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Abstract

The SGD-QN algorithm described in Bordes et al. (2009) contains a sutdiv that prevents it
from reaching its design goals. Yet the flan&@D-QN algorithm has worked well enough to be a
winner of the first Pascal Large Scale Learning Challengari8oburg et al., 2008). This document
clarifies the situation, proposes a corrected algorithrd ,emaluates its performance.

Keywords: stochastic gradient descent, support vector machine jtoomal random fields

1. Introduction

Bordes et al. (2009) propose to improve the practical speed of stachesdient descent by effi-
ciently estimating a diagonal matrix for rescaling the gradient estimates. Tphega® algorithm,
SGD-QN, works well enough to be a winner of the first Pascal Large Scalenir@piChallenge
(Sonnenburg et al., 2008). A couple months after the publication of therpégnathan Chang and

S. Alex Smith contactedé&on Bottou regarding some curious aspects of the algorithm mathematics
(see Section 4.1). This initial observation was then traced back to a mdte #aly that prevents

the proposed algorithm to truly reach is design objectives.

We first explain the flaw and present experimental results describingisgqaences. Then we
present a corrected algorithm and evaluate its performance for traiothdibear Support Vector
Machines (SVMs) and Conditional Random Fields (CRFs). Finally we diadated conclusions.

(©2010 Antoine Bordes, &on Bottou, Patrick Gallinari, Jonathan Chang, and S. Alex!s
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2. Setup

Consider a binary classification problem with exampbes/) € RY x {1, +1}. Given a set of
examples{(x1,y1)...(Xn,Yn)}, We obtain a linear SVM classifier by minimizing the cost

rw) = Wit s S owix) = o3 (Gl wx)).

Each iteration of th&GD-QN algorithm consists of drawing an independent random exa®plg )
from the training set and computing an updated parameter vector

1 . .
Wii1 = Wy — o Bat(we) with  ge(we) = Awe + £/ (VWi Xt ) Vi Xt 1)

whereB is a diagonal scaling matrix estimated on-the-fly.

In the following, expectations and probabilities refer to the discrete distribalgscribing the
training examples randomly picked from the finite training set at each iterdtemn?; denote the
examples{(x1,y1) ... (Xi—1,¥t—1)} picked before reaching theth iteration.

We would like to findB such that

W1 — Wi = B (By(Weya) — Bo(we) + &), )

with an error term¢; verifying E[&;| %] = 0. Following Schraudolph et al. (2007), we replace
the computationally expensive gradiemi{sby the cheap stochastic estimateéwv;) andgy (wi1)
computed on a same single example y; ) ,

W1 —We = B (Ge(Wer1) — Ge(we) + 4+ &) 3)

where(; represents the additional error term introduced by this substitution. Estiniatiridp (2)
or (3) leads to the same solution if we make sure Bid; | %] = 0 as well.

The SGD-QN algorithm updates the diagonal elements of ma@®ign-the-fly on the basis of
the term-by-term ratios of the observed differenags; —w; andg; (Wt+1) — gc(Wt). The obvious
choicest =t andt =t+ 1 only require one additional gradient evaluation because the parameter
update formula (1) demands the computation of all the gradgfts) anyway.

3. The Flaw

Let us now evaluate

E [ R =E [ Pr(Wir1) — Ph(We) — Ge(Weg) + Ge(We) | %] -

Let us first consider the case=t + 1. Sinceg;;1(Wt+1) is a function of(X+1, Yt+1, %, Vi, %),

E[ge(West)| B = / Gt (Wer 1) AP 1, Yer 1, X0 Ve | )

= /[/gt+1(Wt+1) dP(Xt+1,Yt+1) | AP(Xt, Yt | Ft) -
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Since the variabless 1 and (xi+1,Yi+1) are independent, the inner integral above is simply the
average ofy1(wi1) for all possible(x;1,¥t+1) picked from the training set. Therefore

Elge(wen)| %] = [ Bi(wein) AP0 ) = E[Zh(ween)] 7]

Using a similar derivation foE [ g (W; )| %] with T =t + 1, we can easily establish tHaf;| %] = 0.
Therefore estimating on the basis of (3) leads to the same solution as estimBtmgthe basis of
(2), albeit with a higher noise level.

Such a derivation is impossible whens- t becauséx;, y;) andw; 1 are notindependent. There-
fore we cannot ensure that estimatBgvith (2) or (3) leads to the same result. Unfortunately, the
SGD-QN paper (see Section 5.3 of Bordes et al., 2009) describes the algorithmwith

4. The Consequences

In order to take maximal advantage of sparse data setE|dWed SGD-QN algorithm (see Figure 2
in the original paper) splits the stochastic parameter update (1) in two haleedento schedule
them separately. The first half involves only the gradient of the loss,

W W — (t+10) 1B/ (ye W' X¢) Vi Xt -
The second half involves only the gradient of the regularization term,

W most of the time,
w—skipA (t+1t9)"'Bw once evengski p iterations.

The Flawed SGD-QN algorithm measures the differenoss,. 1 —w; and gy (W;1) — gt (w;) during
iterations for which the second half does nothing. Therefore, usingioasax]; for thei-th coeffi-
cient of vectorx, andB;; for the terms of the diagonal matr we always have

g (Wera) —ge W)l (COrWEaXe) — £ (wexe) ) e [xel;
We—w;, Bii (t+to) 10/ (ew'e) ¥e [XeJ;

e When([x]; is nonzero, we can simplify this expression as

[gt (Wt+l) _ gt(Wt)]l - A— El(thI+1Xt) B El(th-trXt) (4)
[Wii1— Wil Bii (t+to) 10/ (yewixt)

This ratio is always greater thanbecause of the loss functidris convex. As explained in
the original paper, the coefficierl then remain smaller thax 1.

e When([x]; is zero, the original paper uses a continuity argument to justify the equality

[0 (We1) — Ge (W) — 2
[Wep1 — W, '

(5)
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Figure 1: Plots of the training cost and test misclassification percentagasvédre number of
epochs forsVMSGD2 (red) andFlawed SGD-QN (green) for various values df on
the dense Delta data set. Thiawed SGD-QN algorithm never outperforms the best
SVMSGD2.

4.1 Impact on Dense Data Sets

The coefficientgx;]; for dense data sets are rarely zero. Assume alBthare equal before being
updated. All the ratios (4) will then be equal. Therefore all Bjecoefficients will be updated in
exactly the same way and therefore remain equal. SincBjtlveefficients are initially equal, they
remain equal all the timeexcept maybe when encountering an occasional zero in the patterns
This observation led to the discovery of the flaw.

Since the scaling matrix reduces to a scalar gain, similar results could in pribeigbtained
using the ordinary stochastic gradient descent with a better gain schéddhigeclearly defeats the
purpose of th&sGD-QN algorithm design.

Figure 1 compares the evolutions of the training cost and the test misclagsifieeor for the
SVMSGD2 and theFlawed SGD-QN algorithms for selected values of the paraméjénstead of
the usual heuristic defaults. We observe that there is almost alwaysae afdg in SYMSGD2
that performs as well as the best choicetpfor the Flawed SGD-QN. Both algorithms perform
identically poorly for excessive values f On the other hand, whep is too small, the perfor-
mance ofFlawed SGD-QN degrades much more gracefully than the performan@/afSGD2. In
some cases;lawed SGD-QN can even slightly outperform@vMSGD2 because, despite the flaw,
it can still update its learning rate on the course of learning. This explamiglpawhy we have
consistently obtained better results with the flawed algorithm.

4.2 Impact on Sparse Data Sets

The situation is more complex in the case of sparse data sets because thmreids case for
updating theB;; coefficients when dealing with zero coefficients (5). As a resultFtheed SGD-
QN algorithm gives higher values to the scaling coefficiditsvhen thei-th feature is more likely
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Figure 2: Plots of the training cost and test misclassification error versusitinber of epochs for
both SVYMSGD?2 (red) andrlawed SGD-QN (green) running on the RCV1 data set. Both
algorithms reach optimal performance after seeing half the training set.

to be zero. Since this is a sensible scaling for such data setSlathed SGD-QN algorithm works
relatively well in the presence of sparse features.

Figure 2 compares th8VMSGD2 and Flawed SGD-QN algorithms for many choices for the
to parameter on the Reuters RCV1 data set. Unfortunately there is nothing thesee Both
algorithms reach optimal performance after processing only one half tridiming set.

In order to find a more challenging sparse data set, we have adapted b&¥WMBGD2 and
the Flawed SGD-QN algorithms for the optimization of Conditional Random Fields (Lafferty et al.,
2001). This is an interesting case where preconditioning is difficult lsectine features are gener-
ated on the fly on the basis of position-independent templates.

Figure 3 compares the algorithms on the CoNLL 2000 “chunking” task (SadgBuchholz,
2000) using the template setup provided as an example with the CRF++ code, (¥207). The
Flawed SGD-QN algorithm reaches the best test performance after less epochs ttevMBESD2
algorithm, but this does not translate into a large improvement in terms of training time

5. Correcting SGD-QN

At first glance, correcting SGD-QN simply involves computing the diffeeeqyw;.1) — gr(Wi)
with Tt =t + 1 instead oft =t. In fact, during the weeks preceding the Pascal challenge deadline,
we tried both versions and found that picking-t + 1 performs significantly worse!

5.1 The Failure of the Straightforward Fix

When experimenting with theLBFGS algorithm (Schraudolph et al., 2007), we observed and re-
ported that setting the global learning gain was very difficult. We encouhésame difficulty
when we modify theSGD-QN algorithm to usa =t + 1.
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Figure 3: Plots of the training cost, test loss, and test F1 score for a GiRfedrusing both

SVMSGD?2 (red) andFlawed SGD-QN (green) for various initial rategy = T%o

In order to form an intuition about the learning rate, we must pay attention toflinte on
the stochastic noise. Stochastic gradient descent with a constant leetgngenerates a cloud

of parameter estimateg covering a zone whose extent is defined by the learning rate and by the

curvature of the cost function. When the rates decrease with an ajgteogpeed, this zone shrinks
around the solution. Rewriting (1) term-by-term gives

Bii

with n“aWQN = )
to+t

(6)

Werali = [wiel; =iz o (wo)l;
Since the algorithm periodically adafg on the basis of the observed differenegsi —w; and

Ot+1(Wi+1) — G+1(We ), the sequence of learning ratqﬁWQN can occasionally increase. This is
confirmed by the middle plot of Figure 5 which displays the evolution of the IegnratestBLt for

SGD-QN implementing this straightforward fix. Such fluctuations are the source offfieuly.
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Flawed SGD-QN Corrected SGD-QN
Require: A, to, T, skip Require: A, tg, T, skip
1: t+ 0, w0, count < skip, r <+ 2 1: t+ 0, w0, count + skip
2: v+« 0, updateB < false, Vi Bjj « ()\)_l 2: v+« 0, updateB < false, Vi Bjj < ()\to)_l

3: whilet <T do 3: whilet <T do
40 W w—y V(W) (t+19) "1 Bx 4:
5 if updateB then 5 if updateB then
6 Vi W) - g ()] / WV, 61 Vi r e [gw)— g ()] / W—v]
7: Vi ri <= min{r;,100\}} 7: Vi ri < max{A\,min{10Q\,r;}}
8 Vi Biji < Bjj + %(ri_l — Bji) 8 Vi Bij « Bji(1+ skipBjri)~t
9: updateB < false, I <—r+1 9: updateB < false
10:  endif 10:  endif

11: 11: Z <4 YEW' Xt

12: count < count — 1 12: count < count — 1
13: if count < 0then 13: if count < 0then

14: count ¢ skip, updateB < true 14: count ¢ skip, updateB < true
15: W < W — skipA (t+1t) 1 Bw 15: Ve w

16: VW 16: W< W—skipABw
17: end if 17: end if

18: 18 w<+w—y/(2)Bx
19: t+t+1 19: t+—t+1

20: end while 20: end while

21: return w 21: return w

Figure 4: Pseudo-codes for tifawed SGD-QN and Corrected SGD-QN algorithms. The main
changes have been colored: each color stands for a particularechang

5.2 Managing the Speed of the Learning Rate Decrease

The schedule with which the learning rate decreases during trainingrapgpde a key factor, so we
propose to fixSGD-QN by using the second-order information to manage this diminution. Hence,
we use learning rates of the form

1
= [Grr1(Wei1) — G (Wa));

=1 Mo+ Y r where rj; = =S8 B 7

r]l,t ( 0 kzl |,k> It [Wt+1—Wt]| ( )

Whent becomes large, we recover an expression comparable to the origimall&bion (6),
—1
'corQN _ ri
nlvt - )\toﬁ_1+t

the coefficient of a diagonal matriX such thaR (W1 — W) = Gr(Wir1) — Ge(We) + & + &

+0(%), wherer; denotes the average value of the ratigsand can be viewed as

It is also interesting to compare the formujg®" with the first order version$°® = ﬁﬁ
El ? =1
which decreases the learning rate after each iteration by addioghe denominator. Instead of
adding a lower bound of the curvature, the proposed learning rate fadds a stochastic estimate

of the curvature.
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Figure 5: Plots of the learning rates corresponding to each feature aouhge of learning on the
Delta data set. All rates are equal fedlawed SGD-QN (left plot). As explained in Sec-
tion 5.1, implementing the straightforward fix (middle plot) causes rates to altezlyati
increase or decrease very fast. Therected SGD-QN (right plot) proposes learning rates
nicely decreasing at different speeds for each feature.

Interestingly, Equation (7) leads to a convenient recursive formula

1 -1 r]_corQN

=1

nFOYQN — — _|_r.!t71 — I/—cor‘ (8)
" ni,tgli " 1+riga ni,tgli\t

Figure 4 describes theorrected SGD-QN algorithm and compares it with a slightly reorganized
version of theFlawed SGD-QN algorithm. The diagonal matrig is used to store the gains (7). The
algorithm schedules a gain update (line 14) whenever it performs a rizgtilen update (line 16).
During the next iteration, the algorithm computes_, (line 6) and implements the learning rate
update (8) with an additional multiplicative factor (line 8) because this onlypéap everyski p
iterations. The effect on the learning rates of ushogrected SGD-QN instead ofFlawed SGD-QN
is illustrated by Figure 5 if we compare the left and the right plots.

5.3 Performances on Dense Data Sets

Figure 6 (top row) compares the performanceSafected SGD-QN with the best results gflawed
SGD-QN andSVMSGD?2 on the Delta data set. We must recognize that the improvement is minimal.
Before running the SGD algorithms, we always precondition the densselathy centering all the
features, normalizing their variances, and rescaling every example tioeethst||xk|| = 1. This
operation in fact steals all the improvemeBtSD-QN can bring. With its adaptive learning rates,
the Corrected SGD-QN does not perform worse than the first or@&rMSGD2 algorithm. Yet,
implementing a strategy involving a single learning rate for all the featuresaeppéready very
rewarding and, for such cases, thlawed SGD-QN algorithm is a strong choice because of its
capacity to adapt its learning rate.

Corrected SGD-QN should be more efficient for ill-conditioned data. To illustrate this assertion,
we created a “deconditioned” version of Delta by applying the usual naatian procedures and
then multiplying every tenth feature by twelve. Figure 6 (bottom row) compheeperformances
of SVMSGD2, Flawed SGD-QN and Corrected SGD-QON on this deconditioned data. Tl#awed
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Figure 6: Plots of the training cost and test misclassification error vergusumber of epochs
for SVMSGD?2 (red) andFlawed SGD-QN (green) with their optimaly parameter, and
Corrected SGD-QN (brown) running on the Delta data set. Batbrmalized(top) and
deconditionedbottom) cases are considered; see the text for details. All methods can

perform roughly identically well on normalized examples but only Goerected SGD-
QN algorithm is able to handle ill-conditioned data.

SGD-QN algorithm clearly suffers from the deconditioning operation becauseninoé assign a
different learning rate per feature. T@errected SGD-QN works much better. We also verified that
the estimated learning rates replicate the deconditioning pattern.

In conclusion, ordense data setshe Corrected SGD-QN bring little improvement over those
associated with good preconditioning techniquéreconditioning was probably the main reason
of the goodSGD-QN results on dense data sets in the Pascal Large Scale Challenge. Thi®toes
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Figure 7: Plots of the training cost and test error versus the numbeoohsorSVMSGD?2 (red)
and Flawed SGD-QN (green) with their optimat, parameter, and€orrected SGD-QN
(brown) running on the RCV1 data set. All algorithms quickly reach optiméiope
mance.

mean that SGD algorithms cannot be improved. Xu (2010) reports impeessults on Linear
SVMs using a well sorted Averaged SGD algorithm (Polyak and Juditg82)L

5.4 Performances on Sparse Data Sets

Preconditioning sparse data sets is much more difficult because it is impdssit#ater sparse
features and keep them sparse. In addition, normalizing the varianegyofare features generates
a small number of coefficients with high values. This fat tail distribution usuredlk/very negative
impact on the test performance. Figure 7 compareS¥heSGD2, Flawed SGD-QN andCorrected
SGD-QN algorithms on the Reuters RCV1 data set, but, as we explained for Figuris fagk is
too easy to draw any conclusions.

Figure 8 then compares the adaptationS\wiSGD2, Flawed SGD-QN (with their best param-
eters) andCorrected SGD-QN for Conditional Random Fields on the CoNLL 2000 “chunking” task
with the setup described in Section 4.2. Tharected SGD-QN algorithm achieves its optimal
test performance after only 75 seconds wisiiéeMSGD2 andFlawed SGD-QN need around twice
this time. For comparison, the CRF++ LBFGS optimizer needs 4300 secoralslmtly faster
machine.

6. Conclusion

Despite its flaw, the origineg8GD-QN algorithm works well enough to be a winner of the first PAS-
CAL Large Scale Learning Challenge (Sonnenburg et al., 2008) bedtlenefits from our careful
preconditioning and handles sparse examples efficiently. Howevexpésresd in this document,
this original version often does not achieve the full benefits of a didgwading approach.

2238



ERRATUM: SGD-QNIS LESSCAREFUL THAN EXPECTED

30000 T T T T 6000 T T T T
Best SVMSGD?2 eta0=1e-1—8— Best SVMSGD?2 eta0=1e-1—#—
Best Flawed SGDQN eta0O=1e-1-® Best Flawed SGDQN eta0=1e-1-®
Corrected SGDQN eta0=1e-2* Corrected SGDQN eta0=1e-2-%
< Corrected SGDQN eta0=3e-2 I i Corrected SGDQN eta0=3e-2 I
Corrected SGDON eta0=1e-1—+-- Corrected SGDQN eta0=1e-1—+--
25000 + * Corrected SGDQN eta0=3e-1-© Corrected SGDQN eta0=3e-1-©
' Corrected SGDQN eta0=1- 5500 - Corrected SGDQN eta0=1-x
2 R
k3]
193
£ 20000} X, 2 o
> % 5000t
c (]
c [
8
=
15000 -
4500
10000 | -
: 4000
0 2 4 6 8 10 12 14 0
Number of epochs
94

+e
.. - -
470 5 "Tﬁ\ %
935 oy - .- o
5 :

Test FB1 score
o+
f
) *
%
Test FB1 score

b
/D
; ¥
"
*
925+ % Best SVMSGD?2 eta0=1e-1—#— | 925 o ; Best SVMSGD?2 eta0=1e-1—#— |
¥ Best Flawed SGDQN eta0=1e-1-® ¥ Best Flawed SGDQN etaO=1e-1-®
| Corrected SGDON eta0=1e-2* ) Corrected SGDON eta0=1e-2*

Corrected SGDON eta0=3e-2-0 Corrected SGDON eta0=3e-2-C
Corrected SGDON eta0=1e-1—+-- Corrected SGDON eta0=1e-1—+--
Corrected SGDON eta0=3e-1-© Corrected SGDON eta0=3e-1-©
) ) Corrected SGDQON eta0=1-> g2 ) Corrected SGDQON eta0=1-x
0 2 4 6 8 10 12 14 0 50 100 150 200 250

CPU training time (sec.)

92

Number of epochs

CRFoON THECONLL 2000 CHUNKING TASK

Plots of the training cost, test loss, and test F1 score for a @iREdrusing the best setups
of SVMSGD2 (red) andFlawed SGD-QN (green), andCorrected SGD-QN for various
initial ratesng = )\—%0 (brown). Corrected SGD-QN learns significantly faster.

Figure 8:

This paper proposes a correction. Unlike the origi®@b-QN algorithm, theCorrected SGD-
QN algorithm discovers sensible diagonal scaling coefficients. Howexperienents on dense
data sets of intermediate dimensionality show that similar speed improvements aetmdoged by
simple preconditioning techniques such as normalizing the means and thegaredeach feature
and normalizing the length of each example. On the other hand, normalizatioh &ways an
attractive strategy. Theorrected SGD-QN algorithm then becomes interesting because it can adapt
automatically to skewed feature distributions (see Section 5.3) or veryepiaiia (see Section 5.4.)

2239



BORDES BOTTOU, GALLINARI , CHANG AND SMITH

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpfuhwents. Part of this
work was funded by the EU Network of Excellence PASCALZ2 and by tlemén DGA.

References

A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-Nevgttmchastic gradient descent.
Journal of Machine Learning ResearctD:1737-1754, July 2009.

T. Kudo. CRF++: Yet another CRF toolkit, 200/t t p: / / cr f pp. sour cef or ge. net .

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional randatdf: Probabilistic models
for segmenting and labeling sequence data. In Carla E. Brodley an@&Rdhoreckyj Danyluk,
editors, Proceedings of the Eighteenth International Conference on Machineninegg(ICML
2001) pages 282-289, Williams College, Williamstown, 2001. Morgan Kaufmann.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximatioaveraging.SIAM J.
Control Optim, 30(4):838—-855, 1992.

E. F. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLL-200&resth task: Chunk-
ing. In Claire Cardie, Walter Daelemans, Claire Nedellec, and Erik Tjong KamgSeditors,
Proceedings of CONLL-2000 and LLL-2Q0@iages 127-132. Lisbon, Portugal, 2000.

N. Schraudolph, J. Yu, and S.U@ter. A stochastic quasi-Newton method for online convex opti-
mization. InProc. 11th Intl. Conf. on Artificial Intelligence and Statistics (Alstapgges 433—
440. Soc. for Atrtificial Intelligence and Statistics, 2007.

S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Sebag. Pascal$agje learning challenge. ICML
2008 Workshop, 200&ttp://1argescal e. first. fraunhofer. de.

W. Xu. Towards optimal one pass large scale learning with averagedasticigradient descent.
Submitted to JMLR, 2010.

2240



