6. SP memory layout for Local and Cryptographic Firewalls

Policies for Local and Cryptographic firewalls. As BRAM

data ports are 32-bit wide, a Security Policy for a LF is stored

203

on 32 bits while CF SP is stored on 6*32 bits. Therefore, in

terms of latency, reading a LF Security Policy takes 1 clock

cycle (reading a 32-bits word in a block RAM is done in 1

clock cycle) instead of 6 for a SP set for a Cryptographic

Firewall. Each firewall has its own Block RAM, separated

from Timestamps and MACs memories, with one port left

empty for reconfiguration by a specific processor (ability to

reconfigure the overall protection if an attack is detected).

The structure of fields labeled as #1, #2, #3, #4 is described

in Table II. For confidentiality and authentication, related

Table II
SECURITY POLICY STRUCTURE

Values

Field Rule 00 01 10 11

#1 Read all. No No Yes Yes
Write all. No Yes No Yes

#2 Format 4 8 16 32

Values

Field Rule 0 1

#3 Confidentiality No Yes
#4 Authentication No Yes

bits allow to correctly connect data ports to the AES-GCM

core in order to perform all the needed cryptographic modes

(authentication only, plaintext and so on).

V. RESULTS

All the following results have been implemented on a

ML605 Xilinx board including a Virtex-6 xc6vlx240t1156-

1 FPGA. This device has around 240,000 logic cells and

15 Mb of Block RAM. First, performances of firewalls are

given as standalone blocks. Then, case studies are proposed

to verify performances of such security enhancements and

compare their efficiency to existing efforts.

A. Standalone results

Area:

Table III
DETAILED SYNTHESIS RESULTS OF FIREWALLS

Slices Slice LUTs #
Regs BRAMs

Local FI 76 120 68 0
Firewall SB 23 3 55 1

Total 99 123 293 1

FI 76 120 153 0
Crypto SB 23 3 55 1
Firewall CM 1,166 2,038 2,396 14

89.42% 94.31% 89.10% 93.33%
Total 1,304 2,161 2,689 15

MicroBlaze 1,179 1,298 1,829 10

All the measures were compared to the Xilinx Microblaze

softcore processor (default configuration with 8KB data and

instructions caches). Each firewall (Local and Cryptographic)

is implemented with two dummy security policies. A Local

Firewall has low area consumption while Cryptographic Fire-

wall exceeds Microblaze results. This is mainly due to CM

(the AES-GCM core) which consumes around 90% of the

CF area (see Table III). Otherwise, firewalls are lightweight

in terms of consumed area compared to the Microblaze

microprocessor (in terms of registers, a Local Firewall takes

around 10% of resources needed for a Microblaze processor).

Once we know the resources needed for each firewall, a

set of rules can be defined to estimate the area needed for

a multiprocessor architecture with x Local and y Crypto

Firewalls. Following equations set takes into account the

”worst case” implementation values with 10 SPs for each

Correspondence Table (this limit is due to the implementation

of the Correspondence Table which needs 3 registers for

each security policy while implementation tools allow 32

configurable registers at most for each firewall).

numSlices = 138 ∗ x+ 1, 304 ∗ y (4)

numRegs = 123 ∗ x+ 2, 161 ∗ y (5)

numLuts = 293 ∗ x+ 2, 689 ∗ y (6)

Using this equations set, a designer is able to compute

the area consumed by security enhancements on his

own MPSoC for a fixed number of Security Policies

embedded in each firewall. It is important to note that

the Correspondence Table area increase regarding the

number of SPs is acceptable: from 9 up to 48 slices and

32 up to 117 regarding LUTs (respectively for 1 and 10 SPs).

Latency:

In order to measure the latency of firewalls, simulations were

done to generate the following scenarios:

• S0: Latency of a Local Firewall.

• S1: Communication between two on-chip components.

• S2: Communication between a processor and the exter-

nal memory in C+A mode.

• S3: Communication between a processor and the exter-

nal memory in Authentication only mode.

• S4: Communication between a processor and the exter-

nal memory in plaintext mode.

Each scenario was run for a single 32-bit data: S0 is a

reference measure, others scenarios involve two components

of a firewall-enhanced MPSoC architecture (S2 to S4 involve

one Local and one Crypto Firewall while S1 needs two Local

Firewalls). Figure 7 shows the results of these implementa-

tions.

Of course, the most critical scenario in terms of latency (28

cycles) is when a data is written in the external memory in

S2 (in case of a read, the penalty is not so high). S1 and

S4 are quite close because, in this implementation, there is

no Checking Module (1 cycle saved) in a CF and reading

a Cryptographic SP takes 5 more cycles than for Local

Firewall: therefore, S4 takes 4 more cycles than S1.

Memory occupancy:

In this section, only Security Policies are considered. Times-

tamps and Tags (MACs) memories occupancies are not

considered as they depend on the number of data required by

204

��

��

���

���

���

���

���

�� �� �� �� �	 �	

����

Figure 7. Latency scenarios

the application [9]. According to the formulation of Security

Policies, a single policy for a Local Firewall takes 4 Bytes

(24 Bytes for a CF because of cryptographic material). Two

options are considered in this work:

• Each CPU has uniform rights on other IPs: for instance,

1 CPU can write the whole DDR memory in plaintext

mode. This case can be represented by one Security

Policy.

• Each CPU has N ”options” on each target IP: in this

case, for example, 1 processor can read a plaintext

address space of the external memory and write a

ciphered and authenticated data in another address space

(see Figure 1). Several Security Policies are used in this

option.

The second option is a generalization of a basic implementa-

tion. The more instances of SPs we have for each component

of an architecture, the more memory is needed. Figure 8

shows the number of bytes consumed for N IPs (X axis)

over M Security Policies. For a fixed number of IPs, memory

��

������

������

������

������

������

������

������

�	����

�
����

� � � � 	 �� ��

�
�

�
�
�
�
�
�
�
�
�
�
�

������������

���
���
���
��	

Figure 8. Memory occupancy

occupancy follows a linear function. Considering a large

system (16 IPs + 1 external memory, which represents a

threshold for a single-layer communication bus), Security

Policy consumes around 90,000 bits (nearly 11KB, less

than 20% of Block RAMs available on a Xilinx Virtex-6

xc6vlx240t1156-1 FPGA).

CF

Block

RAM

Block

RAM
AXI-4

Hard.

Acc.

Shared

BRAM

MB 2MB 1

LF LFBlock

RAM

Block

RAM

DC ICDC IC

LFBlock

RAM LFBlock

RAM

C11

D2

D11

C2

D12
External

Memory

Code MB1 (64 KB)

Data MB2 (64 KB)

Data MB1 (64 KB)

Code MB2 (64 KB)

Data MB1 (64 KB)

Figure 9. Case study architecture

B. Case study #1: custom architecture

1) Hardware: The case study is based on a dual-processor

architecture (Xilinx Microblaze softcores with 8KB data and

instruction caches). There are two IPs: ”Shared Memory”

is a shared Block RAM of 64 KB and Hard. Acc. is

an image processing IP (threshold function) with a set of

registers (Figure 9). The external memory contains data and

code sections for both processors. This work considers that

external memory is split in five parts (64KBytes each): two

parts for processor #1 (code and data) and three sections

for processor #2 (code and two data sections, with different

cryptographic policies).

Contents can be either protected by confidentiality and au-

thentication (C11 and D11), authentication only (D12) or

even plaintext (C2 and D2). Each processor also has specific

access to the two internal IPs (in terms of Read/Write access

context): for Hard. Acc., MB1 can read and write while MB2

can only write; for Shared BRAM, MB1 can only read, MB2

read and write.

2) Benchmark application: In order to set up this system

as a base for further analysis, an application was defined to

make all key situations happen (accesses to the external mem-

ory, internal communications and so on). This benchmark

application, represented by the sequence diagram in Figure

10, is based on a symbolic JPEG file (previously ciphered and

written in the external memory by a configuration processor)

which is processed and transmitted from one block to another.

According to the former hardware description, the external

memory contents are split in different sections with several

Security Policy instances.

Table IV
SYNTHESIS RESULTS OF THE CASE STUDY #1

Slices Slice LUTs #
Regs BRAMs

Case study 5,446 7,195 8,354 32
w/o firewalls

Case study 7,302 9,848 12,215 51
w/ firewalls +34.08% +36.87% +46.22% +37.25%

When the case study is implemented with security en-

hancements, the area consumption is around 40% higher than

the unprotected version (nearly 46% for LUTs in Table IV).

Table V shows latency overheads for a couple of applica-

tions:

205

Microblaze

#2

Microblaze

#1

External

Memory

Shared

BRAM

startTimer()

rdEncryptPic()

m_encryptPic

decryptAES()

wrDecryptPic()

sendAckFlag()

startTimer()

rdDecryptPic()

m_decryptPic

rdProcessedPic()

m_processedPic

wrDecryptPic()

stopTimer()

sendFinishFlag()

rdTrackData()

wrDiagnosticInfo()

rdTrackData()

Threshold

IP

Figure 10. Benchmark sequence diagram

• picProc is the application described in the sequence

diagram.

• picDrm is a sample DRM application run by one proces-

sor while the other processor does read/write operations.

• picDec is a classic software AES decryption done by

one processor which also accesses the external memory.

Table V
BENCH APPLICATIONS RESULTS

Exe. time # of # of Lat.
(ms) cache miss DDR access Overhead

picProc 3,623 12,672,395 34,063,398 17.76%
picDrm 1,084 3,017,237 9,462,055 9.43%
picDec 382 793,226 4,736,966 4.18%

picProc is the largest application (in terms of code size): as

there are more accesses to the external memory, the penalty

induced by firewalls is higher.

C. Case study #2: other platforms

We also evaluated our solution for two platforms. The first

one is the NEC’s MP21x application SoC, also studied by

Coburn et al. [6]. Figure 11 shows a simplified view of this

system. There are 3 ARM 926 CPUs, a cryptoprocessor able

to run several algorithms (RSA, AES and so on). NEC MP21x

platform also has Security Policies (as it has been defined in

previous sections). For this case study, it is considered that

each CPU has uniform rights on other IPs (for instance, 1

CPU has only one set of rights on the cryptoprocessor). The

second platform is the Samsung Exynos 4210 SoC based on

a dual-core ARM Cortex A9 platform used, for instance,

in smartphones such as the Galaxy SII (from Samsung).

It also has secure memory blocks, video peripherals and a

cryptographic engine.

1) Area: According to the NEC platform schematic, we

consider that SDRAM and Flash are critical memory units

ARM

Shared

memory

ARM ARM

Bridge

DMAC DSP

SRAM

SDRAM

I/F

Flash

I/F

Crypto-

processor

(stack,

heap)

Encrypted

SEM

Header

Crypto

FW (code)

Linux

Kernel

ARM

CPUs

Cryptoprocessor

RISC

Core C
o

-

p
ro

CacheR
O

M
R

A
M BUS I/F

SEM

(APU)

Figure 11. NEC MP21x simplified architecture

and need to be protected by cryptographic services. There-

fore, 5 LF and 2 CF (SDRAM et Flash I/F) are needed for

this case study. For the Exynos 4210 platform, 12 LF and 1

CF (Memory Interface) are required.

Table VI
SYNTHESIS RESULTS OF NEC AND SAMSUNG PLATFORMS

of Slices Slice LUTs
LF + CF Regs BRAMs

MP21x 5 + 2 3,298 4,937 6,843 35

Exynos 4210 12 + 1 2,960 3,637 6,205 27

According to Table VI, firewall enhancements takes 8.75%

of a medium-scale Virtex-6 FPGA (xc6vlx240t) for the

NEC MP21x platform. A Samsung Exynos 4210 platform is

secured by firewalls with 7.86% of a medium-scale Virtex-6

FPGA (xc6vlx240t).

2) Memory occupancy: We consider that in a MPSoC

system, each IP needs only 1 Security Policy. To calculate

the equation giving the memory occupancy for x LF and y

CF, it is assumed that:

• Each IP attached to a LF has access to all other IPs

of the system (including external memories). There are

x+ y IPs in the system, an IP cannot interact on itself

and each LF security policy takes 32 bits. Therefore,

total memory occupancy of LFs follows the equation

(x+ y − 1) ∗ 32x.

• Each IP attached to a LF has access to the external

memory (in this case, each IP needs 1 Security Policy).

In the external memory mapping, there is an address

space for each IP, each address space is managed by

a 192-bits CF security policy. Memory occupancy of

a Cryptographic Firewall is governed by the equation

192x (192xy if y CF in the system).

The evolution of memory occupancy for NEC and Samsung

platforms follows the surface equation 32x2 + 224xy− 32x.

Even with a high protection granularity (20 Security Policies

for each IP), SP memory occupancy costs are quite acceptable

206

(864 Bytes for Samsung Exynos 4210 platform and 360

Bytes for NEC MP21x). In this analysis, tags storage is

not considered and this point can significantly increase the

memory overhead if a uniform security policy is considered

[9].

D. Comparison over existing works

A comparison with related works is done in terms of area

overheads. The area results for our work does not take into

account the Cryptographic Module because Coburn [6] and

Fiorin [5] do not have ciphering features in their solutions.

Xilinx Microblaze processor was taken as a reference for

Table VII
SECURITY OVER PROCESSOR AREA RATIOS

area(security enhancement)
area(processor)

Coburn [6] (16KB / 150 MHz) 6.20%

Fiorin [5] (8KB / 100 MHz) 25%

Our solution (8KB / 100 MHz) 11.30%

Table VII, individual configurations are indicated between

brackets (caches size and clock frequency). In Table VII,

our solution has a ratio lower than the Data Protection

Unit system [5]: this may be due to the CAM system

which is more complex than a Block RAM. SECA-based

solution has a lower impact because the kernel (containing

security configurations) is not included in this estimation

while security policies stored in firewall BRAMs are taken

into account in this analysis.

In order to compare our solution to a centralized approach

like SECA where controls are done in the manager entity,

it is assumed that each transfer requires 4 more cycles (a

normal transfer on AXI bus takes 2 clock cycles [12]): it

represents the latency to communicate between a firewall

and the security manager of the system. Therefore, giving

the picDec application defined in Section V-B, a centralized

implementation like SECA would give a 6.27% latency over-

head while our solution has a 4.18% overhead: it represents

a 33% latency decrease.

VI. CONCLUSION AND PERSPECTIVES

This work proposes distributed and flexible security en-

hancements for bus-based MPSoC that embed protection

mechanisms where existing solutions are mainly centralized

(which involves additional latency overhead for communi-

cation between security elements). Our solution has low

latency overheads and can be further improved by pipelining

data management. In terms of area, LF and CF have low

resources consumption: the major penalty is due to the AES-

GCM core. Our solution is a layer above the communication

protocol as our security enhancements do not modify the

communication protocol between the processors and the other

parts of the system. We plan to integrate reconfiguration

of security services (i.e. modification of security policies)

to counter some attacks against the system: this could be

done quite easily because Block RAMs containing Security

Policies have one data port left for a reconfiguration processor

(it raises other issues such as firewall behavior during recon-

figuration of SPs). In this work, policies are defined using

address domains, it can be interesting to study the adaptation

to thread-specific security where each thread has its own

security policy. Finally, there is the question of scalability:

a single-layer bus allows around 32 IPs; we can imagine to

study benefits of firewall implementations on a multi-layer

bus or a network-on-chip.

REFERENCES

[1] B. Badrignans, J.-L. Danger, V. Fischer, G. Gogniat, and
L. Torres, “Security trends for fpgas,” in From Secured to
Secure Reconfigurable Systems. Springer, 2011, p. 252.

[2] P. Cotret, J. Crenne, G. Gogniat, J.-P. Diguet, L. Gaspar,
and G. Duc, “Distributed security for communications and
memories in a multiprocessor architecture,” in Proc. 2011
Reconfigurable Architectures workshop (RAW), 2011, pp. 326–
329.

[3] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady,
“Security in embedded systems: Design challenges,” ACM
Transactions on Embedded Computing Systems, vol. 3, no. 3,
pp. 461–491, 2004.

[4] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “Noc-
centric security of reconfigurable soc,” in Proc. ACM/IEEE 1st
Int. Symposium on Network-on-Chips, 2007, pp. 223–232.

[5] L. Fiorin, G. Palermo, and C. Silvano, “A monitoring system
for nocs,” in Proc. 3rd Int. Workshop on Network on Chip
Architectures, 2010, pp. 25–30.

[6] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “Seca:
security-enhanced communication architecture,” in Proc. 2005
Int. Conference on Compilers, Architectures and Synthesis for
Embedded Systems, 2005, pp. 78–89.

[7] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner,
T. Levin, T. Nguyen, and C. Irvine, “Moats and drawbridges:
An isolation primitive for reconfigurable hardware based sys-
tems,” in Proc. Int. Symposium on Security and Privacy, 2007,
pp. 281–295.

[8] X. Yan-Ling, P. Wei, and X.-G. Zhang, “Design and imple-
mentation of secure embedded systems based on trustzone,”
in Proc. 2008 Int. Conference on Embedded Software and
Systems, 2008, pp. 136–141.

[9] R. Vaslin, G. Gogniat, J.-P. Diguet, R. Tessier, D. Unnikrish-
nan, and K. Gaj, “Memory security management for reconfig-
urable embedded systems,” in Proc. 2008 Int. Conference on
Field-Programmabkle Technology, 2011, pp. 153–160.

[10] J. Crenne, R. Vaslin, G. Gogniat, J.-P. Diguet, R. Tessier, and
D. Unnikrishnan, “Configurable memory security in embedded
systems,” ACM Transactions on Embedded Computing Sys-
tems, 2011.

[11] D. A. McGrew and J. Viega, “The security and performance of
the galois/counter mode (gcm) of operation,” in INDOCRYPT,
2004, pp. 343–355.

[12] N.-C. Chang, Y.-Z. Liao, and T.-S. Chang, “Analysis of shared-
link AXI,” IET Computers & Digital Techniques, vol. 3, no. 4,
p. 373, 2009.

207

