
HAL Id: hal-00750268
https://hal.science/hal-00750268

Submitted on 9 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Erratum: Sgdqn is less careful than expected
Antoine Bordes, Léon Bottou, Patrick Gallinari, J. Chang, S.A. Smith

To cite this version:
Antoine Bordes, Léon Bottou, Patrick Gallinari, J. Chang, S.A. Smith. Erratum: Sgdqn is less careful
than expected. Journal of Machine Learning Research, 2010, 11, pp.2229–2240. �hal-00750268�

https://hal.science/hal-00750268
https://hal.archives-ouvertes.fr

Journal of Machine Learning Research 11 (2010) 2229-2240 Submitted 11/09; Revised 5/10; Published 8/10

Erratum: SGDQN is Less Careful than Expected

Antoine Bordes ANTOINE.BORDES@LIP6.FR

LIP6 - Universit́e Pierre et Marie Curie
4, Place Jussieu
75005 Paris, France

Léon Bottou LEON@BOTTOU.ORG

NEC Laboratories America, Inc.
4 Independence Way
Princeton, NJ 08540, USA

Patrick Gallinari PATRICK.GALLINARI @LIP6.FR

LIP6 - Universit́e Pierre et Marie Curie
4, Place Jussieu
75005 Paris, France

Jonathan Chang JONCHANG@FACEBOOK.COM

S. Alex Smith ASMITH@FACEBOOK.COM

Facebook
1601 S. California Avenue
Palo Alto, CA 94304, USA

Editors: Soeren Sonnenburg, Vojtech Franc, Elad Yom-Tov and MicheleSebag

Abstract

The SGD-QN algorithm described in Bordes et al. (2009) contains a subtle flaw that prevents it
from reaching its design goals. Yet the flawedSGD-QN algorithm has worked well enough to be a
winner of the first Pascal Large Scale Learning Challenge (Sonnenburg et al., 2008). This document
clarifies the situation, proposes a corrected algorithm, and evaluates its performance.

Keywords: stochastic gradient descent, support vector machine, conditional random fields

1. Introduction

Bordes et al. (2009) propose to improve the practical speed of stochastic gradient descent by effi-
ciently estimating a diagonal matrix for rescaling the gradient estimates. The proposed algorithm,
SGD-QN, works well enough to be a winner of the first Pascal Large Scale Learning Challenge
(Sonnenburg et al., 2008). A couple months after the publication of the paper, Jonathan Chang and
S. Alex Smith contacted Ĺeon Bottou regarding some curious aspects of the algorithm mathematics
(see Section 4.1). This initial observation was then traced back to a more subtle flaw that prevents
the proposed algorithm to truly reach is design objectives.

We first explain the flaw and present experimental results describing its consequences. Then we
present a corrected algorithm and evaluate its performance for training both linear Support Vector
Machines (SVMs) and Conditional Random Fields (CRFs). Finally we drawupdated conclusions.

c©2010 Antoine Bordes, Ĺeon Bottou, Patrick Gallinari, Jonathan Chang, and S. Alex Smith.

BORDES, BOTTOU, GALLINARI , CHANG AND SMITH

2. Setup

Consider a binary classification problem with examples(x,y) ∈ R
d×{−1,+1}. Given a set of

examples{(x1,y1) . . .(xn,yn)}, we obtain a linear SVM classifier by minimizing the cost

Pn(w) =
λ
2
‖w‖2+

1
n

n

∑
i=1

ℓ(yiw⊤xi) =
1
n

n

∑
i=1

(

λ
2
‖w‖2+ ℓ(yiw⊤xi)

)

.

Each iteration of theSGD-QN algorithm consists of drawing an independent random example(xt ,yt)
from the training set and computing an updated parameter vector

wt+1 = wt −
1

t + t0
Bgt(wt) with gt(wt) = λwt + ℓ′(ytw⊤t xt)yt xt (1)

whereB is a diagonal scaling matrix estimated on-the-fly.
In the following, expectations and probabilities refer to the discrete distribution describing the

training examples randomly picked from the finite training set at each iteration.Let Ft denote the
examples{(x1,y1) . . .(xt−1,yt−1)} picked before reaching thet-th iteration.

We would like to findB such that

wt+1−wt = B
(

P
′
n(wt+1)−P

′
n(wt)+ξt

)

, (2)

with an error termξt verifying E [ξt |Ft] = 0. Following Schraudolph et al. (2007), we replace
the computationally expensive gradientsP ′n by the cheap stochastic estimatesgτ(wt) andgτ(wt+1)
computed on a same single example(xτ,yτ) ,

wt+1−wt = B
(

gτ(wt+1)−gτ(wt)+ζt +ξt
)

, (3)

whereζt represents the additional error term introduced by this substitution. EstimatingB with (2)
or (3) leads to the same solution if we make sure thatE [ζt |Ft] = 0 as well.

The SGD-QN algorithm updates the diagonal elements of matrixB on-the-fly on the basis of
the term-by-term ratios of the observed differenceswt+1−wt andgτ(wt+1)−gτ(wt). The obvious
choicesτ = t andτ = t +1 only require one additional gradient evaluation because the parameter
update formula (1) demands the computation of all the gradientsgt(wt) anyway.

3. The Flaw

Let us now evaluate

E [ζt |Ft] = E
[

P ′n(wt+1)−P
′
n(wt)−gτ(wt+1)+gτ(wt)

∣

∣Ft
]

.

Let us first consider the caseτ = t +1. Sincegt+1(wt+1) is a function of(xt+1,yt+1,xt ,yt ,Ft),

E [gτ(wt+1)|Ft] =
∫

gt+1(wt+1) dP(xt+1,yt+1,xt ,yt |Ft)

=
∫ [∫

gt+1(wt+1) dP(xt+1,yt+1)

]

dP(xt ,yt |Ft) .

2230

ERRATUM: SGD-QN IS LESSCAREFUL THAN EXPECTED

Since the variableswt+1 and (xt+1,yt+1) are independent, the inner integral above is simply the
average ofgt+1(wt+1) for all possible(xt+1,yt+1) picked from the training set. Therefore

E [gτ(wt+1)|Ft] =
∫
P ′n(wt+1) dP(xt ,yt |Ft) = E

[

P ′n(wt+1)
∣

∣Ft
]

.

Using a similar derivation forE [gτ(wt)|Ft] with τ= t+1, we can easily establish thatE [ζt |Ft] = 0.
Therefore estimatingB on the basis of (3) leads to the same solution as estimatingB on the basis of
(2), albeit with a higher noise level.

Such a derivation is impossible whenτ= t because(xt ,yt) andwt+1 are not independent. There-
fore we cannot ensure that estimatingB with (2) or (3) leads to the same result. Unfortunately, the
SGD-QN paper (see Section 5.3 of Bordes et al., 2009) describes the algorithm withτ = t.

4. The Consequences

In order to take maximal advantage of sparse data sets, theFlawed SGD-QN algorithm (see Figure 2
in the original paper) splits the stochastic parameter update (1) in two halves inorder to schedule
them separately. The first half involves only the gradient of the loss,

w← w− (t + t0)
−1B ℓ′(yt w⊤xt)yt xt .

The second half involves only the gradient of the regularization term,

w←
{

w most of the time,
w−skipλ (t + t0)−1Bw once everyskip iterations.

The Flawed SGD-QN algorithm measures the differenceswt+1−wt andgt(wt+1)−gt(wt) during
iterations for which the second half does nothing. Therefore, using notations [x]i for the i-th coeffi-
cient of vectorx, andBii for the terms of the diagonal matrixB, we always have

[gt(wt+1)−gt(wt)]i
[wt+1−wt]i

= λ−
(

ℓ′(ytw⊤t+1xt)− ℓ′(ytw⊤t xt)
)

yt [xt]i
Bii (t + t0)−1ℓ′(ytw⊤xt)yt [xt]i

.

• When[xt]i is nonzero, we can simplify this expression as

[gt(wt+1)−gt(wt)]i
[wt+1−wt]i

= λ−
ℓ′(ytw⊤t+1xt)− ℓ′(ytw⊤t xt)

Bii (t + t0)−1ℓ′(ytw⊤t xt)
. (4)

This ratio is always greater thanλ because of the loss functionℓ is convex. As explained in
the original paper, the coefficientsBii then remain smaller thanλ−1.

• When[xt]i is zero, the original paper uses a continuity argument to justify the equality

[gt(wt+1)−gt(wt)]i
[wt+1−wt]i

= λ . (5)

2231

BORDES, BOTTOU, GALLINARI , CHANG AND SMITH

0.31

0.32

0.33

 0 1 2 3 4 5 6 7

P
rim

al
 c

os
t

Number of epochs

SVMSGD2 t0=1e4
SVMSGD2 t0=3e4
SVMSGD2 t0=1e5
SVMSGD2 t0=3e5
SVMSGD2 t0=1e6
SVMSGD2 t0=3e6

Flawed SGDQN t0=1e4
Flawed SGDQN t0=3e4
Flawed SGDQN t0=1e5
Flawed SGDQN t0=3e5
Flawed SGDQN t0=1e6
Flawed SGDQN t0=3e6

oLBFGS

21.5

22.0

22.5

23.0

23.5

 0 1 2 3 4 5

T
es

t E
rr

or
 (

%
)

Number of epochs

SVMSGD2 t0=1e4
SVMSGD2 t0=3e4
SVMSGD2 t0=1e5
SVMSGD2 t0=3e5
SVMSGD2 t0=1e6
SVMSGD2 t0=3e6

Flawed SGDQN t0=1e4
Flawed SGDQN t0=3e4
Flawed SGDQN t0=1e5
Flawed SGDQN t0=3e5
Flawed SGDQN t0=1e6
Flawed SGDQN t0=3e6

oLBFGS

DELTA DATA SET

Figure 1: Plots of the training cost and test misclassification percentage versus the number of
epochs forSVMSGD2 (red) andFlawed SGD-QN (green) for various values oft0 on
the dense Delta data set. TheFlawed SGD-QN algorithm never outperforms the best
SVMSGD2.

4.1 Impact on Dense Data Sets

The coefficients[xt]i for dense data sets are rarely zero. Assume all theBii are equal before being
updated. All the ratios (4) will then be equal. Therefore all theBii coefficients will be updated in
exactly the same way and therefore remain equal. Since theBii coefficients are initially equal, they
remain equal all the time, except maybe when encountering an occasional zero in the patternsxt .
This observation led to the discovery of the flaw.

Since the scaling matrix reduces to a scalar gain, similar results could in principlebe obtained
using the ordinary stochastic gradient descent with a better gain schedule. This clearly defeats the
purpose of theSGD-QN algorithm design.

Figure 1 compares the evolutions of the training cost and the test misclassification error for the
SVMSGD2 and theFlawed SGD-QN algorithms for selected values of the parametert0 instead of
the usual heuristic defaults. We observe that there is almost always a choice of t0 in SVMSGD2
that performs as well as the best choice oft0 for the Flawed SGD-QN. Both algorithms perform
identically poorly for excessive values oft0. On the other hand, whent0 is too small, the perfor-
mance ofFlawed SGD-QN degrades much more gracefully than the performance ofSVMSGD2. In
some cases,Flawed SGD-QN can even slightly outperformsSVMSGD2 because, despite the flaw,
it can still update its learning rate on the course of learning. This explains partially why we have
consistently obtained better results with the flawed algorithm.

4.2 Impact on Sparse Data Sets

The situation is more complex in the case of sparse data sets because there is special case for
updating theBii coefficients when dealing with zero coefficients (5). As a result, theFlawed SGD-
QN algorithm gives higher values to the scaling coefficientsBii when thei-th feature is more likely

2232

ERRATUM: SGD-QN IS LESSCAREFUL THAN EXPECTED

0.12

0.13

0.14

0.15

0.16

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
rim

al
 c

os
t

Number of epochs

SVMSGD2 t0=1e4
SVMSGD2 t0=3e4
SVMSGD2 t0=1e5
SVMSGD2 t0=3e5
SVMSGD2 t0=1e6
SVMSGD2 t0=3e6

Flawed SGDQN t0=1e4
Flawed SGDQN t0=3e4
Flawed SGDQN t0=1e5
Flawed SGDQN t0=3e5
Flawed SGDQN t0=1e6
Flawed SGDQN t0=3e6

5.5

6.0

6.5

7.0

7.5

8.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
es

t E
rr

or
 (

%
)

Number of epochs

SVMSGD2 t0=1e4
SVMSGD2 t0=3e4
SVMSGD2 t0=1e5
SVMSGD2 t0=3e5
SVMSGD2 t0=1e6
SVMSGD2 t0=3e6

Flawed SGDQN t0=1e4
Flawed SGDQN t0=3e4
Flawed SGDQN t0=1e5
Flawed SGDQN t0=3e5
Flawed SGDQN t0=1e6
Flawed SGDQN t0=3e6

RCV1 DATA SET

Figure 2: Plots of the training cost and test misclassification error versus the number of epochs for
bothSVMSGD2 (red) andFlawed SGD-QN (green) running on the RCV1 data set. Both
algorithms reach optimal performance after seeing half the training set.

to be zero. Since this is a sensible scaling for such data sets, theFlawed SGD-QN algorithm works
relatively well in the presence of sparse features.

Figure 2 compares theSVMSGD2 andFlawed SGD-QN algorithms for many choices for the
t0 parameter on the Reuters RCV1 data set. Unfortunately there is nothing to seethere. Both
algorithms reach optimal performance after processing only one half of thetraining set.

In order to find a more challenging sparse data set, we have adapted both the SVMSGD2 and
theFlawed SGD-QN algorithms for the optimization of Conditional Random Fields (Lafferty et al.,
2001). This is an interesting case where preconditioning is difficult because the features are gener-
ated on the fly on the basis of position-independent templates.

Figure 3 compares the algorithms on the CoNLL 2000 “chunking” task (Sangand Buchholz,
2000) using the template setup provided as an example with the CRF++ code (Kudo, 2007). The
Flawed SGD-QN algorithm reaches the best test performance after less epochs than theSVMSGD2
algorithm, but this does not translate into a large improvement in terms of training time.

5. Correcting SGD-QN

At first glance, correcting SGD-QN simply involves computing the difference gτ(wt+1)−gτ(wt)
with τ = t +1 instead ofτ = t. In fact, during the weeks preceding the Pascal challenge deadline,
we tried both versions and found that pickingτ = t +1 performs significantly worse!

5.1 The Failure of the Straightforward Fix

When experimenting with theoLBFGS algorithm (Schraudolph et al., 2007), we observed and re-
ported that setting the global learning gain was very difficult. We encounterthe same difficulty
when we modify theSGD-QN algorithm to useτ = t +1.

2233

BORDES, BOTTOU, GALLINARI , CHANG AND SMITH

 10000

 15000

 20000

 25000

 30000

 0 2 4 6 8 10 12 14

T
ra

in
in

g
ob

je
ct

iv
e

Number of epochs

SVMSGD2 eta0=1e-2
SVMSGD2 eta0=3e-2
SVMSGD2 eta0=1e-1
SVMSGD2 eta0=3e-1

SVMSGD2 eta0=1
Flawed SGDQN eta0=1e-2
Flawed SGDQN eta0=3e-2
Flawed SGDQN eta0=1e-1
Flawed SGDQN eta0=3e-1

Flawed SGDQN eta0=1

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2 4 6 8 10 12 14

T
es

t l
os

s

Number of epochs

SVMSGD2 eta0=1e-2
SVMSGD2 eta0=3e-2
SVMSGD2 eta0=1e-1
SVMSGD2 eta0=3e-1

SVMSGD2 eta0=1
Flawed SGDQN eta0=1e-2
Flawed SGDQN eta0=3e-2
Flawed SGDQN eta0=1e-1
Flawed SGDQN eta0=3e-1

Flawed SGDQN eta0=1

 92

 92.5

 93

 93.5

 94

 0 2 4 6 8 10 12 14

T
es

t F
B

1
sc

or
e

Number of epochs

SVMSGD2 eta0=1e-2
SVMSGD2 eta0=3e-2
SVMSGD2 eta0=1e-1
SVMSGD2 eta0=3e-1

SVMSGD2 eta0=1
Flawed SGDQN eta0=1e-2
Flawed SGDQN eta0=3e-2
Flawed SGDQN eta0=1e-1
Flawed SGDQN eta0=3e-1

Flawed SGDQN eta0=1
 92

 92.5

 93

 93.5

 94

 0 50 100 150 200 250

T
es

t F
B

1
sc

or
e

CPU training time (sec.)

SVMSGD2 eta0=1e-2
SVMSGD2 eta0=3e-2
SVMSGD2 eta0=1e-1
SVMSGD2 eta0=3e-1

SVMSGD2 eta0=1
Flawed SGDQN eta0=1e-2
Flawed SGDQN eta0=3e-2
Flawed SGDQN eta0=1e-1
Flawed SGDQN eta0=3e-1

Flawed SGDQN eta0=1

CRF ON THE CONLL 2000 CHUNKING TASK

Figure 3: Plots of the training cost, test loss, and test F1 score for a CRF trained using both
SVMSGD2 (red) andFlawed SGD-QN (green) for various initial ratesη0 =

1
λt0

.

In order to form an intuition about the learning rate, we must pay attention to its influence on
the stochastic noise. Stochastic gradient descent with a constant learningrate generates a cloud
of parameter estimateswt covering a zone whose extent is defined by the learning rate and by the
curvature of the cost function. When the rates decrease with an appropriate speed, this zone shrinks
around the solution. Rewriting (1) term-by-term gives

[wt+1]i = [wt]i−ηflawQN

i,t [gt(wt)]i with ηflawQN

i,t =
Bii

t0+ t
. (6)

Since the algorithm periodically adaptsBii on the basis of the observed differenceswt+1−wt and
gt+1(wt+1)−gt+1(wt), the sequence of learning ratesηflawQN

i,t can occasionally increase. This is

confirmed by the middle plot of Figure 5 which displays the evolution of the learning rates Bii
t0+t for

SGD-QN implementing this straightforward fix. Such fluctuations are the source of the difficulty.

2234

ERRATUM: SGD-QN IS LESSCAREFUL THAN EXPECTED

Flawed SGD-QN Corrected SGD-QN

Require: λ , t0 , T , skip
1: t← 0, w← 0, count← skip , r ← 2
2: v← 0, updateB← false , ∀i Bii ← (λ)−1

3: while t ≤ T do
4: w← w−yt ℓ

′(ytw⊤xt) (t + t0)−1 B xt

5: if updateB then
6: ∀i r i ← [gt(w)−gt(v)]i / [w−v]i
7: ∀i r i ←min{r i ,100λ}}
8: ∀i Bii ← Bii +

2
r (r
−1
i − Bii)

9: updateB← false , r ← r +1
10: end if
11:
12: count← count−1
13: if count≤ 0 then
14: count← skip , updateB← true

15: w← w−skipλ (t + t0)−1 B w
16: v← w
17: end if
18:
19: t← t +1
20: end while

21: return w

Require: λ , t0 , T , skip
1: t← 0, w← 0, count← skip

2: v← 0, updateB← false , ∀i Bii ← (λt0)−1

3: while t ≤ T do
4:
5: if updateB then
6: ∀i r i ← [gt(w)−gt(v)]i / [w−v]i
7: ∀i r i ←max{λ,min{100λ, r i}}
8: ∀i Bii ← Bii (1+skipBii r i)

−1

9: updateB← false

10: end if
11: z← ytw⊤xt

12: count← count−1
13: if count≤ 0 then
14: count← skip , updateB← true

15: v← w
16: w← w−skipλ B w
17: end if
18: w← w−yt ℓ

′(z)B xt

19: t← t +1
20: end while

21: return w

Figure 4: Pseudo-codes for theFlawed SGD-QN and Corrected SGD-QN algorithms. The main
changes have been colored: each color stands for a particular change.

5.2 Managing the Speed of the Learning Rate Decrease

The schedule with which the learning rate decreases during training appears to be a key factor, so we
propose to fixSGD-QN by using the second-order information to manage this diminution. Hence,
we use learning rates of the form

ηcorQN

i,t =

(

λt0+
t−1

∑
k=1

r i,k

)−1

where r i,t =
[gt+1(wt+1)−gt+1(wt)]i

[wt+1−wt]i
. (7)

Whent becomes large, we recover an expression comparable to the original formulation (6),

ηcorQN

i,t =
r̄ −1
i

λt0r̄ −1
i + t

+o
(

1
t

)

, where ¯r i denotes the average value of the ratiosr i,t and can be viewed as

the coefficient of a diagonal matrixR such thatR
(

wt+1−wt
)

= gτ(wt+1)−gτ(wt)+ζt +ξt .

It is also interesting to compare the formulaηcorQN

i,t with the first order versionηSGD

i,t = 1
λt0+∑t

k=1 λ
which decreases the learning rate after each iteration by addingλ to the denominator. Instead of
adding a lower bound of the curvature, the proposed learning rate formula adds a stochastic estimate
of the curvature.

2235

BORDES, BOTTOU, GALLINARI , CHANG AND SMITH

 0

 0.1

 0.2

 0.3

 0.4

 0.01 0.1 1 10

Number of epochs (logscale)

 0

 0.5

 1

 1.5

 2

 2.5

 0.01 0.1 1 10

Number of epochs (logscale)

 0

 0.1

 0.2

 0.3

 0.4

 0.01 0.1 1 10

Number of epochs (logscale)

Flawed SGD-QN Straightforward Fix Corrected SGD-QN

Figure 5: Plots of the learning rates corresponding to each feature on thecourse of learning on the
Delta data set. All rates are equal forFlawed SGD-QN (left plot). As explained in Sec-
tion 5.1, implementing the straightforward fix (middle plot) causes rates to alternatively
increase or decrease very fast. TheCorrected SGD-QN (right plot) proposes learning rates
nicely decreasing at different speeds for each feature.

Interestingly, Equation (7) leads to a convenient recursive formula

ηcorQN

i,t =

(

1
ηcorQN

i,t−1
+ r i,t−1

)−1

=
ηcorQN

i,t−1

1 + r i,t−1 ηcorQN

i,t−1
. (8)

Figure 4 describes theCorrected SGD-QN algorithm and compares it with a slightly reorganized
version of theFlawed SGD-QN algorithm. The diagonal matrixB is used to store the gains (7). The
algorithm schedules a gain update (line 14) whenever it performs a regularization update (line 16).
During the next iteration, the algorithm computesr i,t−1 (line 6) and implements the learning rate
update (8) with an additional multiplicative factor (line 8) because this only happens everyskip
iterations. The effect on the learning rates of usingCorrected SGD-QN instead ofFlawed SGD-QN
is illustrated by Figure 5 if we compare the left and the right plots.

5.3 Performances on Dense Data Sets

Figure 6 (top row) compares the performances ofCorrected SGD-QN with the best results ofFlawed
SGD-QN andSVMSGD2 on the Delta data set. We must recognize that the improvement is minimal.
Before running the SGD algorithms, we always precondition the dense datasets by centering all the
features, normalizing their variances, and rescaling every example to ensure that‖xk‖ = 1. This
operation in fact steals all the improvementsSGD-QN can bring. With its adaptive learning rates,
the Corrected SGD-QN does not perform worse than the first orderSVMSGD2 algorithm. Yet,
implementing a strategy involving a single learning rate for all the features appears already very
rewarding and, for such cases, theFlawed SGD-QN algorithm is a strong choice because of its
capacity to adapt its learning rate.

Corrected SGD-QN should be more efficient for ill-conditioned data. To illustrate this assertion,
we created a “deconditioned” version of Delta by applying the usual normalization procedures and
then multiplying every tenth feature by twelve. Figure 6 (bottom row) comparesthe performances
of SVMSGD2, Flawed SGD-QN andCorrected SGD-QN on this deconditioned data. TheFlawed

2236

ERRATUM: SGD-QN IS LESSCAREFUL THAN EXPECTED

0.31

0.32

0.33

 0 1 2 3 4 5 6 7

P
rim

al
 c

os
t

Number of epochs

(Best) SVMSGD2 t0=1e6
(Best) Flawed SGDQN t0=3e4

Corrected SGDQN t0=1e4
Corrected SGDQN t0=3e4
Corrected SGDQN t0=1e5
Corrected SGDQN t0=3e5
Corrected SGDQN t0=1e6
Corrected SGDQN t0=3e6

oLBFGS

21.5

22.0

22.5

23.0

23.5

 0 1 2 3 4 5

T
es

t E
rr

or
 (

%
)

Number of epochs

(Best) SVMSGD2 t0=1e6
(Best) Flawed SGDQN t0=3e4

Corrected SGDQN t0=1e4
Corrected SGDQN t0=3e4
Corrected SGDQN t0=1e5
Corrected SGDQN t0=3e5
Corrected SGDQN t0=1e6
Corrected SGDQN t0=3e6

oLBFGS

DELTA DATA SET (NORMALIZED)

0.30

0.31

0.32

0.33

0.34

0.35

 0 1 2 3 4 5 6 7

P
rim

al
 c

os
t

Number of epochs

(Best) SVMSGD2 t0=3e6
(Best) Flawed SGDQN t0=3e6

Corrected SGDQN t0=1e5
Corrected SGDQN t0=3e5
Corrected SGDQN t0=1e6
Corrected SGDQN t0=3e6

oLBFGS

22.0

23.0

24.0

25.0

 0 1 2 3 4 5

T
es

t E
rr

or
 (

%
)

Number of epochs

(Best) SVMSGD2 t0=3e6
(Best) Flawed SGDQN t0=3e6

Corrected SGDQN t0=1e5
Corrected SGDQN t0=3e5
Corrected SGDQN t0=1e6
Corrected SGDQN t0=3e6

oLBFGS

DELTA DATA SET (DECONDITIONED)

Figure 6: Plots of the training cost and test misclassification error versus the number of epochs
for SVMSGD2 (red) andFlawed SGD-QN (green) with their optimalt0 parameter, and
Corrected SGD-QN (brown) running on the Delta data set. Bothnormalized(top) and
deconditioned(bottom) cases are considered; see the text for details. All methods can
perform roughly identically well on normalized examples but only theCorrected SGD-
QN algorithm is able to handle ill-conditioned data.

SGD-QN algorithm clearly suffers from the deconditioning operation because it can not assign a
different learning rate per feature. TheCorrected SGD-QN works much better. We also verified that
the estimated learning rates replicate the deconditioning pattern.

In conclusion, ondense data sets, theCorrected SGD-QN bring little improvement over those
associated with agood preconditioning technique. Preconditioning was probably the main reason
of the goodSGD-QN results on dense data sets in the Pascal Large Scale Challenge. This doesnot

2237

BORDES, BOTTOU, GALLINARI , CHANG AND SMITH

0.12

0.13

0.14

0.15

0.16

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
rim

al
 c

os
t

Number of epochs

(Best) SVMSGD2 t0=3e4
(Best) Flawed SGDQN t0=1e4

Corrected SGDQN t0=1e4
Corrected SGDQN t0=3e4
Corrected SGDQN t0=1e5
Corrected SGDQN t0=3e5
Corrected SGDQN t0=1e6
Corrected SGDQN t0=3e6

5.5

6.0

6.5

7.0

7.5

8.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
es

t E
rr

or
 (

%
)

Number of epochs

(Best) SVMSGD2 t0=3e4
(Best) Flawed SGDQN t0=1e4

Corrected SGDQN t0=1e4
Corrected SGDQN t0=3e4
Corrected SGDQN t0=1e5
Corrected SGDQN t0=3e5
Corrected SGDQN t0=1e6
Corrected SGDQN t0=3e6

RCV1 DATA SET

Figure 7: Plots of the training cost and test error versus the number of epochs forSVMSGD2 (red)
and Flawed SGD-QN (green) with their optimalt0 parameter, andCorrected SGD-QN
(brown) running on the RCV1 data set. All algorithms quickly reach optimal perfor-
mance.

mean that SGD algorithms cannot be improved. Xu (2010) reports impressive results on Linear
SVMs using a well sorted Averaged SGD algorithm (Polyak and Juditsky, 1992).

5.4 Performances on Sparse Data Sets

Preconditioning sparse data sets is much more difficult because it is impossibleto center sparse
features and keep them sparse. In addition, normalizing the variance of very rare features generates
a small number of coefficients with high values. This fat tail distribution usuallyhas very negative
impact on the test performance. Figure 7 compares theSVMSGD2, Flawed SGD-QN andCorrected
SGD-QN algorithms on the Reuters RCV1 data set, but, as we explained for Figure 2, this task is
too easy to draw any conclusions.

Figure 8 then compares the adaptations ofSVMSGD2, Flawed SGD-QN (with their best param-
eters) andCorrected SGD-QN for Conditional Random Fields on the CoNLL 2000 “chunking” task
with the setup described in Section 4.2. TheCorrected SGD-QN algorithm achieves its optimal
test performance after only 75 seconds whileSVMSGD2 andFlawed SGD-QN need around twice
this time. For comparison, the CRF++ LBFGS optimizer needs 4300 seconds ona slightly faster
machine.

6. Conclusion

Despite its flaw, the originalSGD-QN algorithm works well enough to be a winner of the first PAS-
CAL Large Scale Learning Challenge (Sonnenburg et al., 2008) because it benefits from our careful
preconditioning and handles sparse examples efficiently. However, as explained in this document,
this original version often does not achieve the full benefits of a diagonal scaling approach.

2238

ERRATUM: SGD-QN IS LESSCAREFUL THAN EXPECTED

 10000

 15000

 20000

 25000

 30000

 0 2 4 6 8 10 12 14

T
ra

in
in

g
ob

je
ct

iv
e

Number of epochs

Best SVMSGD2 eta0=1e-1
Best Flawed SGDQN eta0=1e-1

Corrected SGDQN eta0=1e-2
Corrected SGDQN eta0=3e-2
Corrected SGDQN eta0=1e-1
Corrected SGDQN eta0=3e-1

Corrected SGDQN eta0=1

 4000

 4500

 5000

 5500

 6000

 0 2 4 6 8 10 12 14

T
es

t l
os

s

Number of epochs

Best SVMSGD2 eta0=1e-1
Best Flawed SGDQN eta0=1e-1

Corrected SGDQN eta0=1e-2
Corrected SGDQN eta0=3e-2
Corrected SGDQN eta0=1e-1
Corrected SGDQN eta0=3e-1

Corrected SGDQN eta0=1

 92

 92.5

 93

 93.5

 94

 0 2 4 6 8 10 12 14

T
es

t F
B

1
sc

or
e

Number of epochs

Best SVMSGD2 eta0=1e-1
Best Flawed SGDQN eta0=1e-1

Corrected SGDQN eta0=1e-2
Corrected SGDQN eta0=3e-2
Corrected SGDQN eta0=1e-1
Corrected SGDQN eta0=3e-1

Corrected SGDQN eta0=1
 92

 92.5

 93

 93.5

 94

 0 50 100 150 200 250

T
es

t F
B

1
sc

or
e

CPU training time (sec.)

Best SVMSGD2 eta0=1e-1
Best Flawed SGDQN eta0=1e-1

Corrected SGDQN eta0=1e-2
Corrected SGDQN eta0=3e-2
Corrected SGDQN eta0=1e-1
Corrected SGDQN eta0=3e-1

Corrected SGDQN eta0=1

CRF ON THE CONLL 2000 CHUNKING TASK

Figure 8: Plots of the training cost, test loss, and test F1 score for a CRF trained using the best setups
of SVMSGD2 (red) andFlawed SGD-QN (green), andCorrected SGD-QN for various
initial ratesη0 =

1
λt0

(brown).Corrected SGD-QN learns significantly faster.

This paper proposes a correction. Unlike the originalSGD-QN algorithm, theCorrected SGD-
QN algorithm discovers sensible diagonal scaling coefficients. However, experiments on dense
data sets of intermediate dimensionality show that similar speed improvements can beachieved by
simple preconditioning techniques such as normalizing the means and the variances of each feature
and normalizing the length of each example. On the other hand, normalization is not always an
attractive strategy. TheCorrected SGD-QN algorithm then becomes interesting because it can adapt
automatically to skewed feature distributions (see Section 5.3) or very sparse data (see Section 5.4.)

2239

BORDES, BOTTOU, GALLINARI , CHANG AND SMITH

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments. Part of this
work was funded by the EU Network of Excellence PASCAL2 and by the French DGA.

References

A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-Newtonstochastic gradient descent.
Journal of Machine Learning Research, 10:1737–1754, July 2009.

T. Kudo. CRF++: Yet another CRF toolkit, 2007.http://crfpp.sourceforge.net.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Carla E. Brodley and Andrea Pohoreckyj Danyluk,
editors,Proceedings of the Eighteenth International Conference on Machine Learning (ICML
2001), pages 282–289, Williams College, Williamstown, 2001. Morgan Kaufmann.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.SIAM J.
Control Optim., 30(4):838–855, 1992.

E. F. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLL-2000 shared task: Chunk-
ing. In Claire Cardie, Walter Daelemans, Claire Nedellec, and Erik Tjong Kim Sang, editors,
Proceedings of CoNLL-2000 and LLL-2000, pages 127–132. Lisbon, Portugal, 2000.

N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-Newton method for online convex opti-
mization. InProc. 11th Intl. Conf. on Artificial Intelligence and Statistics (AIstats), pages 433–
440. Soc. for Artificial Intelligence and Statistics, 2007.

S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Sebag. Pascal largescale learning challenge. ICML
2008 Workshop, 2008.http://largescale.first.fraunhofer.de.

W. Xu. Towards optimal one pass large scale learning with averaged stochastic gradient descent.
Submitted to JMLR, 2010.

2240

