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BAYESIAN PREDICTION FOR STOCHASTIC PROCESSES.

THEORY AND APPLICATIONS

DELPHINE BLANKE AND DENIS BOSQ

Abstract. In this paper, we adopt a Bayesian point of view for predicting real

continuous-time processes. We give two equivalent definitions of a Bayesian

predictor and study some properties: admissibility, prediction sufficiency, non-

unbiasedness, comparison with efficient predictors. Prediction of Poisson pro-

cess and prediction of Ornstein-Uhlenbeck process in the continuous and sam-

pled situations are considered. Various simulations illustrate comparison with

non-Bayesian predictors.

1. Introduction

A lot of papers are devoted to Bayesian estimation for stochastic processes (see
for example Kutoyants (2004) for the asymptotic point of view) while Bayesian
prediction does not appear very much in statistical literature. Some authors have
studied the case of linear processes (see Dı́az, 1990; Sáfadi and Morettin, 2000, 2003)
but continuous time is not often considered. However, this topic is important, in
particular if the number of data is small. In this paper, we study some properties of
Bayesian predictors and give examples of applications to prediction of continuous-
time processes. Note that we don’t consider prediction for the linear model, a
somewhat different topic which has been extensively studied in literature. In fact,
our main goal is to compare efficiency of Bayesian predictors with non-Bayesian
ones, especially if we have few data at our disposal. Various simulations illustrate
the obtained results.

Section 2 presents the general prediction model ; in this context estimation ap-
pears as a special case of prediction. The main point of the theory is the fact that,
given the data X , a statistical predictor of Y is an approximation of the condi-
tional expectation Eθ(Y |X), where θ is the unknown parameter. Section 3 deals
with Bayesian prediction: we give two equivalent definitions of a Bayesian predictor
linked with the equivalence of predicting Y and Eθ(Y |X). However, in some situa-
tions, it is difficult to get an explicit form of the Bayesian predictor, thus it is more
convenient to substitute the conditional expectation with the conditional mode. An
alternative method consists in computing the Bayesian estimator or the maximum
a posteriori (MAP) and to plug it in Eθ(Y |X). We recall some properties of the
MAP and underscore its link with the maximum likelihood estimator.

In Section 4, we study some properties of Bayesian predictors: admissibility, con-
nection with sufficiency and unbiasedness, case where the conditional expectation
admits a special form. Section 5 considers the simple case of Poisson process predic-
tion. We compare the unbiased efficient predictor with the Bayesian and the MAP
ones. Concerning diffusion processes, note that Thompson and Vladimirov (2005)
obtain fine results for Bayesian prediction but without comparison with classical
predictors.
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2 D. BLANKE AND D. BOSQ

For the Ornstein-Uhlenbeck process, we deal with prediction in Section 6 for the
centered and non-centered case and with various priors, while Section 7 is devoted
to the sampled case. Some asymptotic results are given along the paper, but,
since the non asymptotic case is the most important in the Bayesian perspective,
theoretical and numerical comparisons focus on this point.

2. The prediction model

In the non Bayesian context, let (X,Y ) be a random vector, defined on some
Probability space and with values in a measurable space (F × G,F ⊗ G). In the
following, F and G will be N or Rk, k ≥ 1. (X,Y ) has distribution (Pθ, θ ∈ Θ)
where θ is the unknown parameter and Θ is an open set in R. We suppose that Pθ

has a density f(x, y, θ) with respect to a σ-finite measure λ⊗ µ.
One observes X and wants to predict Y . Actually, it is possible to consider the

more general problem ‘predict Z = ℓ(X,Y, θ) given X ’ (cf. Yatracos, 1992).
In this paper, we suppose that Z is real valued and denote p(X) (or q(X)) a

statistical predictor. Then, if Z, p(X) and q(X) are square integrable, a classical
preference relation is

p(X) ≺ q(X) (Z) ⇐⇒ Eθ(p(X)− Z)2 ≤ Eθ(q(X)− Z)2, θ ∈ Θ

where ‘(Z)’ means ‘for predicting Z’ and Eθ is the expectation taken with respect
to the distribution Pθ.

Now, let Eθ(Z|X) be the conditional expectation of Z given X associated with
the distribution Pθ. The next lemma is simple but important.

Lemma 2.1. We have p(X) ≺ q(X) (Z) ⇐⇒ p(X) ≺ q(X)
(
Eθ(Z|X)

)
.

Proof. The result directly follows from the Pythagoras theorem, since:

Eθ(p(X)− Z)2 = Eθ

(
p(X)− Eθ(Z|X)

)2
+ Eθ(Eθ(Z|X)− Z)2

and

Eθ(q(X)− Z)2 = Eθ

(
q(X)− Eθ(Z|X)

)2
+ Eθ(Eθ(Z|X)− Z)2.

�

This lemma shows that predicting Z or predicting Eθ(Z|X) is the same problem.
Note that prediction theory has some similarity but also some difference with

estimation theory. In the sequel, we will only recall some necessary definitions and
results. We refer to Bosq and Blanke (2007), chapters 1 and 2, for a more complete
exposition.

3. Bayesian prediction

3.1. The Bayesian predictor. In the Bayesian framework, we suppose that T is
a random variable with prior distribution τ over Θ, and admitting a density ϕ(θ)
with respect to a σ-finite measure ν (cf. Lehmann and Casella, 1998).

Thus, we may consider the scheme

(Ω,A,P) (X,Y,T)−−−−−→ (F ×G×Θ,F ⊗ G ⊗ Bθ),

where (Ω,A,P) is a probability space, (X,Y,T) a random vector and Bθ the σ-
algebra of Borel sets over Θ. Now, we denote Q the distribution of (X,Y,T) and
we consider the following regularity assumption:

Assumption 3.1.
Q admits a strictly positive density f(x, y, θ)ϕ(θ) over F ×G × Θ, with respect to

the σ-finite measure λ⊗µ⊗ ν. In addition, f and ϕ are supposed to be continuous

with respect to θ on Θ.



BAYESIAN PREDICTION FOR STOCHASTIC PROCESSES. THEORY AND APPLICATIONS 3

Note that in practice, λ, µ and ν can be the Lebesgue measure or the counting
measure. Also, remark that similar results can be derived under a more general
version of Assumption 3.1, namely the existence of a common version m(X, θ) of
Eθ(Y |X) for all θ ∈ Θ (see Blanke and Bosq, 2012).

Now, the Bayesian risk for prediction is

r(p(X), Y ) := E(p(X)− Y )2 =

∫

Θ

Eθ(p(X)− Y )2ϕ(θ)dν(θ),

where Eθ is expectation taken with respect to Pθ and E is expectation taken with
respect to Q.

It follows that the Bayesian predictor is

p0(X) = argmin
p
r(p(X), Y ) = E(Y |X). (1)

More precisely, we choose p(X) under the form

p0(X) =

∫

G

yf(y|X)dµ(y)

where

f(y|X) =

∫
Θ
f(X, y, θ)ϕ(θ)dν(θ)∫

G×Θ
f(X, y, θ)ϕ(θ)dµ(y)dν(θ)

which ensures existence and uniqueness of p0(X) under Assumption 3.1. In the
following, we set

m(X, θ) = Eθ(Y |X) =

∫

G

yfθ(y|x)dµ(y), θ ∈ Θ

where

fθ(y|x) =
f(x, y, θ)∫

F
f(x, y, θ)dλ(x)

.

Remark 3.1. If Assumption 3.1 holds, the relation E(Y |X) = E
(
E(Y |X,T)

∣∣X
)

gives the following alternative form of p0:

p0(X) = E
(
m(X,T)|X

)

where m(X,T) = E
(
Y |X,T

)
.

3.2. The MAP predictor. An alternative method of Bayesian prediction is based
on the conditional mode: one may compute the mode of the distribution of Y , given
X , with respect to Q. If a strictly positive density does exist, the distribution of
(X,Y ) has marginal density f(x, y) =

∫
Θ
f(x, y, θ)ϕ(θ) dθ and, in fact, it suffices

to compute argmax
y

f(x, y) (x fixed).

A related method consists in determining the mode of T given X and to plug
it in the conditional expectation Eθ(Y |X). This mode (also called maximum a

posteriori, MAP) has the expression

θ̃(x) = argmax
θ

ℓ(x, θ)ϕ(θ)∫
Θ
ℓ(x, θ)ϕ(θ) dτ(θ)

= argmax
θ
ℓ(x, θ)ϕ(θ)

where ℓ(x, θ) =
∫
f(x, y, θ) dµ(y), hence the MAP predictor

p̃(X) = Eθ(Y |X)
∣∣∣
θ=θ̃(X)

= m(X, θ̃)

under Assumption 3.1. It is noteworthy that, if Θ = R and one chooses the im-
proper prior 1 · λ, where λ is Lebesgue measure, the obtained estimator is the
maximum likelihood (MLE). Note also that, if ℓ(x, θ)ϕ(θ) is symmetric with re-

spect to θ̃(X), the MAP and the Bayes estimator of θ coincide. Finally, it is clear
that, under classical regularity conditions, the MAP and the MLE have the same
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asymptotic behaviour as well almost surely as in distribution. Now, the MAP has
some drawbacks: it is often difficult to compute and uniqueness is not guaranteed.
We will use the MAP in Sections 5 to 7.

4. Properties of Bayesian predictors

We give below some useful properties of Bayesian predictors. Here, we suppose
that p0(X) does exist and is defined by relation (1).

4.1. Admissibility. A Bayesian predictor is said to be unique if it differs, for any
other Bayesian predictor, only on a set N with Pθ(N ) = 0 for all θ ∈ Θ (see
Lehmann and Casella, 1998, p. 323). Then, we have

Proposition 4.1. A Bayesian predictor is admissible as soon as it is unique.

Proof. If p0(X) is not admissible, there exists a predictor p(X) such that

Eθ(p(X)− Y )2 ≤ Eθ(p0(X)− Y )2, θ ∈ Θ.

Integrating with respect to τ entails r(p(X), Y ) ≤ r(p0(X), Y ), but, since p0(X) is
Bayesian, it follows that r(p(X), Y ) = r(p0(X), Z) and uniqueness of p0(X) gives
p(X) = p0(X) (Pθ a.s. for all θ). �

4.2. Y -Sufficiency. A statistic S = S(X) is said to be Y -sufficient (or sufficient
for predicting Y ) if

(a) S is sufficient in the statistical model associated with X : there exists a
version of the conditional distribution of X given S, say QS, that does not
depend on θ.

(b) X and Y are conditionally independent given S.

Note that this does not imply that Eθ

(
Y |S(X)

)
is constant with respect to θ

since the sufficient statistic is in the submodel generated by X (see example of the
Poisson process in Section 5). If S is Y -sufficient, it is then possible to derive a
Rao-Blackwell theorem as well as a factorization theorem (cf. Bosq and Blanke,
2007). Now, we have

Lemma 4.1. If S is Y -sufficient and Assumption 3.1 holds, then

Eθ(Y |X) = Eθ

(
Y |S(X)

)
, θ ∈ Θ. (2)

Proof. We have

Eθ

(
Y |S(X)

)
= Eθ

(
Eθ(Y |X)

∣∣S(X)
)
,

and applying (b) to Y and Eθ(Y |X) we obtain

Eθ

(
Y · Eθ(Y |X)

∣∣S(X)
)
= Eθ

(
Y |S(X)

)
·Eθ

(
Eθ(Y |X)

∣∣S(X)
)
=

(
Eθ

(
Y |S(X)

))2

.

Taking expectation and noting that Eθ

(
Y · Eθ(Y |X)

)
= Eθ

((
Eθ(Y |X)

)2)
, entails

Eθ

((
Eθ(Y |X)

)2)
= Eθ

((
Eθ(Y |S(X))

)2)
,

that is ‖Eθ(Y |X)‖2L2(Pθ)
=

∥∥Eθ

(
Y |S(X)

)∥∥2
L2(Pθ)

. This implies relation (2) since

Eθ

(
Y |S(X)

)
is the projection of Eθ(Y |X) on L2

S(X). �

Note that, if (X,Y ) has a strictly positive density of the form f(x, y, θ) =
L(S(x), y, θ), one obtains (2) by a direct computation. Concerning the Bayesian
predictor, we have

Proposition 4.2. If p0 is unique and S is Y -sufficient, then

p0(X) = E
(
Y |S(X)

)
.
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Proof. Since p0(X) = E(Y |X), the Rao-Blackwell theorem for prediction (cf. Bosq
and Blanke, 2007, p. 15) entails p1(X) := ES(X)

(
E(Y |X)

)
≺ p0(X) where ES(X)

is conditional expectation with respect to QS in (a). Now, from Proposition 4.1,
p0 is admissible, thus

p0(X) = p1(X) = ES(X)
(
E(Y |X)

)
= E

(
Y |S(X)

)
.

�

4.3. Decomposition of the conditional expectation. We now consider the
special case where the conditional expectation admits the following decomposition:

Eθ(Y |X) = A(X) +B(θ)C(X) +D(θ), θ ∈ Θ (3)

where A, B ⊗ C, D ∈ L2(F × Θ,F ⊗ T ,Q(X,T)), Q(X,T) being the distribution of
(X,T). Then, the Bayesian predictor has also a special form:

Proposition 4.3. Suppose that Assumption 3.1 is fulfilled. If Eθ(Y |X) satisfies

(3), the associated Bayesian predictor is given by

p0(X) = A(X) + E(B(T)|X) · C(X) + E(D(T)|X). (4)

In particular, if X and Y are independent and D(θ) = Eθ(Y ), the predictor reduces

to the estimator p0(X) = E(D(T)|X).

Proof. Relation (3) entails m(X,T) = A(X)+B(T) ·C(X)+D(T), and Remark 3.1
gives p0(X) = E(m(X,T)|X) hence (4) from the properties of conditional expecta-
tion. The last assertion is a special case of (4). �

4.4. Unbiasedness. A predictor p(X) of Y is said to be unbiased if Eθ p(X) =
Eθ(Y ), θ ∈ Θ. A Bayesian estimator is, in general, not unbiased, in fact we have
the following:

Lemma 4.2 (Blackwell-Girschick). Let ϕ̂(X) be an unbiased Bayesian estimator

of ϕ(θ), then

E
(
ϕ̂(X)− ϕ(T)

)2
= 0

where E denotes here expectation taken from Q(X,T).

Proof. See Lehmann and Casella (1998, p. 234). �

The situation is more intricate concerning a Bayesian predictor. Note first that,
if

Eθ(p0(X)) = Eθ(Y ), θ ∈ Θ (5)

then, p0(X) is an unbiased estimator of Eθ(Y ) but it is not necessarily a Bayesian
estimator of Eθ(Y ). Recall that the Bayesian interpretation of (5) is:

E(p0(X)|T = θ) = E(Y |T = θ), θ ∈ Θ.

Now, we have the following result:

Proposition 4.4. If the Bayesian risk satisfies

E
(
p0(X)−m(X,T)

)2
= 0 (6)

then p0(X) is unbiased for predicting Y . Conversely under Assumption 3.1, if

m(X, θ) = A(X) +D(θ), θ ∈ Θ (7)

and if p0(X) is unbiased, then (6) holds.
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Proof. Relation (6) implies p0(X) = m(X,T), Q(X,T) a.s., that is

E(Y |X) = E(Y |X,T) Q(X,T) a.s..

Conditioning with respect to T gives E(p0(X)|T) = E(Y |T) which means that
p0(X) is unbiased. Conversely (7) and (4) in Proposition 4.3 imply

p0(X) = A(X) + E(D(T)|X).

Now, since p0(X) is unbiased, we have

E(Y |T) = E(A(X)|T) + E(E(D(T)/X)|T) = E(m(X,T)|T)

where the last equality follows from E(Y |X,T) = m(X,T) and a conditioning on
T. But by (7),

E(m(X,T)|T) = E(A(X)|T) + E(D(T)|T).

By identification, it means that the Bayesian estimator of D(T) is also unbiased.
Then Lemma 4.2 gives

E
(
p0(X)−m(X,T)

)2
= E

(
E(D(T)|X) −D(T)

)2
= 0.

�

In the more general case whereEθ(Y |X) has the form (3) with non-nullB(θ)C(X),
it is possible to find an unbiased Bayesian predictor with a non-vanishing Bayesian
risk (cf. Bosq, 2012).

Now for some θ0 ∈ Θ, let us define a ‘Bayesian type’ predictor by

p0(X) = αp(X) + (1 − α)m(X, θ0), (0 < α < 1), (8)

where p(X) is an unbiased predictor of Y . For these specific predictors, our previous
result may be extended as follows.

Proposition 4.5. Suppose that Assumption 3.1 holds and consider a predictor

p0(X) of the form (8). Then, if p0(X) is unbiased, it follows that

Eθ

(
m(X, θ)

)
= Eθ

(
m(X, θ0)

)
, θ ∈ Θ, (9)

if, in addition, there exists a Y -sufficient complete statistic thenm(X, θ) = m(X, θ0)
for all θ ∈ Θ and the problem of prediction is degenerated.

Proof. If p0(X) is an unbiased predictor of Y , one has

Eθ

(
p0(X)

)
= Eθ

(
m(X, θ)

)
, θ ∈ Θ,

and taking expectation in (8) yields

Eθ

(
m(X, θ)

)
= αEθ

(
p(X)

)
+ (1 − α)Eθ

(
m(X, θ0)

)

hence, since p(X) is unbiased, (9) follows. Now, if S(X) is a Y -sufficient statistic,
Lemma 4.1 entails m(X, θ) = Eθ

(
Y |S(X)

)
, thus, (9) implies

Eθ

(
Eθ

(
Y |S(X)

)
− Eθ0

(
Y |S(X)

))
= 0, θ ∈ Θ,

and, since S(X) is complete, one obtains the last result. �
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4.5. Comparing predictors. The following elementary lemma allows to compare
Bayesian predictors with the classical unbiased predictor. We will use it in the next
sections.

Lemma 4.3. Suppose that

m(X, θ) = A(X) + d · θ (d 6= 0)

and let p(X) be an unbiased predictor of Y taking the form

p(X) = A(X) + d · θ(X).

For some θ0 ∈ Θ, consider the ‘Bayesian type’ predictor

p0(X) = αp(X) + (1− α)m(X, θ0)

where α ∈]0, 1[. Then

p0 ≺ p⇐⇒ |θ − θ0| ≤
(1 + α

1− α

) 1

2 ·
(
Eθ

(
θ(X)− θ

)2) 1

2

. (10)

Proof. We have

p0(X)−m(X, θ) = α
(
p(X)−m(X, θ)

)
+ (1− α)

(
m(X, θ0)−m(X, θ)

)

then, since p is unbiased,

Eθ

(
p0(X)−m(X, θ)

)2
= α2Eθ

(
p(X)−m(X, θ)

)2
+ (1− α)2d2(θ0 − θ)2

thus

p0 ≺ p⇐⇒ d2(1− α)2(θ − θ0)
2 + α2Eθ

(
p(X)−m(X, θ)

)2 ≤ Eθ

(
p(X)−m(X, θ)

)2

and (10) follows. �

Remark 4.1. If X = X(n) = (X1, . . . , Xn) and Eθ

(
θ(X) − θ

)2
= v2

n
then the

condition becomes

|θ − θ0| ≤
(1 + α

1− α

) 1

2 ·
(v2
n

) 1

2

.

If one may find α = αn such that

inf
n≥1

(1 + αn

1− αn

) 1

2 ·
(v2
n

) 1

2 ≥ b > 0,

it follows that |θ − θ0| ≤ b implies p0(X(n)) ≺ p(X(n)) for all n ≥ 1. Moreover, the

choice A(X) ≡ 0 in Lemma 4.3 provides an alternative formulation for comparing

Bayesian estimators of θ versus non Bayesian ones.

5. Application to Poisson process

5.1. The Bayesian predictor. Let (Nt, t ≥ 0) be an homogeneous Poisson pro-
cess with intensity θ > 0, X = (Nt, 0 ≤ t ≤ S) is observed and one wants to predict
Y = NS+h (h > 0), (S > 0). This a classical scheme but of interest, since in this
case, there exists an unbiased efficient predictor (see Bosq and Blanke, 2007). Since
Lemma 2.1 shows that it is equivalent to predict m(X, θ) = θh +NS, one obtains
the unbiased efficient predictor p(NS) =

S+h
S
NS =: NS + θSh (with θS = NS

S
).

Concerning the Bayesian predictor, a classical prior is τ = Γ(a, b) with density

ba

Γ(a)
θa−1 exp(−bθ)1]0,+∞[(θ), (a > 0, b > 0).

First, since NS is NS+h-sufficient, Lemma 4.1 entails

Eθ(NS+h|Nt, 0 ≤ t ≤ S) = Eθ(NS+h|NS)
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and Proposition 4.2 gives p0(Nt, 0 ≤ t ≤ S) = E(NS+h|NS). The same property
holds for the Bayes estimator given by

θ̂S = E(T|NS) =
a+NS

b+ S
,

and, from Proposition 4.3, the Bayesian predictor is

p̂0(NS) =
a+NS

b+ S
· h+NS.

To compare p̂0 with p, note that θ̂S = S
b+S

· θS +
(
1− S

b+S

)
· a
b
. We deduce that

p̂0(NS) = αS p(NS) + (1− αS)(NS + θ0h)

with αS = S
b+S

and θ0 = a
b
. Since Eθ

(
θS − θ

)2
= θ

S
, a straightforward consequence

of Lemma 4.3 is

p̂0 ≺ p⇐⇒ (θ − θ0)
2 ≤

( 1
S

+
2

b

)
θ. (11)

Solving (11) in θ, we get that p0 ≺ p iff

θ ∈
]
θ0 +

1

2S
+

1

b
−
√
∆, θ0 +

1

2S
+

1

b
+
√
∆
[

with ∆ =
(
θ0 + 1

2S + 1
b

)2 − θ20 . Also, from (11), a sufficient condition, holding

for all S, is (θ − θ0)
2 ≤ 2

b
θ which gives θ ∈

]
θ0 + 1

b
−

√
∆̃, θ0 + 1

b
+

√
∆̃
[
with

∆̃ = 1
b
(2θ0 +

1
b
), that is p0 ≺ p if

θ ∈
]
θ1, θ2

[
:=

]a+ 1

b
−

√
2a+ 1

b
,
a+ 1

b
+

√
2a+ 1

b

[
.

Clearly, one obtains the same result for comparing θ̂S with θS . For example, if

one chooses a = 1, b = 1
θ0

(so that E(τ) = θ0) then θ1 = 2−
√
3

b
and θ2 = 2+

√
3

b
. If b

is small, θ2 − θ1 is large but θ also !

Turning to the MAP estimator, one has to compute argmaxθ L(θ) which is equal
to

argmax
θ
e−θS (θS)

NS

NS !

ba

Γ(a)
θa−1e−θb.

We have
∂ lnL(θ)

∂θ
=

∂

∂θ

(
− θ(S + b) +

NS + a− 1

θ

)

hence θ̃S = NS+a−1
b+S

where we choose a ≥ 1 for convenience, inducing the predictor:

p̃0(NS) =
NS + a− 1

b+ S
h+NS .

Replacing a with a− 1, the previous discussion about p̂0 holds and one gets, for all
S, the sufficient condition

p̃0 ≺ p⇐=
a

b
−

√
2a− 1

b
< θ <

a

b
+

√
2a− 1

b
.

Finally, another method consists in computing the marginal distribution of (NS , NS+h)
and then to determine the conditional mode of NS+h given NS . With that method,
one obtains a similar predictor. Details are left to the reader.
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5.2. Simulations. In this section, we compare the unbiased (UP), the Bayesian
(BP) and the MAP predictors for various Poisson processes. First, we simulate
N = 105 homogeneous Poisson processes with intensity θ varying in {0.5, 1, 2, 5, 10}.
Next, for S in {10, 15, 20, 25, 30, 40, 50, 75, 100} and horizon of prediction h in
{0.5, 1, 2, 5}, we compute an empirical L2-error of prediction:

1

N

N∑

j=1

(
N

(j)
S+h − p̂(N

(j)
S )

)2

where N
(j)
t stands for the j-th replicate of the process at time t and p̂(N

(j)
S ) is the

predictor under consideration (Bayesian and MAP predictors are computed with a
Γ(a, 1) distribution for the prior). We will also consider the empirical L2-error of
estimation (with respect to the probabilistic predictor Eθ(NS+h|NS)) defined by

1

N

N∑

j=1

(
N

(j)
S + θh− p̂(N

(j)
S )

)2
.

In Table 1, we give the rounded L2-errors of estimation according to S as well as
prediction errors (enclosed in parentheses) for the unbiased predictor when θ =
h = 1. To help the comparison, only the percentage variations of BP and MAP
errors (relatively to the UP ones) are reported for a = 1, 2, 4. Namely, since θ = 1,
it is expected from (11) that a = 4 represents a bad choice of prior (while a = 1
corresponds to the best one, and a = 2 is acceptable). From Table 1, we observe
that:

- as expected, all errors decrease as S increases ;
- for all errors and any value of S, Bayesian and MAP predictors are better
than the unbiased one for a = 1, 2, with a clearly significant gain for small
values of S in the estimation framework ;

- the bad choice a = 4 clearly penalizes the predictor, with a significant
impact on the L2-error of estimation. Concerning the prediction error, it
appears as less sensitive to the prior: indeed this overall error is governed
by the probabilistic one, much more important in this case.

Table 1. L2 estimation (prediction) error for UP and percentage
variation of L2 estimation (prediction) error for BP and MAP, in
the case where θ = 1 and h = 1.

S=15 S=20 S=30

UP 0.066 (1.066) 0.050 (1.050) 0.033 (1.036)

a=1 a=2 a=4 a=1 a=2 a=4 a=1 a=2 a=4

BP % -12.1(-.74) -6.3(-.42) 40.8(2.42) -9.3(-.43) -4.8(-.23) 31.5(1.45) -6.3(-.21) -3.2(-.11) 21.8(.69)

MAP % -6.1(-.33) -12.1(-.74) 11.3(.64) -4.7(-.19) -9.3(-.43) 8.8(.39) -3.2(-.10) -6.3(-.21) 6.2(.19)

S=40 S=50 S=100

UP 0.025 (1.027) 0.020 (1.025) 0.010 (1.015)

a=1 a=2 a=4 a=1 a=2 a=4 a=1 a=2 a=4

BP % -4.8(-.12) -2.4(-.05) 16.8(.42) -3.9(-.08) -1.9(-.03) 13.7(.28) -2.0(-.02) -1.0(-.01) 6.7(.06)

MAP % -2.5(-.06) -4.8(-.12) 4.8(.13) -2.0(-.04) -3.9(-.08) 4.0(.09) -0.9(-.01) -2.0(-.02) 1.9(.02)

In Figure 5.1, the L2-error of prediction is plotted as a function of a for θ = 1 and
S = 20. As expected by (11), parabolic curves are obtained and BP (resp. MAP)

is better than UP for a in the interval
]
0, 1+

√
S−1 + 2

[
(resp.

]
2−

√
S−1 + 2, 2+

√
S−1 + 2

[
). Same conclusions hold for other choices of h and|or θ (see related

results of Table 2). Errors increase as h and—or θ increase, and a good choice of
the prior has a significative impact on the estimation error.
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Figure 1. L2 prediction error for θ = 1 in terms of a with Γ(a, 1) prior:

UP (plain horizontal), BP (dashes), MAP (dots) for S = 20. Vertical

lines corresponds to a = 1 +
√
S−1 + 2 (dashes) and a = 2±

√
S−1 + 2

(dots). On the left : h = 0.5, on the right : h = 1.

Table 2. L2 estimation (prediction) error, in the case S = 20, for
UP and percentage variations of L2 estimation (prediction) error
for BPi and MAPi, where i refers to a = i.

θ=0.5 θ=5 θ=10

h=0.5 h=1 h=2 h=0.5 h=1 h=2 h=0.5 h=1 h=2

UP .01 (.3) .02 (.5) .1 (1.1) .06 (2.6) .25 (5.3) 1 (11) .12 (5.1) .5 (10.4) 1.99 (22.1)

BP1 % -6.9 (-.16) -6.9 (-.33) -6.9 (-.61) 5.1 (.2) 5.1 (.34) 5.1 (.61) 28 (.75) 28 (1.48) 28 (2.7)

BP2 % 11.5 (.31) 11.5 (.55) 11.5 (1.1) -1.2 (.02) -1.2 (.02) -1.2 (.0) 20.2 (.55) 20.2 (1.09) 20.2 (1.98)

BP4 % 103.3 (2.58) 103.3 (4.89) 103.3 (9.52) -8.4 (-.19) -8.4 (-.37) -8.4 (-.73) 7.4 (.23) 7.4 (.45) 7.4 (.78)

MAP1 % -7.1 (-.19) -7.1 (-.34) -7.1 (-.66) 13.2 (.41) 13.2 (.75) 13.2 (1.39) 36.7 (.97) 36.7 (1.91) 36.7 (3.5)

MAP2 % -6.9 (-.16) -6.9 (-.33) -6.9 (-.61) 5.1 (.2) 5.1 (.34) 5.1 (.61) 28 (.75) 28 (1.48) 28 (2.7)

MAP4 % 48.3 (1.22) 48.3 (2.29) 48.3 (4.48) -5.7 (-.1) -5.7 (-.22) -5.7 (-.44) 13.3 (.38) 13.3 (.75) 13.3 (1.34)

6. Bayesian inference for the Ornstein-Uhlenbeck process

Consider a stationary version of the Ornstein-Uhlenbeck process (O.U.) defined

by Xt = m +
∫ t

−∞ e−θ(t−s) dW (s), t ∈ R, (m ∈ R, θ > 0) where W is a standard
bilateral Wiener process. Set X0,t = Xt −m, t ∈ R, then the likelihood of X(S) =
(Xt, 0 ≤ t ≤ S) with respect to X0,(S) = (X0,t, 0 ≤ t ≤ S) is given by

L
(
X(S);m, θ) = exp

(
− θm2

2
(2 + θS) + θm(X0 +XS + θ

∫ S

0

Xt dt)
)

(12)

(cf. Grenander, 1981, p. 128-129) where X(S) and X0,(S) take their values in the
space C([0, S]), (S > 0).

6.1. Estimating m. We suppose that θ is known and m ∈ R is unknown. In order
to construct a Bayesian estimator of m and a Bayesian predictor of XS+h (h > 0)
given X(S), we consider the random variable M with prior distribution N (m0, u

2)
(u > 0), and suppose that M is independent from W . Using (12), it follows that

the posterior density of M given X(S) is N
(B
A
,
1

A

)
where A = θ(2 + θS) + 1

u2 and

B = θZS + m0

u2 with ZS =
(
X0+XS + θ

∫ S

0 Xt dt
)
. Hence the Bayesian estimator
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of m:

m̂S =
B

A
=

ZS +m0θ
−1u−2

2 + θS + θ−1u−2

when the maximum likelihood estimator (MLE) is mS = ZS

2+θS
. Consequently

m̂S = αS mS + (1 − αS)m0 (13)

with αS = (1 + θ−1(2 + θS)−1u−2)−1 ∈]0, 1[. Note that lim
u→0

m̂S = m0 and

lim
u→∞

m̂S = mS .

Asymptotic efficiency. The MLE mS is efficient (cf. Bosq and Blanke, 2007, p. 28)
and m̂S is asymptotically efficient since, from (13),

Em(m̂S −m)2

Em(mS −m)2
= α2

S + (1− αS)
2 (m0 −m)2

Em(mS −m)2

with α2
S → 1 as S → ∞, (1− αS)

2 = O(S−2) and Em(mS −m)2 = O(S−1).
Prediction. We have Em(XS+h|X(S)) = Em(XS+h|XS) = e−θh(XS −m) +m. The
unbiased predictor associated with the MLE is

pS := p(X(S)) = mS(1− e−θh) + e−θhXS ,

and by Proposition 4.2, one obtains the Bayesian predictor

p̂0,S := p0(X(S)) = m̂S(1− e−θh) + e−θhXS .

We get

p̂0,S = αS pS + (1− αS)
(
m0(1− e−θh) + e−θhXS

)
= αS pS + (1− αS)p(XS ,m0).

Concerning efficiency, again we deduce that pS is efficient and p̂0,S is asymp-
totically efficient. Now, in order to compare p̂0,S with pS , we use Lemma 4.3 for
obtaining the following result.

Proposition 6.1. We have

p̂0,S ≺ pS ⇐⇒ |m−m0| ≤
( 1

θ(2 + θS)
+ 2u2

) 1

2

and |m−m0| ≤ u
√
2 implies p̂0,S ≺ pS for all S > 0.

The proof is straightforward since one has Em(mS −m)2 =
(
θ(2 + θS)

)−1
. Of

course, the result is strictly the same if one compares m̂S with mS since m̂S ≺ mS

is equivalent to p̂0,S ≺ pS.

6.2. Estimating θ. Suppose now that θ is unknown and m is known ; one may
take m = 0. The likelihood of X(S) with respect to W(S) has the form

L(X(S)) = exp
(
− 1

2
(X2

S −X2
0 − S)− θ2

2

∫ S

0

X2
t dt

)
,

see Liptser and Shiryaev (2001). Even if θ is positive, it is convenient to take
N (θ0, v

2) (with θ0 > 0 and v2 > 0) as prior distribution of T. Then, the marginal

distribution of X(S) has density ϕ(x(S)) = 1√
αv2

exp
(
− θ2

0

2v2 + β2

2α

)
where α =

∫ S

0
x2s ds+

1
v2 and β =

S−x2

S+x2

0

2 + θ0
v2 .

It follows that the conditional distribution of T given X(S) is N
(
β
α
, 1
α

)
, hence

the Bayesian estimator of θ: θ̂S = β
α

=
1

2
(S−X2

S+X2

0
)+θ0v

−2

∫
S

0
X2

t dt+v−2
when the MLE is

θS =
1

2
(S−X2

S+X2

0
)∫

S

0
X2

t dt
, consequently

θ̂S = γS θS + (1− γS)θ0 with γS =

∫ S

0 X2
t dt∫ S

0
X2

t dt+ v−2
, (14)
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and lim
v2→0

θ̂S = θ0 while lim
v2→∞

θ̂S = θS .

Concerning prediction, we have Eθ(XS+h|X(S)) = e−θh · XS, so it is necessary

to compute the Bayesian estimator of e−θ h. We get

E(e−Th|X(S)) =

∫

R

e−θh

√
α

2π
e−

α
2
(θ− β

α
)2 dθ = exp(−2β − h

2α
· h),

hence the Bayesian predictor p̂0(X(S)) = exp(− 2β−h
2α · h) ·XS . The predictor asso-

ciated with the MLE is p(X(S)) = e−θS·h · XS and finally, an alternative form of

the predictor, associated with the MAP, should be p̃(X(S)) = e−θ̂S·h ·XS .

Finally, one may consider alternative priors, as well as, the translated exponential
distribution with density ϕ(θ) = η exp

(
− η(θ− θ0)

)
1]θ0,+∞[(θ), (η > 0, θ0 ≥ 0). If

ψ denotes the density of N (− a
2b ,

1
b
), with a = x2S − x20 − S + 2η and b =

∫ S

0 x2t dt,

the Bayesian estimator is given by θ̂S =
∫∞
θ0
θψ(θ) dθ

/∫∞
θ0
ψ(θ) dθ and can be

numerically computed. Derivation is left to the reader.

7. Ornstein-Uhlenbeck process for sampled data

We now consider the more realistic case where only X0, Xδ, . . . , Xnδ are observed
and one wants to predict X(n+h)δ, (h > 0).

7.1. Estimation of m. If θ is known, and m ∈ R unknown, the associated model
is

Xnδ −m = e−θδ
(
X(n−1)δ −m) + εnδ, n ∈ Z (15)

and

Var (εnδ) =
1− e−2θδ

2θ
=: σ2

δ,θ (16)

If δ > 0 is fixed, we deal with a classical AR(1), so we will focus on the case where
δ = δn is ‘small’. One may use various conditions as n→ ∞: δn → 0 and nδn → ∞
or δn → 0 and nδn → S > 0 for example. Two approaches are possible: either
considering the likelihood or the conditional likelihood (X0 is arbitrary but non
random) which has a simpler form.

7.1.1. Unconditional estimation. SinceX0−m, εδn , . . . , εnδn ∼ N (0, (2θ)−1)⊗N (0, σ2
δn,θ)

⊗n,

one may deduce that (X0 −m,Xδn −m, . . . , Xnδn −m) has the density

f(x0, x1, . . . , xn) =
( θ
π

) 1

2 1

(σδn,θ

√
2π)n

× exp
(
− θ(x0 −m)2

−
n∑

i=1

(
xi − e−θδnxi−1 −m(1− e−θδn)

)2

2σ2
δn θ

)
.

This yields

mn =
X0 +Xnδn + (1− e−θδn)

∑n−1
i=1 Xiδn

n(1− e−θδn) + 1 + e−θδn
(17)
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for the MLE, while if M ∼ N (m0, u
2), one has

L(X0, Xδn , . . . , Xnδn ,M) =
( θ
π

) 1

2 1

σδn,θ
√
2π

× exp
(
− θ(X0 −M)2

−
n∑

i=1

(
Xiδn − e−θδnX(i−1)δn −M(1 − e−θδn)

)2

2σ2
δn θ

)
× 1

u
√
2π

exp
(
− 1

2u2
(M−m0)

2
)

giving

m̂n =
X0 +Xnδn + (1 − e−θδn)

∑n−1
i=1 Xiδn + (1 + e−θδn) m0

2θu2

n(1− e−θδn) + (1 + e−θδn)(1 + 1
2θu2 )

. (18)

Again, we have m̂n = αnmn + (1 − αn)m0 with

αn =
n(1− e−θδn) + 1 + e−θδn

n(1− e−θδn) + (1 + e−θδn)(1 + (2θu2)−1)
.

SinceE(X(n+h)δn |Xnδn) = e−θhδn(Xnδn−m)+m, the derived predictors ofX(n+h)δn ,

h ≥ 1 are given by pn(Xnδn) = mn(1 − e−θhδn) + e−θhδnXnδn while p̂0,n(Xnδn) =
m̂n(1− e−θhδn) + e−θhδnXnδn , and Lemma 4.3 implies that

p̂0,n ≺ pn ⇐⇒

(m−m0)
2 ≤ 2n(1− e−θδn) + (1 + e−θδn)(2 + (2θu2)−1)

(1 + e−θδn)(2θu2)−1
× Em(mn −m)2.

Next, easy but tedious computation gives Em(mn −m)2 = 1+e−θδn

2θ
(
n(1−e−θδn )+1+e−θδn

)

yielding the equivalence: p̂0,n ≺ pn ⇔ (m−m0)
2 ≤ 2u2 + 1+e−θδn

2θ
(
1+e−θδn+n(1−e−θδn )

) .
Asymptotically, we get if δn −−−−→

n→∞
0, nδn −−−−→

n→∞
S > 0, p̂0,n ≺n→∞ pn is equivalent

to (m − m0)
2 ≤ 2u2 + 1

θ(θS+2) . The condition S → ∞ implying in turn the

equivalence p̂0,n ≺n→∞ pn ⇔ (m −m0)
2 ≤ 2u2, which are the same results as in

the continuous case (cf. Proposition 6.1). If nδn → S > 0, note that our estimators
ofm are no more consistent ! But still in this case, a good choice of the prior should
allow reductions of risks of estimation and prediction.

7.1.2. Conditional likelihood. In this part, we use conditional likelihood on X0, and
choosing M ∼ N (m0, u

2), (u > 0), we obtain the ‘density’ of (Xδn , . . . , Xnδn ,M):

L̃(Xδn , . . . , Xnδn ,M) =
1

(σδn,θ

√
2π)n

exp

(
− 1

2σ2
δn,θ

n∑

i=1

(
(Xiδn−exp(−θδn)X(i−1)δn)

+M(exp(−θδn)− 1)
)2

)
× 1

u
√
2π

exp
(
− 1

2u2
(M−m0)

2
)
,

where σ2
δn,θ

is defined by (16). Now:

ln L̃ = c− 1

2σ2
δn,θ

n∑

i=1

(
Xiδn−exp(−θδn)X(i−1)δn+M(exp(−θδn)−1)

)2

− (M−m0)
2

2u2
,

where c does not depend on n. Since we are in the Gaussian case, the conditional
mode and the conditional expectation coincide and it follows that the Bayesian
estimator is now given by

m̃n =
(1− exp(−θδn))

∑n
i=1(Xiδn − exp(−θδn)X(i−1)δ) +m0

σ2

δn,θ

u2

(1− exp(−θδn))2n+
σ2

δn,θ

u2

, (19)



14 D. BLANKE AND D. BOSQ

while the conditional MLE takes the form

m̆n =

∑n
i=1(Xiδn − exp(−θδn)X(i−1)δ)

(1− exp(−θδn))n
, (20)

We may slightly modify the estimator (19) for obtaining

mn = βnXn + (1− βn)m0 (21)

with Xn = n−1
∑n

i=1Xiδn and βn =
(1− exp(−θδn))2

(1 − exp(−θδn))2 +
σ2

δn,θ

nu2

. Hence

1 + βn
1− βn

=
4θu2n(1− e−θδn) + 1 + e−θδn

1 + e−θδn

and, since Var (Xn) =
(1−e−2θδn )+ 2

n
e−θδn (e−θnδn−1)

2nθ(1−e−θδn )2 , asymptotically we get that, if

δn → 0, nδn → S > 0,

mn ≺n→∞ Xn ⇐⇒ (m−m0)
2 ≤ (1 + 2u2θ2S)(θS − 1 + e−θS)

θ3S2

while if δn → 0, nδn → ∞, we get the equivalence: mn ≺n→∞ Xn ⇔ (m−m0)
2 ≤

2u2. Again, the same results are obtained for predictors.

7.2. Estimation of ρ. In the case where m is known (one may set m = 0), we
now choose N(ρ0, v

2) as a prior for ρ = e−θδn , with 0 < ρ0 < 1 and v > 0. Note
that this prior is reasonable as soon as ρ0 is not too far from 1 and v not too large.
Using again the conditional likelihood, one obtains the expression:

L̃(Xδn , . . . , Xnδn , ρ) =
1

(σδn,θ
√
2π)n

exp
(
− 1

2σ2
δn,θ

n∑

i=1

(
Xiδn − ρX(i−1)δn

)2)

× 1

v
√
2π

exp
(
− 1

2v2
(ρ− ρ0)

2
)
.

Since σ2
θ,δ depends on ρ, we make the approximation σδ,θ ∼ δ for obtaining the pos-

terior distributionN (B
A
, 1
A
) whereA =

1

δn

n∑

i=1

X2
(i−1)δn

+
1

v2
andB =

1

δn

n∑

i=1

X(i−1)δnXiδn+

ρ0
v2

, hence the ‘Bayesian’ estimator takes the form

ρ̃n =

∑n
i=1X(i−1)δnXiδn + ρ0δn

v2∑n
i=1X

2
(i−1)δn

+ δn
v2

. (22)

Comparison with the conditional MLE

ρ̂n =

∑n
i=1X(i−1)δnXiδn∑n

i=1X
2
(i−1)δn

(23)

is rather intricate and will be illustrated numerically in the next section.

7.3. Simulation. For θ ∈ {0.5, 1, 2}, m = 5, various sample sizes n and values
of δ, 5000 replications of Ornstein-Uhlenbeck sample paths are computed from
the autoregressive relation (15). First, for known θ but m unknown, we compare
various predictors of Xnδ+H , H = hδ and H = 0.5, 1 or 2, defined by m(1−e−θhδ)+
e−θhδXnδ where m refers to estimators which are either:

• non Bayesian: MLE with mn defined in (17), Mean Xn, CMLE with m̆n

defined in (20),
• or Bayesian: Bayes with m̂n defined in (18), CMAP1 with m̃n defined in
(19) (u2 = 1) and CMAP2 with mn defined in (21) (u2 = 1).
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Figure 2. L2-prediction error for m unknown (m = 5) and θ = 1

(known), δ = 0.1 in terms of m0 with N (m0, 1) prior: MLE (plain),

CMLE (twodash), Mean (dashed), Bayes (longdash), CMAP1 (dotted),

CMAP2 (dotdash) when u2 = 1. Vertical lines corresponds to m0 =

5 ±
√
2u2. On the left : n = 30 (S = 3, S + h ∗ δ = 4), on the right:

n = 100 (S = 10, S + h ∗ δ = 11).

Among all non Bayesian estimators and in all cases, it emerges that MLE out-
performs the other two, with a very poor behaviour of the CMLE toward the
others, a fact already noticed by Cox (1991). For this reason, our following re-
sults do not report the obtained values for CMAP1, because of its too bad be-
haviour governed by the CMLE. In Table 3, we give the rounded empirical L2-
prediction error of the MLE, and for comparison, the percentage variations ob-
served for the others predictors, in the case of θ = 1 and δ = 0.1. It appears

Table 3. L2-prediction error (m unknown) for MLE predictor and
percentage variation of L2-prediction error for others in the case
where θ = 1, H = 1, u2 = 1 and δ = 0.1.

n=15 n=30

MLE 0.548 0.499

Mean (%) 2.76 2.82

CMLE (%) 27.97 10.54

m0 = 4 m0 = 5 m0 = 7 m0 = 4 m0 = 5 m0 = 7

Bay (%) -4.87 -8.52 5.77 -2.79 -4.72 4.78

CMAP2 (%) -1.04 -12.86 33.54 -.53 -5.02 16.05

n=50 n=100

MLE 0.488 0.464

Mean (%) 1.61 0.35

CMLE (%) 5.62 1.35

m0 = 4 m0 = 5 m0 = 7 m0 = 4 m0 = 5 m0 = 7

Bay (%) -1.30 -2.63 2.39 -0.62 -1.08 1.08

CMAP2 (%) 0.03 -2.28 6.77 -0.35 -0.99 2.00
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Figure 3. On the left: L2 prediction error for unknown m, with prior

N (5, 1), known θ (θ = 1) in terms of n when δ = 0.1:MLE (plain),

CMLE (twodash), Mean (dashed), Bayes (longdash), CMAP1 (dotted),

CMAP2 (dotdash). On the right: L2 prediction error for unknown ρ,

prior N (ρ0, 10
−2) in terms of n when δ = 0.1: CMLE (plain), CBayes

with ρ0 = 0.9 (dashed), CBayes (dotted) with ρ0 = 0.83.

that all errors decrease as n increases, and Bayes predictors are highly competi-
tive for small sample sizes and good choice of priors, namely M ∼ N (m0, 1), with

m0 ∈
]
5 −

√
2 + (S + 2)−1, 5 +

√
2 + (S + 2)−1

[
or asymptotically, S = nδ → ∞,

m0 ∈
]
5 −

√
2, 5 +

√
2
[
, see Section 7.1.1. By this way, errors are significantly re-

duced for m0 = 4 or 5 and n less than 50, while a bad choice like m0 = 7 damages
them dramatically. It appears also that CMAP2 has the smallest errors but only
on a small area around m, the Bayesian predictor (with m̂n defined in (18)) being
more robust against the choice of m0. These results are confirmed in Figure 7.1
where errors are given in term of m0: as expected, we obtain parabolic curves
for Bayesian predictors. Again, the Bayesian setting improves the errors for good
choices of prior (especially for small values of δ and nδ where MLE is not so good)
and otherwise deteriorates it.

Table 4. L2-prediction error (m unknown) for MLE predictor and
percentage variation of L2-prediction error for others in the case
where θ = 1, H = 1, u2 = 1 and m0 ∈ {4, 5, 7}.

n 10 20 50 100

δ 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

MLE .586 .531 .488 .531 .498 .464 .488 .464 .441 .464 .461 .444

Mean (%) 2.77 2.46 1.92 2.40 2.13 .44 1.61 .36 .16 .35 .16 -.06

CMLE (%) 47.01 17.69 5.73 17.56 7.38 1.40 5.62 1.36 0.24 1.35 .47 -.05

Bay 4 (%) -5.06 -4.23 -1.31 -4.22 -1.84 -.65 -1.30 -.62 -.03 -.62 -.31 -.04

Bay 5 (%) -10.48 -6.66 -2.68 -6.65 -3.41 -1.11 -2.63 -1.08 -0.23 -1.08 -0.37 -0.05

Bay 7(%) 4.26 6.58 2.47 6.57 3.32 1.11 2.39 1.08 0.11 1.08 0.49 0.12

CMAP2 4 (%) 1.89 -1.70 .26 -1.70 -.13 -.30 .03 -.34 .13 -.35 -.18 -.10

CMAP2 5 (%) -17.35 -9.23 -2.13 -9.23 -3.20 -.96 -2.28 -.98 -.09 -.99 -.26 -.12

CMAP2 7 (%) 46.63 26.12 7.21 25.96 10.04 2.15 6.77 2.02 .31 2.00 .75 .07
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Table 5. L2-prediction error (m unknown) for MLE predictor
and percentage variation of L2-prediction error for other in the
case where n = 20, δ = 0.1, u2 = 1, and m0 ∈ {4, 5, 7}.

θ 0.5 1 2

H 0.5 1 2 0.5 1 2 0.5 1 2

MLE 0.421 0.728 1.138 .34 .531 .677 .249 .303 .333

Mean (%) 0.51 1.32 2.23 1.81 2.4 4.07 1.88 2.72 2.85

CMLE (%) 15.03 27.59 48.31 10.76 17.56 27.37 6.04 9.76 10.65

Bay 4 (%) -3.41 -5.9 -9.32 -2.72 -4.22 -6.09 -1.04 -0.92 -2.15

Bay 5 (%) -5.27 -9.31 -15.56 -4.11 -6.65 -9.82 -1.99 -2.97 -3.58

Bay 7(%) 2.18 4.31 5.68 4.04 6.57 9.24 1.82 1.7 3.87

CMAP2 4 (%) -2.2 -3.33 -4.77 -1.07 -1.7 -1.96 0.67 1.85 0.33

CMAP2 5 (%) -7.41 -12.86 -21.55 -5.5 -9.23 -13.28 -1.35 -2.1 -2.9

CMAP2 7 (%) 13.2 24.79 38.55 16.06 25.96 37.82 6.56 8.36 12.21
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Figure 4. L2 prediction error for ρ = e−θδ unknown (θ = 1, δ = 0.1)

and m = 5 (known) in terms of ρ0 with N (ρ0, 10
−2) prior: CMLE

(plain horizontal), Bayes predictor (dashed). On the left : n = 30 (S =

3, S + h ∗ δ = 4), on the right: n = 100 (S = 10, S + h ∗ δ = 11).

Table 6. L2-prediction error (θ unknown) for MLE predictor and
percentage variation of L2-prediction error for others in the case
where H = 1, δ = 0.1, v2 = 0.01, and ρ0 ∈ {0.5, 0.75, 0.85, 0.9}.

P
P
P
P
P
P
PP

n = 20
θ

0.5 1 2

CMLE 0.83 0.503 0.266

ρ0 0.5 0.75 0.85 0.9 0.5 0.75 0.85 0.9 0.5 0.75 0.85 0.9

‘Bayes’ (%) -8.41 -14.67 -14.90 -13.55 -7.25 -12.05 -12.66 -11.48 -5.82 -6.56 -5.42 -3.21
P
P
P
P
P
P
PP

n = 100
θ

0.5 1 2

CMLE 0.679 0.444 0.242

ρ0 0.5 0.75 0.85 0.9 0.5 0.75 0.85 0.9 0.5 0.75 0.85 0.9

‘Bayes’ (%) 3.76 -0.25 -1.04 -1.15 0.89 -1.13 -1.22 -0.95 -0.44 -0.77 -0.46 -0.03

In Table 4, we compare the obtained errors with varying values of δ, while
in Table 5 the influence of θ is measured. First it appears that, obtained errors
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depend only on S = nδ, and not on the individual values of n and δ (see the
bold type errors). It is not a surprise since examination of L2-risks shows that
leading terms are of order nδ for each estimators. Moreover, the errors are much
larger as δ and—or θ are small. Again, it agrees with our theoretical framework
since more δ is small, more important is the correlation, implying a degradation of
the overall risk. Also, low values of θ corresponds to variables with high variance
(Var (X1) = (2θ)−1), and prediction is more difficult in this case. Finally, errors
are represented in term of n in Figure 7.2 (left): not surprisingly, errors decrease
and estimators are asymptotically equivalent.

Concerning prediction when θ is unknown (m known), we have computed the two
predictors derived from the estimators given by (21) (CMLE) and (22) (‘Bayes’).
Figure 7.2 (right) that errors decrease with n and Bayesian predictors are much
better for small values of n. A noteworthy result is that errors are significantly
improved for any choice of prior, at least for n small: see Table 6 for n = 20 and
Figure 7.3 (left) for n = 30. This last conclusion may be tempered by the possibly
bad behaviour of the CMLE in this framework. Finally for n = 100, the Bayesian
predictor is more sensitive to the prior (Figure 7.3, right).
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