
HAL Id: hal-00750339
https://hal.science/hal-00750339

Submitted on 10 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security enhancements for FPGA-based MPSoCs: a
boot-to-runtime protection flow for an embedded

Linux-based system
Pascal Cotret, Florian Devic, Guy Gogniat, Benoit Badrignans, Lionel Torres

To cite this version:
Pascal Cotret, Florian Devic, Guy Gogniat, Benoit Badrignans, Lionel Torres. Security enhancements
for FPGA-based MPSoCs: a boot-to-runtime protection flow for an embedded Linux-based system.
ReCoSoC: Reconfigurable Communication-centric Systems-on-Chip, Jul 2012, York, United Kingdom.
pp.1-8. �hal-00750339�

https://hal.science/hal-00750339
https://hal.archives-ouvertes.fr

Security enhancements for FPGA-based MPSoCs:
a boot-to-runtime protection flow for an embedded

Linux-based system
Pascal Cotret∗, Florian Devic†‡, Guy Gogniat∗, Benoı̂t Badrignans‡ and Lionel Torres†

∗Laboratoire Lab-STICC, Université de Bretagne-Sud, Lorient
name.surname@univ-ubs.fr

†Laboratoire LIRMM, Université Montpellier 2, Montpellier
name.surname@lirmm.fr
‡Netheos, Montpellier

f.devic,b.badrignans@netheos.net

Abstract—Nowadays, embedded systems become more and
more complex: the hardware/software codesign approach is
a method to create such systems in a single chip which
can be based on reconfigurable technologies such as FPGAs
(Field-Programmable Gate Arrays). In such systems, data
exchanges are a key point as they convey critical and confi-
dential information and data are transmitted between several
hardware modules and software layers. In case of an FPGA
development life cycle, OS (Operating System) / data updates
as runtime communications can be done through an insecure
link: attackers can use this medium to make the system
misbehave (malicious injection) or retrieve bitstream-related
information (eavesdropping). Recent works propose solutions
to securely boot a bitstream and the associated OS while
runtime transactions are not protected.
This work proposes a full boot-to-runtime protection flow
of an embedded Linux kernel during boot and confidential-
ity/integrity protection of the external memory containing the
kernel and the main application code/data. This work shows
that such a solution with hardware components induces an
area occupancy of 10% of a xc6vlx240t Virtex-6 FPGA while
having an improved throughput for Linux booting and low-
latency security for runtime protection.

I. INTRODUCTION

In embedded systems, MPSoCs (Multi-Processor
Systems-on-Chip) are managed by an embedded OS (for
instance, uCLinux [13]). This OS manages the tasks
distribution over all the processor and hardware IPs
connected through a dedicated communication link (which
is a security breach usable by the incoming attacker)
implemented in the target FPGA chip. Bitstream download
can be protected to prevent attacks such as replay. Hardware
accelerators are also made for providing a user-defined
protection layer during the boot of the OS or the execution
of the main application running on an embedded system.
Devic et al. [4] proposed a solution to secure the boot of
an embedded Linux on a Xilinx ML605 FPGA platform. In
such a solution, designers can securely set a Linux-based
embedded system; unfortunately, during runtime execution,
there is no additional protection mechanism to protect the
system against attacks. For instance, an attacker can easily

modify memory contents to make the system misbehave or
create denial-of-service. This work presents an extension
of the work of Devic et al. [4] to provide the final user
a complete protection flow from bitstream download to
runtime applications execution.
This paper is organized as follows. Section II describes
the threat model taken into account in this work. Section
III summarizes works related to bitstream, boot and
runtime communication protection. Section V shows how
a bus-based MPSoC can be protected with a flexible
and reconfigurable solution relying on security-enhanced
interfaces. Then, Section VI presents implementation
results. Finally, Section VII discusses the security of the
solution presented in this work while section VIII concludes
and highlights the main perspectives we envision.

II. THREAT MODEL

It is assumed that the FPGA system is exposed to hostile
environment where physical but non-invasive attacks, ex-
cepted side-channel ones, introduced by Kocher et al. [10],
are feasible. Besides that, it is assumed that the target FPGA
is trusted. Typically, off-chip bus probing and active probing
(injection) are considered in our threat model. We consider
all attacks aiming to read, modify or replay code or data
directly on the external memory: Linux kernel or application
modifications should be detected by security mechanisms.
This work focuses on three main attacks:

• Spoofing: an attacker provides a random data value on
the external bus.

• Relocation: an instruction put on the external bus by
the attacker is copied from a different bus address (i.e.
the attacker puts the instruction from address #5 while
expected value is from address #2).

• Replay: similarly to a relocation attack, the attacker
intercepts a valid packet and replays it at an opportune
time to make the system misbehave.

While spoofing and relocation affects current memory con-
tents, replay can be used to make a downgrade of the

FPGA chip: a former bitstream or an obsolete version of
the embedded OS can be uploaded in the FPGA itself: this
leads to misbehaviors and denial-of-service which makes
the system unusable. Therefore, the only way to access the
system is through the external memory and the external bus.
A solution would be to encrypt and authenticate the whole
external memory. Unfortunately, this solution has a high cost
in terms of resources consumption and latency overhead. For
many applications, building a flexible solution where only
the most critical code and/or data sections to be stored in the
external memory are protected with cryptographic services
is a good choice. Other parts of the memory can be in
plaintext or only authenticated [3]. In this case, attackers still
have possibilities to compromise the system by tampering
unprotected parts of the external memory. Therefore, the
system designer needs additional mechanisms to monitor
system activity and detect any abnormal behavior.

III. RELATED WORK

A. Bitstream protection

To ensure a complete boot-to-runtime protection, we need
to secure the FPGA configuration (the bitstream) against
spoofing, relocation and replay attacks. These latter are
particularly dangerous because the current approaches pro-
posed by FPGA vendors like Xilinx [14] or Microsemi with
the ISP (In-System Programming) [15] to ensure bitstream
confidentiality and integrity are inefficient against replay.
Even if an update may typically be performed to correct a
critical security flaw, it is possible to downgrade a system,
in order to exploit vulnerabilities present in a previous ver-
sion. Nevertheless, academic literature proposes mechanisms
against downgrades.

In [6], Drimer describes a solution that ensures up-to-
dateness for SRAM FPGAs considering that not only the
FPGA chip is trusted but also the whole board. This system
with several flash memory slots allows the FPGA to start
thanks to a bitstream present in a rescue slot, in case of
update failure.

Braeken et al. propose STRES (Secure Techniques for
Remote reconfiguration of Embedded Systems) [16] based
on STS (Station-to-Station) protocol also requiring processor
instantiation. It uses elliptic curve communicating through
a TCP/IP connection.

Similarly, Devic et al. propose a protocol [17] that ensures
up-to-dateness for non-volatile FPGAs embedding a non-
volatile memory.

B. Boot protection

As described in section II, the kernel is typically stored in
an external Flash memory due to the large storage capacity
requirement. Generally this memory is off-chip, allowing an
attacker to modify the kernel in order to introduce malicious
code.

Hash algorithms are classically used to ensure kernel
integrity like in [18] where Discretix used such a mechanism

for a secure processor. It is the same principle for Atmel [19]
and several others companies.

AEGIS [20] is a well accomplished example of hardware
to OS securing but requires having a specific processor with
a modified operating system.

More recently, ARM conceived TrustZone [21] to build
a boot-to-OS chain of trust. In this scheme the software
is protected and monitored thanks to a secure bit added to
the bus in the hardware. TrustZone uses RSA-PSS (Rivest,
Shamir and Adleman - Probabilistic Signature Scheme) to
secure the boot. This asymmetric cryptographic protocol
verifies the signature of a second level bootloader but is
vulnerable to replay attacks.

In [4], Devic et al. implement on FPGA a boot mechanism
that precludes kernel modifications using SHA-256 (Secure
Hash Algorithm) hash function preventing from replays
attacks and supports updates. Three implementations, (last
twos based on hardware acceleration mechanisms), are pro-
posed to offer three performance/area overhead trade-offs:

• First based on a soft SHA-256 function.
• Second based on a hard SHA-256 crypto core.
• And the last one based on a hard SHA-256 crypto core

accessed with DMA (Direct Memory Access) transfers.
This work proposed also a flexibility improvement involv-

ing asymmetric cryptography (RSA-1024 signature verifica-
tion) that allows changing the kernel in external memory
without changing the bitstream.

C. Runtime protection

In the literature, several studies have addressed the se-
curity of embedded systems [11]. At the communication
level, these systems can be protected either by software
or hardware mechanisms. Software solutions generally do
not require additional hardware but offer low efficiency
in terms of latency which can be critical for applications
where reactivity is essential to fend off attacks. Regarding
NoC (Network-on-Chip)-based architectures, Evain et al.
[5] propose a solution where security controls are done
in each network interface in a distributed manner. Fiorin
[7][8] describes a similar approach with a more detailed
implementation. For bus-based communication architecture,
one of the most significant work was done by Coburn et
al. [1] by an approach similar to Fiorin’s work with a
centralized security manager aiming to check read/write
access rules without cryptographic features (more latency
overhead due to the communication between individual
interfaces and the manager). Cotret et al. [2] proposes a
latency-efficient alternative for MPSoC based on the ARM
AXI bus protocol with flexible security configurations and
additional cryptographic features.
This work describes further how this solution can be added
to the Linux boot protection flow of Devic et al. [4] to
provide a completely secure chain from bitstream download
to runtime application execution: such a system should be
able to manage updates of OS and protection of runtime
transactions in the target multiprocessor system.

IV. A SECURED BOOT-TO-RUNTIME FLOW

This work proposes a solution based on some works
described in Section III to provide a complete secure flow
from bitstream to runtime execution of an embedded Linux
OS on a FPGA-based MPSoC architecture. It should prevent
an attacker to run its own malicious code introduced in an
external memory unit.

A. Flexible boot of an embedded Linux

In the existing scheme provided by Xilinx, the bitstream
is securely copied from an external Flash to the FPGA and
started. In the meantime, block RAMs embedded within
the FPGA chip are initialized with a small software called
”bootloader” run by a GPP (General Purpose Processor): the
Linux kernel starts once it has been copied by the loader in
the DDR external memory (alternatively, the Linux kernel
can be transferred from the Flash to the DDR (Double
Data Rate) memory using a DMA controller improving the
boot time as it can be seen in implementation results).
Unfortunately, there is a security breach in such a flow:
an attacker can easily update the Flash memory with a
malicious kernel because there is no integrity verification
of the Flash.

Communication bus

GPP IPs
Flash

Controller

DMA
Controller

SHARSA
DDR

Controller

Loader

Public key

Block RAMs

Bitstream
(assumed protected)

Linux Kernel

Signature

Root File System

Linux Kernel

DDR External
Memory

External Flash
Memory

Boot steps

1. The loader is stored in Block RAM at power-up from bitstream

2. The loader copies Kernel from Flash to RAM and computes its hash

3. The loader verifies the Kernel integrity by verifying the signature

4. The loader branches to the Kernel and Linux boots

FPGA Chip

Fig. 1. Flexible boot of an embedded Linux

That is the reason why Devic et al. [4] add blocks in
the previous flow (Figure 1) to provide a flexible integrity
protection layer. In this case, the kernel is copied into the
DDR memory. An hash function, implemented in the FPGA
(the only trusted area referring to Section II), computes a
hash value which is compared by the bootloader with its
own kernel hash value: the kernel is started only if values

are equal.
The other implementation, based on an RSA asymmetric
cryptographic function allows the final user to change the
kernel (in the DDR external memory) without changing the
bitstream. This secure boot flow is done in two steps:

• First, the hash function generates the kernel hash value.
• Then, the bootloader (run by the GPP) verifies the

signature of the hash value stored in the external Flash
memory with the previously generated hash value and
its public key.

In Figure 1, the RSA function does not improve the security
level of the solution, the only motivation is to add flexibility.
At this point, the embedded Linux OS is stored in plaintext
in the DDR external memory. This is a major security flaw
as an attacker can easily modify DDR contents after boot in
order to make the system misbehave: that is why security
features must be implemented at the DDR level.

B. Security of the external memory after boot

This work proposes to add confidentiality and integrity
features to the DDR external memory, these two features
are embedded in a block called CF (Cryptographic Firewall),
implementation details are given further in this work. The
CF, based on a AES-GCM algorithm, allows the designer to
protect the Linux Kernel stored in the DDR external memory
with confidentiality and integrity or integrity only, depending
on the main application requirements.

Communication bus

GPP IPs
Flash

Controller

DMA
Controller

SHARSADDR
Controller

Loader

Public key

Block RAMs

Bitstream
(assumed protected)

Linux Kernel

Signature

Root File System

Applications code
and data

Linux Kernel

app1

data2

DDR External
Memory

External Flash
Memory

Local F.Local F.Local F.Local F.

Crypto F.
Local F. Local F. Local F.

Boot steps

1. Loader is stored in Block RAM at power-up from bitstream

2a. Loader copies Kernel from Flash to RAM (passing through the Crypto Firewall)

2b. Kernel hash is computed thanks to the SHA IP

3. Loader verifies the Kernel integrity by verifying the signature (with the RSA IP)

4. Loader branches to the Kernel and Linux starts

FPGA Chip

Fig. 2. Protection enhancements of the external memory

The schematic of Figure 2 shows the CF implemented

in a flow similar to the previous one (Figure 1). In this
case, the Linux kernel is not the only entity protected by
the Cryptographic Firewall. Any application/data used by
a processor in the architecture implemented in the trusted
FPGA chip can be protected with flexible security features
thanks to the additional logic in the CF (in Figure 2, app1
is protected in confidentiality and integrity while data2 is
in plaintext). The decision to protect such and such DDR
memory section with full or without security is up to the
system designer and depends on the security requirements
of the target embedded system. Section V gives details about
the structure of runtime security enhancements provided in
this work.

V. SECURITY ENHANCEMENTS FOR RUNTIME
PROTECTION

In order to prevent a generic MPSoC system from the
threat model detailed in Section II, firewalls are imple-
mented within the system. The target system is composed
of processors (including a GPP), internal memories, de-
dicated IPs embedded within an FPGA and connected to
an external memory. Each interface between a peripheral
and the communication bus is enhanced with a firewall that
aims to monitor communications before they reach the bus
and propagate within the system. On the MPSoC shown
in Figure 3, there are two categories of firewalls: Local
Firewalls and a Cryptographic Firewall (this later adds a
layer of cryptographic services towards the external RAM
memory).

System bus

Local
Firewall

GPP

Crypto
Firewall

External RAM
Memory

FPGA (trusted) untrusted

Mem.
ctrl

Firewall
Interface

Security Builder Crypto
Module

Corr.
Table

Checking
Module

AXI4_addr

AXI4_format

AXI4_rnw

check_out

AXI-4

Block
RAM

Security Policies

AXI
system

bus

IP
(custom, vendor)

Memory
controller

External RAM
Memory

UntrustedTrusted

Specific to
Cryptographic
Firewall

AXI-4

DDR
physical bus

AXI4_data

Local
Firewall

Proc.

Local
Firewall

Proc.

Local
Firewall

IP

Local
Firewall

IP

Local
Firewall

IP

SP

parameters

Fig. 3. Security-enhanced generic MPSoC architecture

A. Firewall features
Even if the external RAM memory is protected with con-

fidentiality and integrity, this work considers that plaintext
memory are available and may be used by the attacker
to make the system misbehave. Therefore, protecting the
external memory with cryptographic services (defined in
Section V-D) is not enough: this work proposes to check
read/write accesses and data format rules according to
designer-defined security policies. These security policies
aim to define a security context for a given address space
in terms of communications protection (read/write. . .) and
cryptographic services (some address spaces must be ci-
phered while others are in plaintext).
These security policies must be stored in entities with
adaptivity facilities: updating the security of our system is
a key point when an attack is detected. That is the reason
why Block RAMs where used: these memory units are easily
configurable through a dual-port interface with a dedicated
processor. Each firewall (Figure 3) is mainly based on three
components:

• Firewall Interface: Communication between the system
bus (based on the ARM AXI standard) and the associ-
ated IP (custom IP, I/O controller, memory controller):
synchronization of handshake signals with datapath-
related values. This task is performed by the Firewall
Interface.

• Reading Module: Reading security policies defined in
on-chip Block RAMs and extracting the parameters.
This is done by the Reading Module.

• Firewall Interface: Once parameters were extracted,
their values are compared with some signals of the AXI
communication bus. The Checking Module computes a
value indicating the validity of bus values from these
comparisons and transmits it to the Firewall Interface
which blocks or not the datapath within the firewall.

In case of attack, read and write access are blocked: if
the current request is a write, the firewall simulates the
correctness of a write request using handshake signals of
the AXI bus standard; in case of read, malicious data is
blocked and the firewall sends an error code to the required
host processor.

B. Security policies storage
A 16Kb Block RAM (with 32-bit ports) is attached to

each firewall (Local and Cryptographic) for SPs (Security
Policies) storage. Local Firewall SPs are stored on a single
32-bit block while Cryptographic Firewall SPs are stored
on 6 32-bit blocks (LF and CF in Figure 4). Each block is
indexed by an address (for instance, address 0) which helps
the Reading Module to know where to read the first block of
the target Security Policy. In case of reading a Cryptographic
Firewall Security Policy, a few logic is added to the Reading
Module in order to read all the SP blocks only knowing the
address of the first block.

Figure 4 shows a layout of Block RAMs containing
Security Policies for Local and Cryptographic firewalls. As

LF1

TAG address4 5 Key(127 downto 0)

LF Security
Policy

Block RAM

Detailed contents

32
bits

address=0

address=1

address=n

[…]

LFn

Key(127 downto 96)
31 0

Key(95 downto 64)
31 0

Key(63 downto 32)
31 0

Key(31 downto 0)
31 0

TAG address
31 0

[…]
31 0

31 0

#1: Read/Write access (2 bits)
#2: Allowed format (2 bits)

#4: Confidentiality mode (1 bit)
#5: Integrity mode (1 bit)

Local Firewall SP

Cryptographic Firewall SP

CF1

CF1

CF1

CF1

CF1

CF1

[…]

CF Security
Policy

Block RAM

LF2
address=2

@0

@n

@n+6
[…]

zero-pad1 2 3
31 0

zero-pad4 5

1 2 3

#3: Error mode enable (1 bit)

3

3

Fig. 4. Security Policy memory layout for Local and Cryptographic
Firewalls

BRAMs data ports are 32-bit wide, a Security Policy for
a LF is read in 1 clock cycle instead of 6 cycles for
a Cryptographic Firewall SP. Each firewall has its own
Block RAM separated from cryptography-related memories
(Section V-D).

The structure of fields labeled as #1, #2, #3, #4 and #5 is
described in Table I. For confidentiality and authentication,

TABLE I
SECURITY POLICY STRUCTURE

Values
Field Rule 00 01 10 11

#1 Read all. No No Yes Yes
Write all. No Yes No Yes

#2 Format 4 8 16 32

Values
Field Rule 0 1

#3 Error mode Disabled Enabled

Values
Field Rule 0 1

#4 Confidentiality No Yes
#5 Authentication No Yes

related bits allow to correctly connect data ports to the AES-
GCM core in order to perform all the needed cryptographic
modes (authentication only, plaintext and so on).

C. Security policies update

In case of an attack event, Block RAM contents have to
be updated with new SPs through a ”trustworthy processor”
in order to keep a safe environment for the target MPSoC.
Figure 5 presents the solution implemented in this work.

All the components are connected on an AXI-Lite bus (also
known as Reconfiguration bus). An attack monitoring IP has
a trusted custom bus connected with each firewall: when
an attack event is detected, information is sent back to
this IP. The trustworthy processor launches the reconfigu-
ration processes on a specific interruption routine from the
attack monitoring IP. Depending on the ability of IPs to

Firewall

Attack
monitoring IP

Reconfiguration bus

Trustworthy
Processor

Log
timer

IP /
Processor

BRAM
controller

Data

SP BRAM

System bus

Custom
bus Address

Firewall

IP /
Processor

BRAM
controller

SP BRAM

Attack
flags

Attack
flags

Monitoring path

Reconfiguration path

recfgEn
bit

recfgEn
bit

Fig. 5. Architecture of the reconfiguration/monitoring area

manipulate confidential information, two security flows are
established. Critical IPs (for instance, ciphering algorithms
implementation) must not reveal any information when an
attack event is detected. In that case, critical IPs are isolated
from the system (in the error code mode, a fixed designer-
defined value is sent instead of the incoming data). For non-
critical IPs, an intermediate protection layer is authorized
where reading accesses are still allowed but not writing
ones. Then, the designer can define a time window where
an IP protection mode can be set to a lower security level:
in that case, without any attack event detected during a fixed
amount of cycles, an IP protection mode can go from ”error
code” to the initial configuration.

D. Cryptographic services

This work considers that external memories may not be
entirely protected in terms of confidentiality and authenti-
cation in order to keep a satisfying area/latency overhead.
In this approach, memory sections can be in plaintext,
protected with confidentiality and authentication or even
authentication only: it allows the system designer to protect
only the most critical parts of applications.
The simplest implementation consists in a combination of
a basic AES ciphering algorithm and an hash function

(such as MD5 or SHA-2) while muxs and demuxs are
used to route signals according to SP parameters related
to confidentiality and authentication modes (Cmode and
Imode). Unfortunately, this solution has a quite large latency
overhead: MD5 computes a hash value in 64 clock cycles
while SHA-2 takes 80 cycles to do so.
A latency-efficient alternative based on the AES-GCM al-
gorithm [3] is proposed in Figure 6. This work uses an
AES function to generate a keystream (with timestamp,
address inputs and a cryptographic key read from the Block
RAM linked with the Cryptographic Firewall) which is
XORed with the plaintext to compute the ciphertext. Then, if
authentication is required (depending on Cmode and Imode
values), datapath goes through the GHASH authentication
function [22]. Modes routing (confidentiality/authentication,
authentication only, plaintext) is done by one mux and one
demux. The use of timestamps and data addresses in the
keystream generation within AES-GCM ensures protection
against replay and relocation attacks.
In Figure 6, encryption of a 32-bit data block is done in 10

C+I

I only

C
mode

I
mode

Ciphertext

address

Plaintext

tag

data External
Memory

MAC
memory

AXI-4 communication
bus

Firewall
Block
RAM

Timestamp
Memory

data

mux

mux

demux

32

32

Cryptographic
Key

Firewall
Block
RAM

Keystream
generation

(AES cipher)

Authentication
(GHASH)

Fig. 6. Cryptographic core based on AES-GCM algorithm

clock cycles and authentication in 2 clock cycles: using the
AES-GCM algorithm, the Cryptographic Firewall is able to
perform low-latency cryptographic services.

E. SMPs extensions

Up until now, embedded systems were supposed to embed
only one processor, the General Purpose Processor (GPP).
Most of current applications require now, high performance
systems: that is the reason why MPSoCs embed several
processors; such platforms are also known as SMPs (Sym-
metric Multiprocessor platforms). OSs must manage tasks
repartition between all the processors of the architecture.
From version 2.2, Linux kernel can be configured to manage
SMPs: the kernel does all the tasks repartitions by itself
according to the availability of all the processors in the target
SMPs.
Therefore, for each read/write request, firewalls must be
aware of the requesting processor. That is the reason why
an ID have to be associated with each transaction between

a processor and an IP. The solution proposed in this work
is shown in Figure 7. Here, there is a compromise between

AXI-4

AXI
system

bus

IP
(custom, vendor)

Memory
controller

External
Memory

AXI-4

DDR
physical bus

Firewall
Interface

Security
Builder

Block
RAM

IDreg

Modifications
for SMPs
compliance

Fig. 7. SMPs extension for firewalls

the architecture complexity (number of wires, buses, connec-
tions. . .) and the latency efficiency of the provided solution.
The option we chose is to transmit an ID to be written
within a register of the firewall before the transaction itself.
In Figure 7, the 4-bit ID (4 bits can code up to 16 IDs)
is written in the IDreg register. Then, the transaction (read
or write of a data) is processed by the firewall which takes
into account the ID in order to block or not the current
transaction. Therefore, in terms of latency, the transaction
time is doubled because of the register writing before the
transaction itself; on the contrary, the architecture of security
enhancements is not more complicated as the only change
is done in the firewall: an additional register and a few logic
(to process the register value as the ID) is enough to make
firewalls SMPs-compliant.

VI. IMPLEMENTATION RESULTS

All the following results have been implemented on a Xi-
linx ML605 development board including a xc6vlc240t1156-
1 Virtex-6 FPGA. This device has around 240,000 logic cells
and 15 Mb of Block RAM. First, area and latency overheads
of the solution presented in this work are given. Then, some
benchmarks are used to study different scenarios overheads
for a given case study architecture.

A. Area

First, the idea is to measure the impact of the security
enhancements proposed in this work in terms of area.
Table II shows the area of a base system composed of a
Microblaze processor running at 100 MHz booting a 2.8MB
Linux kernel (version 2.631) in a DDR3 external memory
connected through an AXI bus. Then, the area of each
individual block is given and the overhead is accumulated
for each additional block aiming to protect the boot-to-
runtime flow (between brackets). As it can be seen in Table
II, the area overhead of the boot protection part (SHA,
DMA transfer and RSA) is mainly due to the hash function
(around 27%). Nevertheless, the whole secured flow applied

TABLE II
AREA OVERHEAD

Slice Slice #
regs LUTs BRAMs

Base system 8,950 9,179 46

+ Hard 2,044 2,452 1
SHA-256 (22.83%) (26.71%) (2.17%)
+ DMA 534 939 4

(28.80%) (36.94%) (10.87%)
+ RSA-1024 684 989 4

(36.44%) (47.72%) (19.57%)
+ AES-GCM 2,161 2,689 15

(Crypto Firewall) (60.59%) (77.30%) (52.17%)
+ Local 123 93 11
Firewall (61.97%) (78.02%) (76.09%)

to a single processor architecture occupies around 10% of a
Virtex-6 xc6vlx240t FPGA: some IPs, at least cryptographic
ones (SHA, RSA) and DMA, are reusable in the system
design.

B. Latency

Latency efficiency is measured through the throughput
and the boot time overhead of security enhancement blocks.
The throughput of the kernel boot part (first half of Table III)
is around 65 MB/s. In case DMA is used to copy the kernel
from Flash to DDR, the performance overhead is nil: using
the memcpy function, the kernel is booted in 280 ms using
the classic Xilinx scheme (the corresponding throughput
is 10 MB/s). The security-enhanced boot proposed here is
faster with a 12.6 MB/s throughput. Regarding the protection

TABLE III
KERNEL OVERHEADS

cycles Boot time Throughput Gain
overhead

Soft SHA-256 295,860,775 2.959 s 0.95 MB/s ref.
Hard SHA-256 13,650,588 0.137 s 7.29 MB/s x 7.7

+ DMA 4,534,179 0.044 s 66.67 MB/s x 70

TABLE IV
CIPHERING OVERHEADS

cycles Boot time Throughput
overhead

RSA 93,042 0.001 s N/A
AES-GCM 4,037,018 0.008 s 2.68 MB/s

(C+I)
AES-GCM 367,002 0.0009 s 23.49 MB/s

(I only)

of the external memory, the boot time overhead is acceptable
(in both confidentiality/integrity and integrity only modes).
From an overall point of view, this AES-GCM core is the
main bottleneck of the boot-to-runtime flow (throughput is
low compared to the secure boot part), this must be improved
by enabling pipelining within the AES-GCM function.

C. Benchmark applications

In order to measure the impact of the solution proposed
in this work for the runtime protection (i.e. once Linux is

booted), some applications from miBench benchmark suite
and a set of custom applications such as FFT (Fast Fourier
Transform) and CRC (Cycle Redundancy Check) computa-
tions have been considered. We consider the following case
study: an architecture with a single Microblaze running an
embedded Linux has been securely booted using the flow
presented in this work. Benchmark applications are stored in
a non-volatile memory and have to be copied in the external
memory passing through the Cryptographic Firewall CF.
For each application, the boot time (i.e. time to copy the
application code in the DDR without security enhancement)
serves as a reference while three different scenarios are
considered: each application is stored in plaintext (PT),
with integrity only (I only) or with confidentiality and
integrity (C+I) depending on the requirements of the final
use of such an application. For all the scenarios, latency

TABLE V
BENCHMARK OVERHEADS

Application Code size Duration Overheads (ms)
(bytes) (ms) PT C+I I only

miBench
basicmath 40,940 0.781 0.131 0.245 0.144

bitcnt1 10,876 0.207 0.035 0.065 0.038
bitcnt2 11,004 0.21 0.035 0.066 0.038
bitcnt3 11,668 0.223 0.037 0.069 0.041
bitcnt4 11,292 0.215 0.036 0.067 0.040
bitstrng 11,068 0.211 0.035 0.066 0.039
dijkstra 23,036 0.439 0.074 0.138 0.081

stringsearch 15,476 0.295 0.049 0.092 0.054
Custom

choleski 56,564 1.079 0.181 0.338 0.199
crc 26,492 0.505 0.085 0.159 0.093
dft 41,924 0.8 0.134 0.251 0.147
fft 33,284 0.635 0.106 0.199 0.117
fir 21,908 0.418 0.07 0.131 0.077
lu 40,948 0.781 0.131 0.245 0.144

matrix 29,620 0.565 0.095 0.177 0.104
nbody 29,396 0.561 0.094 0.176 0.103
radix 18,916 0.361 0.06 0.113 0.066
wht 17,316 0.33 0.055 0.103 0.060

overheads are negligible (for instance, between 16% and
31% for the dijkstra application). Thanks to the GHASH
hash function embedded in the AES-GCM core, a flexible
confidentiality/integrity feature is performed by the Crypto-
graphic Firewall while keeping acceptable latency overheads
in all modes.

VII. DISCUSSIONS AND SECURITY ANALYSIS

Communication architectures considered in this work are
based on buses. Such architectures are made for small scale
systems (around 16 processors and 16 IPs). If the firewall
approach has to be fitted to large-scale embedded systems
(NoCs), there are pros and cons to be considered.
Large-scale firewalls have basically the same structure as
small-scale firewalls: the main difference is the commu-
nication protocol managed by the Firewall Interface; oth-
erwise, firewalls behavior is unchanged (it is assumed all
the information needed for communication analysis can be

extracted). The main bottleneck is at the architecture level:
Local Firewalls do not imply a considerable area overhead.
The drawback is due to the number of connections of a
firewall each time an IP is instantiated:

• A bus connection for the reconfiguration process.
• Another bus connection for the system bus (dealing

with the GPP).
• A custom bus connection (for monitoring purposes).

Number of connections increases with the number of fire-
walls. At a certain point, custom bus must be managed by
an arbiter to decide which firewall has the priority on each
other in order to avoid deadlocks and denials of service.
In this work small-scale systems are targeted, the proposed
protection mechanisms through Local and Cryptographic
Firewalls allows the system to be protected against the
threat model defined in Section II. With the flexible DDR
ciphering approach where some parts of the external me-
mory can be ciphered while other are in plaintext, the only
security breach should be in these ”unprotected” memory.
An attacker can read or write in plaintext memory to
create malicious code/data: as soon as malicious contents
go through a firewall (Local or Cryptographic), read/write
rights, format and address memory map validity are checked.
Therefore, the only real breach of the solution presented in
this work is an attacker reading plaintext memory sections:
it is assumed that such contents were defined by the designer
(according to system requirements) as minor information we
do not care about if they are disclosed.

VIII. CONCLUSION AND PERSPECTIVES

This paper proposes a solution for a secure boot-to-
runtime flow of a MPSoC system running an embedded
Linux OS. This solution has several advantages: first, thanks
to the RSA core, this system is flexible from a software
point of view as the OS kernel can be updated without
changing the bitstream. Then, on runtime, a low-latency
DDR memory protection is given to protect applications
with flexible confidentiality and integrity (address space
granularity) providing a good area/latency overhead for em-
bedded systems requirements (instead of ciphering the whole
external memory). The AES-GCM used for this purpose
could also be used for the kernel boot: it would noticeably
decrease the area overhead of the solution proposed in this
work. As for the Linux kernel, firewalls security policies can
be easily updated through a dedicated interface if an attack
is detected.

ACKNOWLEDGMENT

The work presented in this paper was realized in the
frame of the SecReSoC project number ANR-09-SEGI-
013, supported by a grant of the French National Research
Agency (ANR).

REFERENCES

[1] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “SECA:
Security-Enhanced Communication Architecture,” in Proc. 2005 Int.
Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), Sep. 2005, pp. 78–89.

[2] P. Cotret, J. Crenne, G. Gogniat, and J.-P. Diguet, “Bus-based MPSoC
security through communication protection: A latency-efficient alter-
native,” in Proc. IEEE 20th Annual Int. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Apr. 2012.

[3] J. Crenne, R. Gogniat, Guy anand Vaslin, G. Gogniat, J.-P. Diguet,
R. Tessier, and D. Unnikrishnan, “Configurable memory security in
embedded systems,” ACM Transactions on Embedded Computing
Systems (TECS) (accepted/to appear), vol. Jan., 2012.

[4] F. Devic, L. Torres, and B. Badrignans, “Securing boot of an em-
bedded linux on FPGA,” in Proc. ACM/IEEE 18th Reconfigurable
Architectures Workshop (RAW), May 2011, pp. 189–195.

[5] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “NOC-
centric security of reconfigurable SoC,” in Proc. ACM/IEEE 1st Int.
Symposium on Network-on-Chips (NOCS), May 2007, pp. 223–232.

[6] S. Drimer and M. G. Kuhn, “A protocol for secure remote updates
of FPGA configurations,” in Proc. ACM/IEEE 5th International
Workshop on Reconfigurable Computing: Architectures, Tools and
Applications, Mar. 2009, pp. 50–61.

[7] L. Fiorin, G. Palermo, S. Lukovic, and C. Silvano, “A data protection
unit for NoC-based architectures,” in Proc. IEEE/ACM 5th IEEE/ACM
Int. Conference on Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS), Sep. 2007, pp. 167–172.

[8] L. Fiorin, S. Lukovic, and G. Palermo, “Implementation of a re-
configurable data protection module for NoC-based MPSoCs,” in
Proc. IEEE 18th IEEE Int. Symposium on Parallel and Distributed
Processing(IPDPS), Apr. 2008, pp. 1–8.

[9] L. Fiorin, G. Palermo, and C. Silvano, “A monitoring system for
NoCs,” in Proc. 3rd Int. Workshop on Network on Chip Architectures
(NoCArc), Dec. 2010, pp. 25–30.

[10] P. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” Advances in Cryptology -
CRYPTO’96, vol. 1109, pp. 104–113, 1996.

[11] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security
in embedded systems: Design challenges,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 3, no. 3, pp. 461–491,
Aug. 2004.

[12] ARM. (2011) AMBA AXI and ACE protocol specification. [Online].
Available: http://infocenter.arm.com/help/index.jsp

[13] uCLinux. (2012) uCLinux - Embedded Linux/Microcontroller
Project. [Online]. Available: http://www.uclinux.org/

[14] (2010, Nov.) Virtex-6 FPGA Configuration, user guide.
Xilinx corporation. UG360 (v3.2). [Online]. Available:
http://www.xilinx.com/support/documentation/user guides/ug360.pdf

[15] (2009, Aug.) In-System Programming (isp) of Ac-
tel low-power flash devices using flashpro3. Microsemi
(ex Actel) corporation. Version 1.5. [Online]. Available:
http://www.actel.com/documents/LPD ISP HBs.pdf

[16] A. Touhafi, A. Braeken, G. Cornetta, N. Mentens, and K. Steenhaut,
“Secure Techniques for Remote configuration of Embedded Systems,”
in Handbook of Research on Mobility and Computing: Evolving
Technologies and Ubiquitous Impacts, Apr. 2011, pp. 930–951.

[17] F. Devic, L. Torres, and B. Badrignans, “Secure protocol imple-
mentation for remote bitstream update preventing replay attacks on
FPGA,” in Proc. ACM/IEEE 2010 International Conference on Field
Programmable Logic and Applications (FPL’10), Sep. 2011, pp. 179–
182.

[18] Discretix Secure Boot (DxSB). Discretix corporation. [Online].
Available: http://www.discretix.com/secureboot/index.html

[19] (2006, Dec.) Safe and secure bootloader implementation.
Atmel corporation. Literature no. 6282. [Online]. Available:
http://www.atmel.com/dyn/resources/prod documents/doc6253.pdf

[20] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“AEGIS: Architecture for tamper-evident and tamper-resistant pro-
cessing,” in Proc. 17th annual international conference on Super-
computing (ICS’03), Jun. 2003, pp. 160–171.

[21] (2009, Apr.) Building a secure system using
trustzone technology. White paper. [Online]. Avail-
able: http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-
009492c/PRD29-GENC-009492C trustzone security whitepaper.pdf

[22] J. Crenne, P. Cotret, G. Gogniat, R. Tessier, J.-P. Diguet, and
Tessier, “Efficient key-dependent message authentication in reconfig-
urable hardware,” in Proc. IEEE International Conference on Field-
Programmable Technology (FPT), Dec. 2011, pp. 1–6.

