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BAYESIAN PREDICTION FOR STOCHASTIC PROCESSES.
THEORY AND APPLICATIONS

DELPHINE BLANKE AND DENIS BOSQ

ABSTRACT. In this paper, we adopt a Bayesian point of view for predicting real
continuous-time processes. We give two equivalent definitions of a Bayesian
predictor and study some properties: admissibility, prediction sufficiency, non-
unbiasedness, comparison with efficient predictors. Prediction of Poisson pro-
cess and prediction of Ornstein-Uhlenbeck process in the continuous and sam-
pled situations are considered. Various simulations illustrate comparison with
non-Bayesian predictors.

1. INTRODUCTION

A lot of papers are devoted to Bayesian estimation for stochastic processes (see
for example Kutoyants (2004) for the asymptotic point of view) while Bayesian
prediction does not appear very much in statistical literature. Some authors have
studied the case of linear processes (see Diaz, 1990; Safadi and Morettin, 2000, 2003)
but continuous time is not often considered. However, this topic is important, in
particular if the number of data is small. In this paper, we study some properties of
Bayesian predictors and give examples of applications to prediction of continuous-
time processes. Note that we don’t consider prediction for the linear model, a
somewhat different topic which has been extensively studied in literature. In fact,
our main goal is to compare efficiency of Bayesian predictors with non-Bayesian
ones, especially if we have few data at our disposal. Various simulations illustrate
the obtained results.

Section 2 presents the general prediction model ; in this context estimation ap-
pears as a special case of prediction. The main point of the theory is the fact that,
given the data X, a statistical predictor of Y is an approximation of the condi-
tional expectation Eg(Y|X), where 6 is the unknown parameter. Section 3 deals
with Bayesian prediction: we give two equivalent definitions of a Bayesian predictor
linked with the equivalence of predicting Y and Ey(Y|X). However, in some situa-
tions, it is difficult to get an explicit form of the Bayesian predictor, thus it is more
convenient to substitute the conditional expectation with the conditional mode. An
alternative method consists in computing the Bayesian estimator or the maximum
a posteriori (MAP) and to plug it in Eg(Y'|X). We recall some properties of the
MAP and underscore its link with the maximum likelihood estimator.

In Section 4, we study some properties of Bayesian predictors: admissibility, con-
nection with sufficiency and unbiasedness, case where the conditional expectation
admits a special form. Section 5 considers the simple case of Poisson process predic-
tion. We compare the unbiased efficient predictor with the Bayesian and the MAP
ones. Concerning diffusion processes, note that Thompson and Vladimirov (2005)
obtain fine results for Bayesian prediction but without comparison with classical
predictors.
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Key words and phrases. Bayesian prediction, MAP, Comparing predictors, Poisson process,
Ornstein-Uhlenbeck process.
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For the Ornstein-Uhlenbeck process, we deal with prediction in Section 6 for the
centered and non-centered case and with various priors, while Section 7 is devoted
to the sampled case. Some asymptotic results are given along the paper, but,
since the non asymptotic case is the most important in the Bayesian perspective,
theoretical and numerical comparisons focus on this point.

2. THE PREDICTION MODEL

In the non Bayesian context, let (X,Y) be a random vector, defined on some
Probability space and with values in a measurable space (F' x G, F ® G). In the
following, F' and G will be IN or R, k > 1. (X,Y) has distribution (Pg,6 € ©)
where 6 is the unknown parameter and © is an open set in R. We suppose that Py
has a density f(x,y,0) with respect to a o-finite measure A ® p.

One observes X and wants to predict Y. Actually, it is possible to consider the
more general problem ‘predict Z = ((X,Y,0) given X’ (cf. Yatracos, 1992).

In this paper, we suppose that Z is real valued and denote p(X) (or ¢(X)) a
statistical predictor. Then, if Z, p(X) and ¢(X) are square integrable, a classical
preference relation is

p(X) = q(X) (2) <= Bo(p(X) = 2)* < Fp(q(X) = 2)*, 0 € ©
where ‘(Z)’ means ‘for predicting Z’ and Ey is the expectation taken with respect
to the distribution IPy.

Now, let Eg(Z|X) be the conditional expectation of Z given X associated with
the distribution IPy. The next lemma is simple but important.

Lemma 2.1. We have p(X) < ¢(X) (Z) <= p(X) < ¢(X) (Eo(Z]|X)).
Proof. The result directly follows from the Pythagoras theorem, since:
Eo(p(X) — 2)? = Eo (p(X) = Eq(Z]X))" + Eo(Eo(Z]X) - 2)?
and )
Eo(¢(X) — 2)* = Bg(¢(X) — Bo(Z|X))" + Eo(Bo(Z|X) — 2)*.
O

This lemma shows that predicting Z or predicting g (Z|X) is the same problem.

Note that prediction theory has some similarity but also some difference with
estimation theory. In the sequel, we will only recall some necessary definitions and
results. We refer to Bosq and Blanke (2007), chapters 1 and 2, for a more complete
exposition.

3. BAYESIAN PREDICTION

3.1. The Bayesian predictor. In the Bayesian framework, we suppose that T is
a random variable with prior distribution 7 over ©, and admitting a density ¢(0)
with respect to a o-finite measure v (cf. Lehmann and Casella, 1998).

Thus, we may consider the scheme

QAP) XY (Fraxe,FogeBby),
where (2, 4,P) is a probability space, (X,Y,T) a random vector and By the o-
algebra of Borel sets over ©. Now, we denote @ the distribution of (X,Y,T) and
we consider the following regularity assumption:

Assumption 3.1.

Q admits a strictly positive density f(x,y,0)p(0) over F x G x O, with respect to
the o-finite measure A @ p @ v. In addition, f and ¢ are supposed to be continuous
with respect to 6 on ©.
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Note that in practice, A, p and v can be the Lebesgue measure or the counting
measure. Also, remark that similar results can be derived under a more general
version of Assumption 3.1, namely the existence of a common version m(X,0) of
Eq(Y|X) for all 0 € © (see Blanke and Bosq, 2012).

Now, the Bayesian risk for prediction is

r(p(X),Y) = E(p(X) — V)2 = /@ Eo(p(X) — Y)?(0)dv(9),

where Iy is expectation taken with respect to Py and IE is expectation taken with
respect to Q.
It follows that the Bayesian predictor is

po(X) = argmint(p(X),Y) = E(Y|X). (1)
More precisely, we choose p(X) under the form

po(X) = /G uF (W X)du(y)
where
Jo F(X,y,0)0(0)dv(0)
Jave F(X,y,0)0(0)du(y)dv(6)

which ensures existence and uniqueness of po(X) under Assumption 3.1. In the
following, we set

flylX) =

m(X,0) = Bg(Y]X) = /G yfo(ylz)du(y).0 € ©

where
f(x Y, 9)
z,y,0)d\(z)

Remark 3.1. If Assumption 3.1 holds, the relation E(Y|X) = E(E(Y|X,T)|X)
gives the following alternative form of pg:

po(X) = E(m(X,T)|X)
where m(X,T) = E(Y|X,T).

folylz) = T

3.2. The MAP predictor. An alternative method of Bayesian prediction is based
on the conditional mode: one may compute the mode of the distribution of Y, given

X, with respect to Q. If a strictly positive density does exist, the distribution of
(X,Y) has marginal density f(z,y) = [g f(z,y,0)p(0)d0 and in fact, it suffices
to compute argmax flz,y) (x ﬁxed)

A related method consists in determining the mode of T given X and to plug
it in the conditional expectation Egy(Y|X). This mode (also called mazimum a
posteriori, MAP) has the expression

5 {(z,0)¢(0)
0(x) = argmax = argmax {(x, 0)p(0
= f@w9<e> ZORL A
where ¢(z,0) = [ f(z,y,0)du(y), hence the MAP predictor
P(X) = E(Y|X = m(X,0
p( )= Be(YIX) | = m(X.6)

under Assumption 3.1. It is noteworthy that, if ® = R and one chooses the im-
proper prior 1 -\, where A is Lebesgue measure, the obtained estimator is the
maximum likelihood (MLE). Note also that, if £(z,0)¢(0) is symmetric with re-
spect to a(X ), the MAP and the Bayes estimator of € coincide. Finally, it is clear
that, under classical regularity conditions, the MAP and the MLE have the same
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asymptotic behaviour as well almost surely as in distribution. Now, the MAP has
some drawbacks: it is often difficult to compute and uniqueness is not guaranteed.
We will use the MAP in Sections 5 to 7.

4. PROPERTIES OF BAYESIAN PREDICTORS

We give below some useful properties of Bayesian predictors. Here, we suppose
that po(X) does exist and is defined by relation (1).

4.1. Admissibility. A Bayesian predictor is said to be unique if it differs, for any
other Bayesian predictor, only on a set A/ with Py(N) = 0 for all § € © (see
Lehmann and Casella, 1998, p. 323). Then, we have

Proposition 4.1. A Bayesian predictor is admissible as soon as it is unique.

Proof. If po(X) is not admissible, there exists a predictor p(X) such that
Ey(p(X) = Y)? < Ey(po(X) = Y)*, 0 €O,

Integrating with respect to 7 entails r(p(X),Y) < r(po(X),Y), but, since po(X) is
Bayesian, it follows that r(p(X),Y) = r(po(X), Z) and uniqueness of po(X) gives
p(X) =po(X) (Pp a.s. for all ). O
4.2. Y-Sufficiency. A statistic S = S(X) is said to be Y-sufficient (or sufficient

for predicting Y') if
(a) S is sufficient in the statistical model associated with X: there exists a
version of the conditional distribution of X given S, say Q°, that does not

depend on 6.
(b) X and Y are conditionally independent given S.

Note that this does not imply that Eg(Y|S(X)) is constant with respect to
since the sufficient statistic is in the submodel generated by X (see example of the
Poisson process in Section 5). If S is Y-sufficient, it is then possible to derive a
Rao-Blackwell theorem as well as a factorization theorem (cf. Bosq and Blanke,
2007). Now, we have

Lemma 4.1. If S is Y-sufficient and Assumption 3.1 holds, then
Eo(Y|X) =Eq(Y[S(X)), 0 €O. (2)
Proof. We have
By (V]S(X)) = B (Eo(Y1X)|S(X)),
and applying (b) to Y and Ey(Y|X) we obtain

Eg(Y - Eo(Y]X)[S(X)) = Eo(Y|S(X)) - Eo (EG(Y|X)‘S(X)) = (EG(Y|S(X)))2-
Taking expectation and noting that Eg(Y - E¢(Y]X)) = Eg ((]Eg(Y|X))2), entails
By ((Bo(v1))*) = Bo ((Bo(V[S(X))),

. 2 2
that is [ Eo(Y[X)[72(p,) = HIEQ(Y|S(X))HL2(]P9).
Ey (Y]S(X)) is the projection of Eg(Y|X) on L%

This implies relation (2) since

(X)- O

Note that, if (X,Y) has a strictly positive density of the form f(z,y,0) =
L(S(x),y,0), one obtains (2) by a direct computation. Concerning the Bayesian
predictor, we have

Proposition 4.2. If pg is unique and S is Y -sufficient, then
po(X) = E(Y[S(X)).
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Proof. Since po(X) = E(Y|X), the Rao-Blackwell theorem for prediction (cf. Bosq
and Blanke, 2007, p. 15) entails p; (X) := ESCO(E(Y|X)) < po(X) where ESX)
is conditional expectation with respect to Q° in (a). Now, from Proposition 4.1,
po is admissible, thus

po(X) = p1(X) = ESO(E(Y[X)) = E(Y|S(X)).
O

4.3. Decomposition of the conditional expectation. We now consider the
special case where the conditional expectation admits the following decomposition:

Eo(Y]X) = A(X) + B(O)C(X) + D), 66 (3)

where A, B@ C, D € L*(F x ©,F @ T,Qx1)), Q(x1) being the distribution of
(X, T). Then, the Bayesian predictor has also a special form:

Proposition 4.3. Suppose that Assumption 3.1 is fulfilled. If Eq(Y|X) satisfies
(3), the associated Bayesian predictor is given by

po(X) = A(X) + E(B(T)|X) - C(X) + E(D(T)|X). (4)

In particular, if X and Y are independent and D(0) = Eg(Y"), the predictor reduces
to the estimator po(X) = E(D(T)|X).

Proof. Relation (3) entails m(X,T) = A(X)+B(T)-C(X)+ D(T), and Remark 3.1
gives po(X) = E(m(X,T)|X) hence (4) from the properties of conditional expecta-
tion. The last assertion is a special case of (4). t

4.4. Unbiasedness. A predictor p(X) of Y is said to be unbiased if Egp(X) =
Ey(Y), 6 € ©. A Bayesian estimator is, in general, not unbiased, in fact we have
the following:

Lemma 4.2 (Blackwell-Girschick). Let $(X) be an unbiased Bayesian estimator
of p(0), then

~ 2
E($(X) —¢(T))" =0
where I& denotes here expectation taken from Qx 1.

Proof. See Lehmann and Casella (1998, p. 234). O

The situation is more intricate concerning a Bayesian predictor. Note first that,
if
Eg(po(X)) =Eg(Y), 6 €O (5)

then, po(X) is an unbiased estimator of IEg(Y) but it is not necessarily a Bayesian
estimator of Eg(Y'). Recall that the Bayesian interpretation of (5) is:

E(po(X)|IT=0)=EY|T=0), 6c0.
Now, we have the following result:
Proposition 4.4. If the Bayesian risk satisfies
E(po(X) —m(X,T))* =0 (6)
then po(X) is unbiased for predicting Y. Conversely under Assumption 3.1, if
m(X,0) = A(X)+ D(), 0 € © (7)
and if po(X) is unbiased, then (6) holds.
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Proof. Relation (6) implies po(X) = m(X,T), Qx,m) a.s., that is
E(Y|X) = E(Y|X,T) Q1 as.

Conditioning with respect to T gives E(po(X)|T) = E(Y|T) which means that
po(X) is unbiased. Conversely (7) and (4) in Proposition 4.3 imply

po(X) = A(X) + E(D(T)|X).
Now, since po(X) is unbiased, we have
E(Y|T) = E(AX)|T) + E(E(D(T)/X)|T) = E(m(X, T)|T)

where the last equality follows from E(Y|X,T) = m(X,T) and a conditioning on
T. But by (7),

E(m(X,T)|T) = E(A(X)|T) + E(D(T)|T).

By identification, it means that the Bayesian estimator of D(T) is also unbiased.
Then Lemma 4.2 gives

E(po(X) = m(X,T))* = B(E(D(T)|X) - D(T))” = 0.

O

In the more general case where Eg(Y| X) has the form (3) with non-null B(0)C(X),
it is possible to find an unbiased Bayesian predictor with a non-vanishing Bayesian
risk (cf. Bosq, 2012).

Now for some 6y € O, let us define a ‘Bayesian type’ predictor by

po(X) = ap(X) + (1 —a)m(X,6), (0<a<1), (8)

where p(X) is an unbiased predictor of Y. For these specific predictors, our previous
result may be extended as follows.

Proposition 4.5. Suppose that Assumption 3.1 holds and consider a predictor
po(X) of the form (8). Then, if po(X) is unbiased, it follows that

Eg (m(X,0)) = Eg(m(X,6))), 6€6, (9)

if, in addition, there exists a Y -sufficient complete statistic then m(X,0) = m(X, 6p)
for all 0 € © and the problem of prediction is degenerated.

Proof. If pg(X) is an unbiased predictor of Y, one has
Eg(po(X)) = E¢(m(X,0)), 6 € O,
and taking expectation in (8) yields
Eg (m(X,0)) = aEg(p(X)) + (1 — a)Ee(m(X, 00))

hence, since p(X) is unbiased, (9) follows. Now, if S(X) is a Y-sufficient statistic,
Lemma 4.1 entails m(X, 6) = E¢(Y[S(X)), thus, (9) implies

Ey (EQ(Y|S(X)) Ty, (Y|S(X))) -0, feo,

and, since S(X) is complete, one obtains the last result. ]
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4.5. Comparing predictors. The following elementary lemma allows to compare
Bayesian predictors with the classical unbiased predictor. We will use it in the next
sections.

Lemma 4.3. Suppose that
m(X,0)=AX)+d-0 (d+#0)
and let p(X) be an unbiased predictor of Y taking the form
p(X) = A(X) +d-0(X).
For some 6y € ©, consider the ‘Bayesian type’ predictor
Po(X) = ap(X) + (1 — a)m(X, 0)
where . €]0,1[. Then

=

po<p = 1000 < (20 (o Bx) - )°) . (10)

Proof. We have

po(X) — m(X,8) = a(p(X) — m(X,0)) + (1 - a) (m(X, 00) — m(X,0))
then, since p is unbiased,

Eo (po(X) — m(X,0))° = a®Fo (p(X) — m(X,0))” + (1 — a)2d>(6) — 0)°
thus
po < p = d*(1 = 0)*(0 — 00)* + 0By (p(X) — m(X,0))” < By (p(X) — m(X,0))’
and (10) follows. O
Remark 4.1. If X = X(,) = (X1,...,X,) and Eg(0(X) — 0)” = 2 then the

condition becomes
2

o< (725) ()"

If one may find o = «, such that

1 2.1
inf (1+an)2 . (v—)2 >b>0,
n>1\1— ay, n

it follows that |0 — 0o| < b implies po(X(ny) < p(X(n)) for all n > 1. Moreover, the
choice A(X) =0 in Lemma 4.3 provides an alternative formulation for comparing

Bayesian estimators of 0 versus non Bayesian ones.

5. APPLICATION TO POISSON PROCESS

5.1. The Bayesian predictor. Let (IV;, t > 0) be an homogeneous Poisson pro-
cess with intensity 8 > 0, X = (N, 0 < ¢ < 5) is observed and one wants to predict
Y = Ngyp (h > 0), (S > 0). This a classical scheme but of interest, since in this
case, there exists an unbiased efficient predictor (see Bosq and Blanke, 2007). Since
Lemma 2.1 shows that it is equivalent to predict m(X,0) = 6h + Ng, one obtains
the unbiased efficient predictor p(Ng) = %Ns =: Ng + 0gh (with g = %)
Concerning the Bayesian predictor, a classical prior is 7 = I'(a, b) with density
b(l
I'(a)

First, since Ng is Ng4p-sufficient, Lemma 4.1 entails

Eo(Nsqn|Ni, 0 <t < 8) =IEg(Nsin|Ns)

0* " exp(—b0) 110 +00[(0), (a>0,b>0).
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and Proposition 4.2 gives po(N¢, 0 < t < S) = E(Ns4r|Ng). The same property
holds for the Bayes estimator given by
a4+ Ng

b+S "’

and, from Proposition 4.3, the Bayesian predictor is

fs = E(T|Ng) =

a+ Ng
b+ S

po(Ns) = -h + Ns.

To compare py with p, note that é\s = His -0s + (1 — HLS) - 7- We deduce that

po(Ns) = asp(Ns) + (1 — as)(Ns + Ooh)

with ag = His and 0y = . Since Iy (95 - 9)2 = %, a straightforward consequence

of Lemma 4.3 is

N 1 2
Po<p<=(0—0y)* < (§ + 5)9' (11)

Solving (11) in 6, we get that pg < p iff

1 1 1 1
96}904-%4'5—&,904—%4'54-&[

with A = (90 + % + %)2 —02. Also, from (11), a sufficient condition, holding

: 2 _ 2 : : 1 \/: 1 \/: :
for all S, is (0 — 0y)° < 59 which gives 6 € }90 +5 = VAO+ 5+ A[ with
A= 1200+ 1), that is po < p if

a+1 V2Za+1 a+1 v2a+1
b b by T b {

00,0 =]

Clearly, one obtains the same result for comparing 55 with 0g. For example, if
one choosesa =1, b = % (so that E(7) = 6y) then 6, = % and 6y = %. If b
is small, 65 — 0y is large but 6 also !

Turning to the MAP estimator, one has to compute argmaxy L(#) which is equal
to

o5 (05)Ns be fa—1g—0b

argmeax e No! T(a)
We have
Oln L(0) 0 Ns+a—1
—— == —-0(5+%b 7)
i G CR D
hence 55 = % where we choose a > 1 for convenience, inducing the predictor:
- Ng+a—-1
Ng) = ————h + Ng.
po(Ns) prg s

Replacing a with a — 1, the previous discussion about py holds and one gets, for all
S, the sufficient condition

- V2a—1 V2a—1
po<p<:%faT<9<%+aT.

Finally, another method consists in computing the marginal distribution of (Ng, Ngtp)
and then to determine the conditional mode of Ngyj given Ng. With that method,
one obtains a similar predictor. Details are left to the reader.
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5.2. Simulations. In this section, we compare the unbiased (UP), the Bayesian
(BP) and the MAP predictors for various Poisson processes. First, we simulate
N = 10° homogeneous Poisson processes with intensity 6 varying in {0.5,1,2,5,10}.
Next, for S in {10, 15,20, 25, 30,40, 50,75,100} and horizon of prediction A in
{0.5,1,2,5}, we compute an empirical L?-error of prediction:

N

1 , o

5 2 (NEL —BING)”
=1

where Nt(j) stands for the j-th replicate of the process at time ¢ and ﬁ(Néj)) is the
predictor under consideration (Bayesian and MAP predictors are computed with a
I'(a, 1) distribution for the prior). We will also consider the empirical L2-error of
estimation (with respect to the probabilistic predictor IEg(Ng4p,|Ng)) defined by

N
% ST(NG +0n - pNG)).

j=1
In Table 1, we give the rounded L2-errors of estimation according to S as well as
prediction errors (enclosed in parentheses) for the unbiased predictor when 6 =
h = 1. To help the comparison, only the percentage variations of BP and MAP
errors (relatively to the UP ones) are reported for a = 1,2,4. Namely, since 6 = 1,
it is expected from (11) that a = 4 represents a bad choice of prior (while a = 1
corresponds to the best one, and a = 2 is acceptable). From Table 1, we observe
that:

- as expected, all errors decrease as S increases ;

- for all errors and any value of S, Bayesian and MAP predictors are better
than the unbiased one for a = 1,2, with a clearly significant gain for small
values of S in the estimation framework ;

- the bad choice a = 4 clearly penalizes the predictor, with a significant
impact on the L2-error of estimation. Concerning the prediction error, it
appears as less sensitive to the prior: indeed this overall error is governed
by the probabilistic one, much more important in this case.

TABLE 1. L? estimation (prediction) error for UP and percentage
variation of L? estimation (prediction) error for BP and MAP, in
the case where § =1 and h = 1.

S=15 S=20 S=30
up 0.066 (1.066) 0.050 (1.050) 0.033 (1.036)
a=1 a=2 a=4 a=1 a=2 a=4 a=1 a=2 a=4

BP % || -12.1(-74) | -6.3(-42) | 40.8(2.42) || -9.3(-43) | -4.8(-.23) | 31.5(1.45) || -6.3(-.21) | -3.2(-.11) | 21.8(.69)
MAP % || -6.1(-.33) | -12.1(-.74) | 11.3(.64) || -4.7(-.19) | -9.3(-43) | 8.8(.39) || -3.2(-.10) | -6.3(-.21) | 6.2(.19)

S=40 S=50 S=100
up 0.025 (1.027) 0.020 (1.025) 0.010 (1.015)
a=1 a=2 a=4 a=1 a=2 a=4 a=1 a=2 a=4

BP % || -4.8(-.12) | -2.4(-.05) | 16.8(.42) || -3.9(-.08) | -1.9(-.03) | 13.7(.28) || -2.0(-.02) | -1.0(-.01) | 6.7(.06)
MAP % || -2.5(-.06) | -4.8(-12) | 4.8(.13) || -2.0(-.04) [ -3.9(-.08) | 4.0(.09) [[ -0.9(-.01) | -2.0(-.02) | 1.9(.02)

In Figure 5.1, the L2-error of prediction is plotted as a function of a for §# = 1 and
S = 20. As expected by (11), parabolic curves are obtained and BP (resp. MAP)

is better than UP for a in the interval } 0,14+v/ST12 [ (resp. } 2 V811224
VST 42 {) Same conclusions hold for other choices of h and|or 6 (see related

results of Table 2). Errors increase as h and—or 6 increase, and a good choice of
the prior has a significative impact on the estimation error.
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6=1, S=20, b=1, h=0.5 6=1, S=20, b=1, h=1
0
- g | -
N —— Unbiased ; < —— Unbiased
B -- Bayes ! ~--- Bayes;
° MAP ! MAP
© 2
g 8 1
S =
g g
5] 5]
g 3 &
s o g 2
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3 < g
M
@ 4
o
2
3
2
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FIGURE 1. L? prediction error for = 1 in terms of a with I'(a, 1) prior:
UP (plain horizontal), BP (dashes), MAP (dots) for S = 20. Vertical
lines corresponds to a = 1 ++/S—1 + 2 (dashes) and a = 2 ++/S—1 42
(dots). On the left : A = 0.5, on the right : h = 1.

TABLE 2. L? estimation (prediction) error, in the case S = 20, for
UP and percentage variations of L? estimation (prediction) error
for BPi and MAPi, where i refers to a = 1.

0=0.5 0=5 0=10
h=0.5 h=1 h=2 h=0.5 h=1 h=2 h=0.5 h=1 h=2
UP .01 (.3) .02 (.5) 1 (1 1) .06 (2.6) | .25 (5.3) | 1 (11) | .12 (5.1)| .5 (10.4) | 1.99 (22.1)
BP1 % | -6.9(-16) | -6.9 (-.33) 9(-61) || 51(2) | 5.1(34) | 51(61) || 28(75) | 28 (1.48) 28 (2.7)

BP2 % || 11.5(31) | 11.5(.55) 11;( 1) | -r202) [ -1202) [ -1.2(0) [[202(55) |20.2 (1.09) | 20.2 (1.98)

BP4 % | 103.3 (2.58) | 103.3 (4.89) | 103.3 (9.52) || -8.4 (-.19) | -8.4 (-37) | -84 (-.73) || 7.4 (23) | 7.4 (45) | 7.4 (78)
MAP1 % || -7.1 (-19) | -7.1 (-.34) ( 66) || 13.2 (A1) | 13.2 (.75) | 13.2 (1.39) || 36.7 (.97) | 36.7 (1.91) | 36.7 (3.5)
MAP2 % || -6.9 (-.16) | -6.9 (-.33) -61) || 5.1(2) 1(34) | 5.1(61) || 28(75) | 28(1.48) | 28(2.7)
MAP4 % || 483 (1.22) | 48.3 (2.29) | 483 (4 48) || 5.7 (1) |57 ( 22) | -5.7 (-44) || 13.3 (:38) | 13.3 (75) | 13.3 (1.34)

6. BAYESIAN INFERENCE FOR THE ORNSTEIN-UHLENBECK PROCESS

Consider a stationary version of the Ornstein-Uhlenbeck process (O.U.) defined
by X; = m + fioo e =) dW (s), t € R, (m € R, @ > 0) where W is a standard
bilateral Wiener process. Set Xo: = X; —m, t € R, then the likelihood of X(g) =
(Xt, 0 <t < S) with respect to X, () = (Xo,t, 0 <t < S) is given by

Om? o
L(X(S);m,ﬁ):exp(fT(2+95)+9m(X0+X5+9/ Xtdt)) (12)
0

(cf. Grenander, 1981, p. 128-129) where X(gy and X (g) take their values in the
space C([0,5]), (S > 0).

6.1. Estimating m. We suppose that € is known and m € R is unknown. In order
to construct a Bayesian estimator of m and a Bayesian predictor of Xgip, (h > 0)
given X (g), we consider the random variable M with prior distribution N (my, u?)
(u > 0), and suppose that M is independent from W. Using (12), it follows that
A %) where A = 6(2 + 0S5) + % and
B=0Zs+2 with Zg = (Xo+ Xg+0 fo X, dt). Hence the Bayesian estimator

B
the posterior density of M given X (g is N'(—
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of m:
N B Zs + mof~tu?

ST AT 2505+ 0 e
when the maximum likelihood estimator (MLE) is mg = Qf—gs. Consequently

ms = g Mg + (1 — as)mo (13)
with ag = (1 + 0712 + 6S)"'u=2)~! €)0,1[. Note that lir%ﬁzs = mp and
U—
lim ms = mg.

U—r 00

Asymptotic efficiency. The MLE mg is efficient (cf. Bosq and Blanke, 2007, p. 28)
and mg is asymptotically efficient since, from (13),

E,, (s —m)?

2
s = a +(1— QS)Q—(mO m)

E,(ms —m) E,,(ms —m)?
with a% — 1 as S — o0, (1 — ag)? = O(S7?) and E,,(ms —m)? = O(S71).
Prediction. We have I, (Xs11|X(s)) = En(Xsin]|Xs) = efeh(XS —m)+m. The
unbiased predictor associated with the MLE is
ps ==p(X(s)) =ms(l—e ") + e X,

and by Proposition 4.2, one obtains the Bayesian predictor

Po.s == po(X(s)) = ms(l —e ) + e " X
We get
Pos = asps + (1 —ag)(mo(1—e ™) + e Xg) = agps + (1 — as)p(Xs, mo).

Concerning efficiency, again we deduce that pg is efficient and po g is asymp-
totically efficient. Now, in order to compare py ¢ with pg, we use Lemma 4.3 for
obtaining the following result.

Proposition 6.1. We have

1
ﬁoﬁs<ps<:>|m—mo|§( +2u2)2

0(2+65)
and |m — mg| < uV2 implies Do.s < ps for all S > 0.

The proof is straightforward since one has E,,(mg —m)? = (6(2 + QS))_l. Of
course, the result is strictly the same if one compares mg with mg since mg < mg
is equivalent to po g < ps.

6.2. Estimating 6. Suppose now that € is unknown and m is known ; one may
take m = 0. The likelihood of X(g) with respect to W(g) has the form

1 2 2 92 s 2
L(X(s) = exp (= 5(X2= X3 =8) - 5 [ xi at),

see Liptser and Shiryaev (2001). Even if 6 is positive, it is convenient to take
N (6o, v?) (with 6y > 0 and v? > 0) as prior distribution of T. Then, the marginal

distribution of X(g) has density p(r(g)) = ﬁ exp ( - % + %) where o =

S 572 2
Jy 22 ds+ & and g = 22550 4 G

0 v2
It follows that the conditional distribution of T given X (g is N (g, é), hence
the Bayesian estimator of 6: 55 = g — 25 X5+Xg)+0ov” when the MLE is

[ X2 dt+v—2

L(s=x2+x¢

Os = w, consequently
0 ‘Mt

J7 x2a

0s =vs0s + (1 —vs)0p with 5= —g20 "t —
[2 XEdt + 02
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and lim 0g = 0, while lim Og = 0.
v2—0 v2—=00

Concerning prediction, we have Eq(Xs14|X(g)) = e . Xg, so it is necessary
to compute the Bayesian estimator of e=?". We get

. 28— h
Ele ™| X g) = [ e/ L5602 40 = exp(— h
@) = [ e et exp(~ 2 1),

hence the Bayesian predictor po(X(g)) = exp(— 252;}‘ -h) - Xg. The predictor asso-

ciated with the MLE is p(X(s)) = e %5 . X and finally, an alternative form of
the predictor, associated with the MAP, should be p(X(gy) = e 0sh. Xg.

Finally, one may consider alternative priors, as well as, the translated exponential
distribution with density (0) = nexp (—n(0 — 60))Ljg,,+o0[(0), (1 >0, 6 > 0). If
¢ denotes the density of N'(— %, 1), with a = 2% — 23 — S + 2y and b = [;” 22 dt,
the Bayesian estimator is given by g = Jow Hw(H)dH/ Jou #(0)df and can be

numerically computed. Derivation is left to the reader.

7. ORNSTEIN-UHLENBECK PROCESS FOR SAMPLED DATA

We now consider the more realistic case where only Xy, X5, ..., X5 are observed
and one wants to predict X445, (b > 0).

7.1. Estimation of m. If 0 is known, and m € R unknown, the associated model
is

Xps —m = e_eé(X(n,l)g —m)+ens, nEZ (15)
and
1— —206
Var (e,5) = %9 =03, (16)

If 6 > 0 is fixed, we deal with a classical AR(1), so we will focus on the case where
0 = 9, is ‘small’. One may use various conditions as n — oo: d, — 0 and nd, — o
or 6, — 0 and nd, — S > 0 for example. Two approaches are possible: either
considering the likelihood or the conditional likelihood (X is arbitrary but non
random) which has a simpler form.

7.1.1. Unconditional estimation. Since Xo—m, &s,,, ..., ens, ~ N (0, (20) " )QN (0,05 4)°",
one may deduce that (Xg —m, Xs, —m,..., Xps, —m) has the density

03>
fxo, 21, . 2pn) = (;) m X exp(—@(xo —m)?

This yields

C Xo+ Xps, + (1 —e ) S0 X5,
B n(l—e n) +1+ e 0n

mn
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for the MLE, while if M ~ N (mg, u?), one has

0\ 3 1
B0 X Ko 20 = (2)

i (Xi(; — 6_96”X(-,1)5n - M(l - 6_96"))2) « 1

> 1
- 2
‘ 206n 0

giving

X exp ( —0(Xo — M)?

P (g mo?)

_ Xo o+ Xps, + (L= e 500 Xig, + (L4 e %) 300,

n(l—e %) + (14 e 9n)(1+ 5) (18)

Mn

Again, we have m,, = a,my, + (1 — @, )mo with

n(1 —e ) 414 ¢ 0
oy = .
n(l —e=0n) 4+ (1 +e=%n)(1 + (20u2)~1)

Since E(X (n41)s, | Xns,) = e~ (X5, —m)-+m, the derived predictors of X(n4h)éns
h > 1 are given by p,(Xns,) = mu(1 — e 09n) 4 e=0hdn X5 while Py (Xns,) =
My (1 —e=0M0n) 4 e=0hdn X s and Lemma 4.3 implies that

Pon < pn =
2n(1 —e7%n) + (1 + e %) (2 + (20u?)7Y)
(1 + e—99n)(20u2)~1

(m —mg)? < x By (my, —m)?.

)2 = 14e”%n
29(”(1_6795ﬂ)+1+(5795n)
14e%9n
26(1+e—95n +n(176795n)) ’
Asymptotically, we get if §,, —— 0, nd,, ——— S > 0, Do,n <n—oc Pn 1S equivalent

n—00 n—00
2

Next, easy but tedious computation gives I, (m,, —

yielding the equivalence: po, < p, < (m —mg)? < 2u? +

to (m — mg)? < 2u? + m. The condition S — oo implying in turn the
equivalence Pon <n—soo Pn < (m —mg)? < 2u?, which are the same results as in
the continuous case (cf. Proposition 6.1). If nd,, — S > 0, note that our estimators
of m are no more consistent ! But still in this case, a good choice of the prior should

allow reductions of risks of estimation and prediction.

7.1.2. Conditional likelihood. In this part, we use conditional likelihood on X, and
choosing Ml ~ N (mg,u?), (u > 0), we obtain the ‘density’ of (Xj, ,..., Xyns,, M):

~ 1 1 <
L(Xs,eee, Xogy M) = —————exp |~ 55— > ((Xis, —exp(—06,) X,
. o) (05,.0V/2m)" p( 20%,.0 7= (( 6o ~SHP(=000) Kio-10)
2 1 1 )
+ M(exp(—@&n) - 1)) ) X m exp ( - ﬁ(M - mo) ),

where 03 4 is defined by (16). Now:
=~ 1 " 2 (M - m0)2
InL =c— 20(%”70 ; (Xignfexp(fﬁén)X(i_l)gn +M(exp(—95n)fl)) oz

where ¢ does not depend on n. Since we are in the Gaussian case, the conditional
mode and the conditional expectation coincide and it follows that the Bayesian
estimator is now given by

(1 —exp(—00,)) > i (Xis, — exp(—00,) X (i—1)5) + ™Mo G‘Zg"’
(1 — exp(—05,))%n + Tt

My, =

: (19)
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while the conditional MLE takes the form
o Z?:1(Xi5n — exp(—00,) X(i-1)s)

n = , 20
" (1~ exp(—03,)m 2
We may slightly modify the estimator (19) for obtaining

(1 — exp(—05,))?
0.2
(1 — exp(—66,)) + Zuit
1+ B, 40u’n(l —e ) 41+
1—Bn 1+ e=b0n

(1—e~2%%n )4 2 =050 (;=0ndn 1)
2nf(1—e—0%n)2

. Hence

with X,, =n~1! Yoy Xis, and B, =

and, since Var (X,,) =

op — 0,n6, — S >0,

, asymptotically we get that, if

_ — 1+ 2u?02S)(0S — 1+ 95

Mp <nooo Xn < (m - m0)2 < ( )9(352 )
while if 6,, — 0,n6,, — oo, we get the equivalence: M, <n_o00o Xn < (M —mp)? <
2u2. Again, the same results are obtained for predictors.

7.2. Estimation of p. In the case where m is known (one may set m = 0), we
now choose N(pg,v?) as a prior for p = e=%, with 0 < py < 1 and v > 0. Note
that this prior is reasonable as soon as py is not too far from 1 and v not too large.
Using again the conditional likelihood, one obtains the expression:

~ 1 1 = 2
L(Xs o X)) = ————— (f— Xis. — pX i )
(Xs,, 5> P) or v P 20&(9;( 50— PX(i-1)5,)

1 1 ,
——exp(— =—(p— )
’U\/ﬁ p ( 202 (p pO) )

ince o epends on p, we make the approximation g9 ~ § for obtaining the pos-
Si g,édp d 0, ke the approximati i 0 for obtaining the p

X

1< 1 1<
terior distribution V(£ , & heeA:—E X2 —adB:—E Xicnys, X;
rior distribution NV'(%, %) wher 5, 2 (171)5”+’U2 n 5, 2 (i=1)5, Xis, T
p—g, hence the ‘Bayesian’ estimator takes the form
v

P S X 1)5, Xis, + 25

Pn n Sn (22)
Ei:l X(Qi—l)én + %
Comparison with the conditional MLE
" Xins X
o s X6, Xis, (23)

Pn n
> i X(2i—1)6n

is rather intricate and will be illustrated numerically in the next section.

7.3. Simulation. For 6§ € {0.5,1,2}, m = 5, various sample sizes n and values
of 4, 5000 replications of Ornstein-Uhlenbeck sample paths are computed from
the autoregressive relation (15). First, for known 6 but m unknown, we compare
various predictors of X,,54 5, H = hé and H = 0.5, 1 or 2, defined by m(1—e~%"9) 4
e~ X < where m refers to estimators which are either:

e non Bayesian: MLE with m,, defined in (17), Mean X ,,, CMLE with 7,
defined in (20),

e or Bayesian: Bayes with m,, defined in (18), CMAP1 with m,, defined in
(19) (u? = 1) and CMAP2 with m,, defined in (21) (u? = 1).
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0.70
1
0.490
1

— MLE — MLE
—--- CMLE i " —--- CMLE
-- Mean ! @ ---- Mean
8 | --- Bay ! oS X --- Bay
o CMAP1 ; Y CMAP1
-- CMAP2 : k --- CMAP2

0.480

0.60
L
0.475
L

L2 prediction error
L2 prediction error

0.55
L
0.470
L

0.465

0.50
L

0.460

mg (known 6) mg (known 6)

FIGURE 2. L*-prediction error for m unknown (m = 5) and 6 = 1
(known), 6 = 0.1 in terms of mgo with N(mg, 1) prior: MLE (plain),
CMLE (twodash), Mean (dashed), Bayes (longdash), CMAP1 (dotted),
CMAP2 (dotdash) when u? = 1. Vertical lines corresponds to mo =
5+ v2u?. On the left : n =30 (S = 3,5+ h*d = 4), on the right:
n =100 (S =10,S +h=*¢=11).

Among all non Bayesian estimators and in all cases, it emerges that MLE out-
performs the other two, with a very poor behaviour of the CMLE toward the
others, a fact already noticed by Cox (1991). For this reason, our following re-
sults do not report the obtained values for CMAP1, because of its too bad be-
haviour governed by the CMLE. In Table 3, we give the rounded empirical L2-
prediction error of the MLE, and for comparison, the percentage variations ob-
served for the others predictors, in the case of § = 1 and § = 0.1. It appears

TABLE 3. L?-prediction error (m unknown) for MLE predictor and
percentage variation of L2-prediction error for others in the case
where § =1, H=1,u>=1and 6 =0.1.

n=15 n=30
MLE 0.548 0.499
Mean (%) 2.76 2.82
CMLE (%) 27.97 10.54
mg=4 | mg=5mg=7|mg=4|mg=5|mg=7
Bay (%) -4.87 -8.52 5.77 -2.79 -4.72 4.78
CMAP2 (%) -1.04 -12.86 33.54 -.53 -5.02 16.05
n=>50 n=100
MLE 0.488 0.464
Mean (%) 1.61 0.35
CMLE (%) 5.62 1.35
mg=4 | mg=5|mg=7||mg=4|mg=5|mg=7
Bay (%) -1.30 -2.63 2.39 -0.62 -1.08 1.08
CMAP2 (%) 0.03 -2.28 6.77 -0.35 -0.99 2.00
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o
.
S
— MLE N — CMLE
—- CMLE 2 ---- CMAP with p,=0.90
-- Mean CMAP with p,=0.83

0.65
L

CMAP1
- CMAP2

L2 prediction error
0.60
I
L2 prediction error
0.7

0.55
L

0.50
L

S 7 * ——
e
[, B L P
2 * * 4
S T T T T T T T T T T
20 40 60 80 100 20 40 60 80 100
n (S=nd, known 6) n (S=n*3, known m)

FIGURE 3. On the left: L? prediction error for unknown m, with prior
N(5,1), known 6 (§ = 1) in terms of n when § = 0.1:MLE (plain),
CMLE (twodash), Mean (dashed), Bayes (longdash), CMAP1 (dotted),
CMAP2 (dotdash). On the right: L? prediction error for unknown p,
prior N'(po, 1072) in terms of n when § = 0.1: CMLE (plain), CBayes
with po = 0.9 (dashed), CBayes (dotted) with po = 0.83.

that all errors decrease as n increases, and Bayes predictors are highly competi-
tive for small sample sizes and good choice of priors, namely M ~ N (mg, 1), with

mg € }5 25 (S 542+ (S 2)*1[ or asymptotically, § = né — oo,

mo € ]5 —V2,5+ \/5[, see Section 7.1.1. By this way, errors are significantly re-

duced for my =4 or 5 and n less than 50, while a bad choice like my = 7 damages
them dramatically. It appears also that CMAP2 has the smallest errors but only
on a small area around m, the Bayesian predictor (with 7, defined in (18)) being
more robust against the choice of mg. These results are confirmed in Figure 7.1
where errors are given in term of mg: as expected, we obtain parabolic curves
for Bayesian predictors. Again, the Bayesian setting improves the errors for good
choices of prior (especially for small values of § and nd where MLE is not so good)
and otherwise deteriorates it.

TABLE 4. L2-prediction error (m unknown) for MLE predictor and
percentage variation of L?-prediction error for others in the case
where 0 =1, H =1, u? =1 and mq € {4,5,7}.

n 10 20 50 100

5 01 [o2]os5 ] 0o1]o2]o5]o01]o2]05]o01]02]05
MLE 586 | 531 | .488 || .531 | .498 | .464 || .488 | .464 | 441 [| .464 | 461 | .444
Mean (%) 2.77 | 246 | 192 [ 240 [ 213 | 44 |[ 161 ] 36 | 16 || 35 | .16 | -.06
CMLE (%) || 47.01 | 17.69 | 5.73 || 17.56 | 7.38 | 1.40 || 5.62 | 1.36 | 0.24 || 1.35 | 47 | -.05
Bay_4 (%) 5.06 | -4.23 | -1.31 || 422 | -1.84 | -65 || -1.30 | -.62 | 03 || -62 | -.31 | -.04
Bay_5 (%) 11048 | -6.66 | -2.68 || -6.65 | -3.41 | -1.11 || -2.63 | -1.08 | -0.23 || -1.08 | -0.37 | -0.05
Bay_7(%) 426 | 6.58 | 247 || 657 | 332 | 111 || 239 | 1.08 | 0.11 || 1.08 | 0.49 | 0.12
CMAP24 (%) || 180 |-1.70| 26 | -170 | -13 | -30 | 03 | -34 | 13 || -35 | -.18 | -.10
CMAP2.5 (%) || -17.35 [ -9.23 | -2.13 ][ -9.23 [ -3.20 [ -.96 || -2.28 [ -.98 [ -.09 || -.99 | -.26 | -.12
CMAP2.7 (%) || 46.63 | 26.12 | 7.21 | 25.96 | 10.04 | 2.15 || 6.77 | 202 | 31 |[ 200 | .75 | .07
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TABLE 5. L2-prediction error (m unknown) for MLE predictor
and percentage variation of L2-prediction error for other in the
case where n =20, 6 = 0.1, u?> = 1, and mg € {4,5,7}.

) 0.5 1 2

H 05 [ 1 | 2 05 [ 1 [ 2 05| 1 | 2
MLE 0.421 [ 0.728 [ 1.138 || .34 | .531 | .677 | .249 ] .303 | .333
Mean (%) 051 | 132 | 223 || 1.81 | 24 | 407 || 188 | 272 | 285
CMLE (%) 15.03 | 27.59 | 48.31 || 10.76 | 17.56 | 27.37 || 6.04 | 9.76 | 10.65
Bay_4 (%) 341 | -59 | -9.32 || -2.72 | -4.22 | -6.09 || -1.04 | -0.92 | -2.15
Bay_5 (%) 527 | 9.31 | -15.56 || -4.11 | -6.65 | -9.82 |[ -1.99 | -2.97 | -3.58
Bay_7(%) 218 | 431 | 568 || 404 | 657 | 9.24 | 1.82 | 1.7 | 3.87
CMAP2.4 (%) || 22 | 333 | 477 [ -107] -1.7 | -1.96 || 0.67 | 1.85 | 0.33
CMAP2.5 (%) || -7.41 | -12.86 [ -21.55 || -5.5 | -9.23 [-13.28 || -1.35 | -2.1 | -2.9
CMAP2.7 (%) || 132 | 24.79 | 3855 || 16.06 | 25.96 | 37.82 || 6.56 | 8.36 | 12.21

0.49
L

L2 prediction error

0.46
L

— CMLE
- CMAP

0.4

T
0.6

p (known m)

0.8

1.0

L2 prediction error
0.450 0.455 0.460 0.465 0.470
I I I

0.445
L

0.440
L

— CMLE
- CMAP

0.0

0.2

T T
0.4

p (known m)

0.6

0.8

FIGURE 4. L? prediction error for p = e~ unknown (0 = 1, 6 = 0.1)
and m = 5 (known) in terms of po with A(po, 1072) prior: CMLE
(plain horizontal), Bayes predictor (dashed). On the left : n =30 (S =
3,5+ h=*d=4), on the right: n =100 (S = 10,5 + hx ¢ = 11).

TABLE 6. L2-prediction error (6 unknown) for MLE predictor and
percentage variation of L2-prediction error for others in the case
where H =1, § = 0.1, v? = 0.01, and pg € {0.5,0.75,0.85,0.9}.

0
=20 0.5 1 2
CMLE 0.83 0.503 0.266
Po 0.5 | 0.75 | 0.85 0.9 0.5 | 0.75 | 0.85 0.9 0.5 | 0.75 | 0.85 | 0.9
‘Bayes’ (%) || -8.41 | -14.67 | -14.90 | -13.55 || -7.25 | -12.05 | -12.66 | -11.48 || -5.82 | -6.56 | -5.42 | -3.21
0
=100 0.5 1 2
CMLE 0.679 0.444 0.242
Po 0.5 | 0.75 | 0.85 0.9 0.5 | 0.75 | 0.85 0.9 0.5 | 0.75 | 0.85 | 0.9
‘Bayes’ (%) || 3.76 | -0.25 | -1.04 | -1.15 || 0.89 | -1.13 | -1.22 | -0.95 || -0.44 | -0.77 | -0.46 | -0.03

In Table 4, we compare the obtained errors with varying values of ¢, while
in Table 5 the influence of # is measured. First it appears that, obtained errors
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depend only on S = nd, and not on the individual values of n and § (see the
bold type errors). It is not a surprise since examination of L2-risks shows that
leading terms are of order nd for each estimators. Moreover, the errors are much
larger as § and—or 6 are small. Again, it agrees with our theoretical framework
since more ¢ is small, more important is the correlation, implying a degradation of
the overall risk. Also, low values of 6 corresponds to variables with high variance
(Var (X71) = (20)~1), and prediction is more difficult in this case. Finally, errors
are represented in term of n in Figure 7.2 (left): not surprisingly, errors decrease
and estimators are asymptotically equivalent.

Concerning prediction when 6 is unknown (m known), we have computed the two
predictors derived from the estimators given by (21) (CMLE) and (22) (‘Bayes’).
Figure 7.2 (right) that errors decrease with n and Bayesian predictors are much
better for small values of n. A noteworthy result is that errors are significantly
improved for any choice of prior, at least for n small: see Table 6 for n = 20 and
Figure 7.3 (left) for n = 30. This last conclusion may be tempered by the possibly
bad behaviour of the CMLE in this framework. Finally for n = 100, the Bayesian
predictor is more sensitive to the prior (Figure 7.3, right).
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