Bayesian prediction for stochastic processes

Delphine Blanke, Denis Bosq

To cite this version:

Delphine Blanke, Denis Bosq. Bayesian prediction for stochastic processes. 2012. hal-00750263v1

HAL Id: hal-00750263
 https://hal.science/hal-00750263v1

Preprint submitted on 9 Nov 2012 (v1), last revised 28 Dec 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BAYESIAN PREDICTION FOR STOCHASTIC PROCESSES

DELPHINE BLANKE AND DENIS BOSQ

Abstract

In this paper, we adopt a Bayesian point of view for predicting real stochastic processes. We give two equivalent definition of a Bayesian predictor and study some properties: admissibility, prediction sufficiency, unbiasedness, comparison with efficient predictors. Prediction of Poisson process and prediction of Ornstein-Uhlenbeck process in the continuous and sampled situations are considered. Various simulations illustrate comparison with non-Bayesian predictors.

1. Introduction

A lot of papers are devoted to Bayesian estimation but Bayesian prediction does not appear very much in statistical literature. However, this topic is important in particular if the number of data is small. In this paper, we study some properties of Bayesian predictors and give examples of applications to prediction of stochastic processes. Various simulations illustrate the results. Our goal is to compare efficiency of Bayesian predictors with nonBayesian predictors, especially if one has few data at his disposal.

Section 2 presents the general prediction model ; in this context estimation appears as a special case of prediction. The main point of the theory is the fact that, given the data X, a statistical predictor of Y is an approximation of the conditional expectation $\mathbb{E}_{\theta}(Y \mid X)$, where θ is the unknown parameter. Section 3 deals with Bayesian prediction: we give two equivalent definitions of a Bayesian predictor linked with the equivalence of predicting Y and $\mathbb{E}_{\theta}(Y \mid X)$. However, in some situations, it is difficult to get an explicit form of the Bayesian estimator $\mathbb{E}(\theta \mid X)$, thus it is more convenient to substitute the conditional expectation of θ with the conditional mode of θ, also called maximum a posteriori (MAP). We recall some properties of the MAP and underscore its link with the maximum likelihood estimator. In Section 4, we study some properties of Bayesian predictors : admissibility, connection with sufficiency and unbiasedness, case where the conditional expectation admits a special form. Section 5 considers the regular case of Poisson process prediction. We compare the unbiased efficient predictor with the Bayesian and the MAP ones. Concerning diffusion processes, Thompson and Vladimirov (2005) study Bayesian prediction but, they obtain an intricate result, difficult to handle ; they don't try to compare their results with classical predictors. For the Ornstein-Uhlenbeck process, we deal with prediction in Section 6 for the centered and non-centered case and with various priors while Section 7 is devoted to the sampled case. Some asymptotic results are given along the paper, but, since the non asymptotic case is the most important in the Bayesian perspective, theoretical and numerical comparisons focus on this point.

[^0]
2. The prediction model

In the sequel, each space is equipped with a suitable σ-algebra and each application is supposed to be measurable with respect to these σ-algebras. Now, let $\left(\Omega, \mathcal{A}, \mathbb{P}_{\theta}, \theta \in \Theta\right)$ be a statistical model, where θ is the unknown parameter, and let $(X, Y):(\Omega, \mathcal{A}) \mapsto(E \times F, \mathcal{E} \otimes \mathcal{F})$ be a random vector. One observes X and wants to predict Y. Actually, it is convenient to consider the more general problem : " predict $g=g(X, Y, \theta)$ given X " (cf Yatracos, 1992).

In this paper, we suppose that g is \mathbb{R}-valued and denote $p=p(X)$ a statistical predictor. We suppose that $\mathbb{E}_{\theta}\left(g^{2}\right)<\infty$ and $\mathbb{E}_{\theta}\left(p^{2}\right)<\infty, \theta \in \Theta$. If p and q are two predictors, a classical preference relation is

$$
p \prec q(g) \Longleftrightarrow \mathbb{E}_{\theta}(p-g)^{2} \leq \mathbb{E}_{\theta}(q-g)^{2}, \theta \in \Theta
$$

where "(g)" means "for predicting g ".
Now, let $\mathbb{E}_{\theta}^{X}(g)=\mathbb{E}_{\theta}(g \mid X)$ be the conditional expectation of g given X. The next lemma is simple but important.

Lemma 2.1. We have $p \prec q(g) \Longleftrightarrow p \prec q\left(\mathbb{E}_{\theta}^{X}(g)\right)$.
Proof. It suffices to apply the Pythagoras theorem :

$$
\mathbb{E}_{\theta}(p(X)-g)^{2}=\mathbb{E}_{\theta}\left(p(X)-\mathbb{E}_{\theta}^{X}(g)\right)^{2}+\mathbb{E}_{\theta}\left(\mathbb{E}_{\theta}^{X}(g)-g\right)^{2}
$$

and

$$
\mathbb{E}_{\theta}(q(X)-g)^{2}=\mathbb{E}_{\theta}\left(q(X)-\mathbb{E}_{\theta}^{X}(g)\right)^{2}+\mathbb{E}_{\theta}\left(\mathbb{E}_{\theta}^{X}(g)-g\right)^{2}
$$

the result follows.
Prediction theory has some similarity but also some difference with estimation theory. In the following, we will only recall some necessary definitions and results. We refer to Bosq and Blanke (2007), chapters 1 and 2, for a more complete exposition.

3. Bayesian prediction

3.1. Bayesian predictors. In a Bayesian context, one considers the random vector (X, Y, \mathbb{T}). The prior distribution of \mathbb{T} over (Θ, \mathcal{T}) is defined by τ and the distribution \mathbb{P} of (X, Y, \mathbb{T}) is defined as

$$
\mathbb{P}(X \in A, Y \in B, \mathbb{T} \in C)=\int_{C} \mathbb{P}_{\theta}(X \in A, Y \in B) \mathrm{d} \tau(\theta), A \in \mathcal{E}, B \in \mathcal{F}, C \in \mathcal{T}
$$

The Bayesian risk is given by

$$
\mathbb{E}(p(X)-Y)^{2}=\int_{\Theta} \mathbb{E}_{\theta}(p(X)-Y)^{2} \mathrm{~d} \tau(\theta):=r(p, Y),
$$

hence, the Bayesian predictor $p_{0}(X)=\underset{p}{\operatorname{argmin}} r(p, Y)=\mathbb{E}(Y \mid X)$ where $\mathbb{E}(\cdot \mid \cdot)$ is the conditional expectation associated with \mathbb{P}. We will say that p_{0} is unique if two versions of p_{0} differ only on \mathcal{N} with $\mathbb{P}_{\theta}(\mathcal{N})=0, \theta \in \Theta$. Now, we consider the following regularity assumption :

Assumption 3.1. There exists a common version $m(X, \theta)$ of $\mathbb{E}_{\theta}(Y \mid X), \theta \in \Theta$.

Note that Assumption 3.1 is satisfied if (X, Y, \mathbb{T}) has a strictly positive density with respect to the σ-finite measure $\lambda \otimes \mu \otimes \nu$, say $L(x, y, \theta) \varphi(\theta), L$ denoting the conditional density of $(X, Y \mid \mathbb{T}=\theta)$. Then $p_{0}(X)=\int y f_{Y \mid X}(y \mid X) \mathrm{d} \mu(y)$ where

$$
f_{Y \mid X}(y \mid X)=\int L(x, y, \theta) \varphi(\theta) \mathrm{d} \nu(\theta) / \iint L(x, y, \theta) \varphi(\theta) \mathrm{d} \mu(y) \mathrm{d} \nu(\theta)
$$

In that situation p_{0} is unique.
We now derive an alternative form of p_{0} :
Lemma 3.1. If Assumption 3.1 holds, then $m(X, \mathbb{T})=\mathbb{E}(Y \mid X, \mathbb{T})$, and $p_{0}(X)=\mathbb{E}(m(X, \mathbb{T}) \mid X)$.
Proof. Let $h(X, \theta)$ be a real bounded function. Then, since $m(X, \theta)$ is a version of $\mathbb{E}_{\theta}(Y \mid X)$ for all θ, we have

$$
\mathbb{E}_{\theta}((Y-m(X, \theta)) h(X, \theta))=0, \theta \in \Theta,
$$

hence

$$
\mathbb{E}((Y-m(X, \mathbb{T})) h(X, \mathbb{T}))=\int \mathbb{E}_{\theta}((Y-m(X, \theta)) h(X, \theta)) \mathrm{d} \tau(\theta)=0
$$

It follows that $m(X, \mathbb{T})=\mathbb{E}(Y \mid X, \mathbb{T})$. Now, the Bayesian risk has the decomposition

$$
r(Y, p(X))=\mathbb{E}(Y-m(X, \mathbb{T}))^{2}+r(m(X, \mathbb{T}), p(X))
$$

thus it is equivalent to minimize $r(Y, p(X))$ and $r(m(X, \mathbb{T}), p(X))$, consequently

$$
p_{0}(X)=\mathbb{E}(m(X, \mathbb{T}) \mid X)
$$

Clearly, Lemma 3.1 holds if Y is replaced by $g(X, Y, \theta)$.
3.2. The MAP predictor. An alternative method of Bayesian prediction is based on the conditional mode : one may compute the mode of the distribution of Y, given X, with respect to \mathbb{P}. If a strictly positive density does exist, the distribution of (X, Y) has marginal density

$$
f(x, y)=\int_{\Theta} L(x, y, \theta) \varphi(\theta) \mathrm{d} \theta
$$

and, in fact, it suffices to compute $\underset{y}{\operatorname{argmax}} f(x, y)$ (x fixed). Another method consists in determining the mode of \mathbb{T} given X and to plug it in the conditional expectation $\mathbb{E}_{\theta}(Y \mid X)$. This mode (also called maximum a posteriori, MAP) has the expression

$$
\widetilde{\theta}(x)=\underset{\theta}{\operatorname{argmax}} \frac{\ell(x, \theta) \varphi(\theta)}{\int_{\Theta} \ell(x, \theta) \varphi(\theta) \mathrm{d} \tau(\theta)}=\underset{\theta}{\operatorname{argmax}} \ell(x, \theta) \varphi(\theta)
$$

where $\ell(x, \theta)=\int L(x, y, \theta) \mathrm{d} \mu(y)$, hence the MAP predictor

$$
\widetilde{p}(X)=\left.\mathbb{E}_{\theta}(Y \mid X)\right|_{\theta=\widetilde{\theta}(X)}=m(X, \widetilde{\theta})
$$

under the Assumption 3.1. It is noteworthy that, if $\Theta=\mathbb{R}$ and one chooses the improper prior $1 \cdot \lambda$, where λ is Lebesgue measure, the obtained estimator is the maximum likelihood (MLE). Note also that, if $\ell(x, \theta) \varphi(\theta)$ is symmetric with respect to $\widetilde{\theta}(X)$, the MAP and the Bayes estimator of θ coincide. Finally, it is clear that, under classical regularity conditions,
the MAP and the MLE have the same asymptotic behaviour as well almost surely as in distribution. Now, the MAP has some drawbacks : it is often difficult to compute and uniqueness is not guaranteed. We will use the MAP in Sections 5 to 7 .

4. Properties of Bayesian predictors

We give below some useful properties of Bayesian predictors.

4.1. Admissibility.

Proposition 4.1. A Bayesian predictor is admissible as soon as it is unique.
Proof. If p_{0} is not admissible, there exists a predictor p such that

$$
\mathbb{E}_{\theta}(p-g)^{2} \leq \mathbb{E}_{\theta}\left(p_{0}-g\right)^{2}, \theta \in \Theta
$$

Integrating with respect to τ entails $r(p, g) \leq r\left(p_{0}, g\right)$, but, since p_{0} is Bayesian, it follows that $r(p, g)=r\left(p_{0}, g\right)$ and uniqueness of p_{0} gives $p=p_{0}\left(\mathbb{P}_{\theta}\right.$ a.s. for all $\left.\theta\right)$.
4.2. g-Sufficiency. A statistic $S=S(X)$ is said to be g-sufficient (or sufficient for predicting g) if
(a) S is sufficient in the statistical model associated with X : there exists a version of the conditional distribution of X given S, say Q^{S}, that does not depend on θ.
(b) X and g are conditionally independent given S.

Note that this does not imply that $\mathbb{E}_{\theta}(Y \mid S(X))$ is constant with respect to θ since Y is not in the model associated with X (see example of the Poisson process in Section 6). If S is g-sufficient, it is then possible to derive a Rao-Blackwell theorem as well as a factorization theorem (cf Bosq and Blanke, 2007). Now, we have

Lemma 4.1. If S is Y-sufficient and if Assumption 3.1 holds, then

$$
\begin{equation*}
\mathbb{E}_{\theta}(Y \mid X)=\mathbb{E}_{\theta}(Y \mid S(X)), \quad \theta \in \Theta \tag{4.1}
\end{equation*}
$$

Proof. Note first that $m(X, \theta)$, respectively $\int m(X, \theta) \mathrm{d} Q^{S}$, is a version of $\mathbb{E}_{\theta}(Y \mid X)$, resp. of $\mathbb{E}_{\theta}(Y \mid S(X))$. For sake of clarity, we use notation $\mathbb{E}_{\theta}(Y \mid X)$ and $\mathbb{E}_{\theta}(Y \mid S(X))$. Now,

$$
\mathbb{E}_{\theta}(Y \mid S(X))=\mathbb{E}_{\theta}\left(\mathbb{E}_{\theta}(Y \mid X) \mid S(X)\right)
$$

and applying (b) to Y and $\mathbb{E}_{\theta}(Y \mid X)$ we obtain

$$
\mathbb{E}_{\theta}\left(Y \cdot \mathbb{E}_{\theta}(Y \mid X) \mid S(X)\right)=\mathbb{E}_{\theta}(Y \mid S(X)) \cdot \mathbb{E}_{\theta}\left(\mathbb{E}_{\theta}(Y \mid X) \mid S(X)\right)=\left(\mathbb{E}_{\theta}(Y \mid S(X))\right)^{2}
$$

Taking expectation and noting that

$$
\mathbb{E}_{\theta}\left(Y \cdot \mathbb{E}_{\theta}(Y \mid X)\right)=\mathbb{E}_{\theta}\left(\left(\mathbb{E}_{\theta}(Y \mid X)\right)^{2}\right)
$$

entails

$$
\mathbb{E}_{\theta}\left(\left(\mathbb{E}_{\theta}(Y \mid X)\right)^{2}\right)=\mathbb{E}_{\theta}\left(\left(\mathbb{E}_{\theta}(Y \mid S(X))\right)^{2}\right)
$$

that is $\left\|\mathbb{E}_{\theta}(Y \mid X)\right\|_{L^{2}\left(\mathbb{P}_{\theta}\right)}^{2}=\left\|\mathbb{E}_{\theta}(Y \mid S(X))\right\|_{L^{2}\left(\mathbb{P}_{\theta}\right)}^{2}$. Relation (4.1) follows since $\mathbb{E}_{\theta}(Y \mid S(X))$ is the projection of $\mathbb{E}_{\theta}(Y \mid X)$ on $L_{S(X)}^{2}$.

Note that, if (X, Y) has a strictly positive density of the form $L(S(x), y, \theta)$, one obtains (4.1) by a direct computation. Concerning the Bayesian predictor, we have

Proposition 4.2. If p_{0} is unique and S is Y-sufficient, then $p_{0}(X)=\mathbb{E}(Y \mid S(X))$.
Proof. Since $p_{0}(X)=E(Y \mid X)$, the Rao-Blackwell theorem for prediction (cf Bosq and Blanke, 2007, p. 15) entails $p_{1}(X):=\mathbb{E}^{S(X)}(\mathbb{E}(Y \mid X)) \prec p_{0}(X)$ where $\mathbb{E}^{S(X)}$ is conditional expectation with respect to Q^{S} in (a). Now, from Proposition 4.1, p_{0} is admissible, thus $p_{1}=p_{0}$, then p_{0} has the form $p_{0}(X)=\mathbb{E}(Y \mid X)=\psi(S(X))$. Taking conditional expectation with respect to \mathbb{P}, one obtains the result.
4.3. Decomposition of the conditional expectation. We now consider the special case where the conditional expectation admits the following decomposition :

$$
\begin{equation*}
\mathbb{E}_{\theta}(Y \mid X)=A(X)+B(\theta) C(X)+D(\theta), \quad \theta \in \Theta \tag{4.2}
\end{equation*}
$$

where $A, B \otimes C, D \in L^{2}\left(E \times \Theta, \mathcal{E} \otimes \mathcal{T}, \mathbb{P}_{(X, \mathbb{T})}\right)$, then the Bayesian predictor has also a special form :

Proposition 4.3. If $\mathbb{E}_{\theta}(Y \mid X)$ satisfies (4.2), the associated Bayesian predictor is given by

$$
\begin{equation*}
p_{0}(X)=A(X)+\mathbb{E}(B(\mathbb{T}) \mid X) \cdot C(X)+\mathbb{E}(D(\mathbb{T}) \mid X) \tag{4.3}
\end{equation*}
$$

In particular, if X and Y are independent and $D(\theta)=\mathbb{E}_{\theta}(Y)$, the predictor reduces to the estimator $p_{0}(X)=\mathbb{E}(D(\mathbb{T}) \mid X)$.
Proof. Relation (4.2) entails

$$
m(X, \mathbb{T})=A(X)+B(\mathbb{T}) \cdot C(X)+D(\mathbb{T})
$$

and Lemma 3.1 gives $p_{0}(X)=\mathbb{E}(m(X, \mathbb{T}) \mid X)$ hence (4.3) from the properties of conditional expectation. The last assertion is a special case of (4.3).
4.4. Unbiasedness. A predictor p of g is said to be unbiased if

$$
\mathbb{E}_{\theta} p=\mathbb{E}_{\theta} g, \quad \theta \in \Theta .
$$

A Bayesian estimator is, in general, not unbiased, in fact we have the following :
Lemma 4.2 (Blackwell-Girschick). Let $\widehat{\varphi}(X)$ be an unbiased Bayesian estimator of $\varphi(\theta)$, then

$$
\mathbb{E}(\widehat{\varphi}(X)-\varphi(\mathbb{T}))^{2}=0
$$

where \mathbb{E} is expectation taken from $\mathbb{P}_{(X, \mathbb{T})}$.
Proof. See Lehmann and Casella (1998) p. 234.
The situation is more intricate concerning a Bayesian predictor. Note first that, if

$$
\begin{equation*}
\mathbb{E}_{\theta} p_{0}=\mathbb{E}_{\theta} g, \quad \theta \in \Theta \tag{4.4}
\end{equation*}
$$

then, p_{0} is an unbiased estimator of $\mathbb{E}_{\theta} g$ but it is not necessarily a Bayesian estimator of $\mathbb{E}_{\theta} g$. Recall that the Bayesian interpretation of (4.4) is :

$$
\mathbb{E}\left(p_{0} \mid \mathbb{T}=\theta\right)=\mathbb{E}(g \mid \mathbb{T}=\theta), \quad \theta \in \Theta
$$

Now, we have the following result :

Proposition 4.4. If the Bayesian risk satisfies

$$
\begin{equation*}
\mathbb{E}\left(p_{0}(X)-m(X, \mathbb{T})\right)^{2}=0 \tag{4.5}
\end{equation*}
$$

then $p_{0}(X)$ is unbiased for predicting Y. Conversely if

$$
\begin{equation*}
m(X, \theta)=A(X)+D(\theta) \tag{4.6}
\end{equation*}
$$

and if $p_{0}(X)$ is unbiased then (4.5) holds.
Proof. Relation (4.5) implies $p_{0}(X)=m(X, \mathbb{T}) \mathbb{P}_{(X, \mathbb{T})}$ a.s., that is

$$
\mathbb{E}(Y \mid X)=\mathbb{E}(Y \mid X, \mathbb{T}) \quad \mathbb{P}_{(X, \mathbb{T})} \text { a.s.. }
$$

Conditioning with respect to \mathbb{T} gives

$$
\mathbb{E}\left(p_{0}(X) \mid \mathbb{T}\right)=\mathbb{E}(Y \mid \mathbb{T})
$$

which means that $p_{0}(X)$ is unbiased. Conversely (4.6) and (4.3) in Proposition 4.3 imply

$$
p_{0}(X)=A(X)+\mathbb{E}(D(\mathbb{T}) \mid X)
$$

Now, since p_{0} is unbiased, and $\mathbb{E}(Y \mid X, \mathbb{T})=m(X, \mathbb{T})$ implies

$$
\mathbb{E}(Y \mid \mathbb{T})=\mathbb{E}(m(X, \mathbb{T}) \mid \mathbb{T})
$$

one gets

$$
\mathbb{E}(A(X) \mid \mathbb{T})+\mathbb{E}(\mathbb{E}(D(\mathbb{T}) \mid X) \mid \mathbb{T})=\mathbb{E}(Y \mid \mathbb{T})
$$

and

$$
\mathbb{E}(Y \mid \mathbb{T})=\mathbb{E}(A(X) \mid \mathbb{T})+\mathbb{E}(D(\mathbb{T}) \mid \mathbb{T})
$$

by (4.6). This means that the Bayesian estimator of $D(\theta)$ is also unbiased. Then Lemma 4.2 gives

$$
\mathbb{E}\left(p_{0}(X)-m(X, \mathbb{T})\right)^{2}=\mathbb{E}(\mathbb{E}(D(\mathbb{T}) \mid X)-D(\mathbb{T}))^{2}=0
$$

In the more general case where $\mathbb{E}_{\theta}(Y \mid X)$ has the form (4.2) with non-null $B(\theta) C(X)$, it is possible to find an unbiased Bayesian predictor with a non-vanishing Bayesian risk (cf Bosq, 2012).

Now, let us define a "Bayesian type" predictor by

$$
\begin{equation*}
p_{0}(X)=\alpha p(X)+(1-\alpha) m\left(X, \theta_{0}\right), \quad\left(0<\alpha<1, \theta_{0} \in \Theta\right) \tag{4.7}
\end{equation*}
$$

where $p(X)$ is an unbiased predictor of Y. For these specific predictors, our previous result may be extended as follows.

Proposition 4.5. Suppose that Assumption 3.1 holds and consider a predictor $p_{0}(X)$ of the form (4.7). Then, if $p_{0}(X)$ is unbiased, it follows that

$$
\begin{equation*}
\mathbb{E}_{\theta}(m(X, \theta))=\mathbb{E}_{\theta}\left(m\left(X, \theta_{0}\right)\right), \quad \theta \in \Theta \tag{4.8}
\end{equation*}
$$

if, in addition, there exists a Y-sufficient complete statistic then $m(X, \theta)=m\left(X, \theta_{0}\right), \theta \in \Theta$ and the problem of prediction is degenerated.

Proof. If $p_{0}(X)$ is an unbiased predictor of Y, one has

$$
\mathbb{E}_{\theta}\left(p_{0}(X)\right)=\mathbb{E}_{\theta}(m(X, \theta)), \theta \in \Theta
$$

and taking expectation in (4.7) yields

$$
\mathbb{E}_{\theta}(m(X, \theta))=\alpha \mathbb{E}_{\theta}(p(X))+(1-\alpha) \mathbb{E}_{\theta}\left(m\left(X, \theta_{0}\right)\right)
$$

hence, since $p(X)$ is unbiased, (4.8) follows. Now, if $S(X)$ is a Y-sufficient statistic, Lemma 4.1 entails $m(X, \theta)=\mathbb{E}_{\theta}(Y \mid S(X))$, thus, (4.8) implies

$$
\mathbb{E}_{\theta}\left(\mathbb{E}_{\theta}(Y \mid S(X))-\mathbb{E}_{\theta_{0}}(Y \mid S(X))\right)=0, \quad \theta \in \Theta
$$

and, since $S(X)$ is complete, one obtains the last result.
4.5. Comparing predictors. The following elementary lemma allows to compare Bayesian predictors with the classical unbiased predictor. We will use it in the next sections.

Lemma 4.3. Suppose that

$$
m(X, \theta)=A(X)+d \cdot \theta \quad(d \neq 0)
$$

and let $p(X)$ be an unbiased predictor of Y taking the form

$$
p(X)=A(X)+d \cdot \bar{\theta}(X) .
$$

Consider the "Bayesian type" predictor

$$
p_{0}(X)=\alpha p(X)+(1-\alpha) m\left(X, \theta_{0}\right)
$$

where $\alpha \in] 0,1\left[\right.$ and $\theta_{0} \in \Theta$. Then

$$
\begin{equation*}
p_{0} \prec p \Longleftrightarrow\left|\theta-\theta_{0}\right| \leq\left(\frac{1+\alpha}{1-\alpha}\right)^{\frac{1}{2}} \cdot\left(\mathbb{E}_{\theta}(\bar{\theta}(X)-\theta)^{2}\right)^{\frac{1}{2}} \tag{4.9}
\end{equation*}
$$

Proof. We have

$$
p_{0}(X)-m(X, \theta)=\alpha(p(X)-m(X, \theta))+(1-\alpha)\left(m\left(X, \theta_{0}\right)-m(X, \theta)\right)
$$

then, since p is unbiased,

$$
\mathbb{E}_{\theta}\left(p_{0}(X)-m(X, \theta)\right)^{2}=\alpha^{2} \mathbb{E}_{\theta}(p(X)-m(X, \theta))^{2}+(1-\alpha)^{2} d^{2}\left(\theta_{0}-\theta\right)^{2}
$$

thus

$$
p_{0} \prec p \Longleftrightarrow d^{2}(1-\alpha)^{2}\left(\theta-\theta_{0}\right)^{2}+\alpha^{2} \mathbb{E}_{\theta}(p(X)-m(X, \theta))^{2} \leq \mathbb{E}_{\theta}(p(X)-m(X, \theta))^{2}
$$

and (4.9) follows.
Remarks : If $X=X_{(n)}=\left(X_{1}, \ldots, X_{n}\right)$ and

$$
\mathbb{E}_{\theta}(\bar{\theta}(X)-\theta)^{2}=\frac{v}{n}
$$

then the condition is

$$
\left|\theta-\theta_{0}\right| \leq\left(\frac{1+\alpha}{1-\alpha}\right)^{\frac{1}{2}} \cdot\left(\frac{v}{n}\right)^{\frac{1}{2}} .
$$

If one may find $\alpha=\alpha_{n}$ such that

$$
\inf _{n \geq 1}\left(\frac{1+\alpha_{n}}{1-\alpha_{n}}\right)^{\frac{1}{2}} \cdot\left(\frac{v}{n}\right)^{\frac{1}{2}} \geq b>0
$$

it follows that $\left|\theta-\theta_{0}\right| \leq b$ implies $p_{0}\left(X_{(n)}\right) \prec p\left(X_{(n)}\right)$ for all $n \geq 1$. Moreover, the choice $A(X) \equiv 0$ in Lemma 4.3 provides an alternative formulation for comparing Bayesian estimators of θ versus non Bayesian ones.

5. Application to Poisson process

5.1. The Bayesian predictor. Let $\left(N_{t}, t \geq 0\right)$ be an homogeneous Poisson process with intensity $\theta>0, X=\left(N_{t}, 0 \leq t \leq S\right)$ is observed and one wants to predict $Y=N_{S+h}$ $(h>0),(S>0)$. Lemma 2.1 shows that it is equivalent to predict $m(X, \theta)=\theta h+N_{S}$. The unbiased efficient predictor is obtained by replacing θ with $\frac{N_{S}}{S}$ (Bosq and Blanke, 2007) for obtaining $p\left(N_{S}\right)=\frac{S+h}{S} N_{S}=: N_{S}+\theta_{S} h$.

Concerning the Bayesian predictor, a classical prior is $\tau=\Gamma(a, b)$ with density

$$
\frac{b^{a}}{\Gamma(a)} \theta^{a-1} \exp (-b \theta) \mathbb{1}_{] 0,+\infty[}(\theta), \quad(a>0, b>0)
$$

Since N_{S} is N_{S+h}-sufficient, Lemma 4.1 entails

$$
\mathbb{E}_{\theta}\left(N_{S+h} \mid N_{t}, 0 \leq t \leq S\right)=\mathbb{E}_{\theta}\left(N_{S+h} \mid N_{S}\right)
$$

and Proposition 4.2 gives

$$
p_{0}\left(N_{t}, 0 \leq t \leq S\right)=\mathbb{E}\left(N_{S+h} \mid N_{S}\right) .
$$

The same property holds for the Bayes estimator given by

$$
\widehat{\theta}_{S}=\mathbb{E}\left(\mathbb{T} \mid N_{S}\right)=\frac{a+N_{S}}{b+S}
$$

and, from Proposition 4.3, the Bayesian predictor is

$$
\widehat{p}_{0}\left(N_{S}\right)=\frac{a+N_{S}}{b+S} \cdot h+N_{S}
$$

To compare \widehat{p}_{0} with p, note that

$$
\widehat{\theta}_{S}=\frac{S}{b+S} \cdot \theta_{S}+\left(1-\frac{S}{b+S}\right) \cdot \frac{a}{b}
$$

We deduce that

$$
\widehat{p}_{0}\left(N_{S}\right)=\alpha_{S} p\left(N_{S}\right)+\left(1-\alpha_{S}\right)\left(N_{S}+\theta_{0} h\right)
$$

with $\alpha_{S}=\frac{S}{b+S}$ and $\theta_{0}=\frac{a}{b}$. Since $\mathbb{E}_{\theta}\left(\theta_{S}-\theta\right)^{2}=\frac{\theta}{S}$, a straightforward consequence of Lemma 4.3 is

$$
\begin{equation*}
\widehat{p}_{0} \prec p \Longleftrightarrow\left(\theta-\theta_{0}\right)^{2} \leq\left(\frac{1}{S}+\frac{2}{b}\right) \theta . \tag{5.1}
\end{equation*}
$$

Solving (5.1) in θ, we get that $p_{0} \prec p$ iff

$$
\theta^{2}-2 \theta\left(\theta_{0}+\frac{1}{2 S}+\frac{1}{b}\right)+\theta_{0}^{2}<0
$$

that is when

$$
\theta \in] \theta_{0}+\frac{1}{2 S}+\frac{1}{b}-\sqrt{\Delta}, \theta_{0}+\frac{1}{2 S}+\frac{1}{b}+\sqrt{\Delta}[
$$

with $\Delta=\left(\theta_{0}+\frac{1}{2 S}+\frac{1}{b}\right)^{2}-\theta_{0}^{2}$.

Also, from (5.1), a sufficient condition, holding for all S, is $\left(\theta-\theta_{0}\right)^{2} \leq \frac{2}{b} \theta$ which gives

$$
\theta \in] \theta_{0}+\frac{1}{b}-\sqrt{\widetilde{\Delta}}, \theta_{0}+\frac{1}{b}+\sqrt{\widetilde{\Delta}}[
$$

with $\widetilde{\Delta}=\frac{1}{b}\left(2 \theta_{0}+\frac{1}{b}\right)$, that is

$$
\theta \in] \theta_{1}, \theta_{2}[:=] \frac{a+1}{b}-\frac{\sqrt{2 a+1}}{b}, \frac{a+1}{b}+\frac{\sqrt{2 a+1}}{b}[.
$$

Clearly, one obtains the same result for comparing $\hat{\theta}_{S}$ with θ_{S}. If $a=1, \theta_{0}=\frac{1}{b}$ then $\theta_{1}=\frac{2-\sqrt{3}}{b}$ and $\theta_{2}=\frac{2+\sqrt{3}}{b}$. If b is large, $\theta_{2}-\theta_{1}$ is large but θ also !

Turning to the MAP estimator, one has to compute $\operatorname{argmax}_{\theta} L(\theta)$ which is equal to

$$
\underset{\theta}{\operatorname{argmax}} e^{-\theta S} \frac{(\theta S)^{N_{S}}}{N_{S}!} \frac{b^{a}}{\Gamma(a)} \theta^{a-1} e^{-\theta b}
$$

We have

$$
\frac{\partial \ln L(\theta)}{\partial \theta}=\frac{\partial}{\partial \theta}\left(-\theta(S+b)+\frac{N_{S}+a-1}{\theta}\right)
$$

hence $\widetilde{\theta}_{S}=\frac{N_{S}+a-1}{b+S}$ where we choose $a \geq 1$ for convenience, inducing the predictor :

$$
\widetilde{p}_{0}\left(N_{S}\right)=\frac{N_{S}+a-1}{b+S} h+N_{S}
$$

Replacing a with $a-1$, the previous discussion about \widehat{p}_{0} holds and one gets, for all S, the sufficient condition

$$
\widetilde{p}_{0} \prec p \Longleftarrow \frac{a}{b}-\frac{\sqrt{2 a-1}}{b}<\theta<\frac{a}{b}+\frac{\sqrt{2 a-1}}{b}
$$

Finally, another method consists in computing the marginal distribution of $\left(N_{S}, N_{S+h}\right)$ and then to determine the conditional mode of N_{S+h} given N_{S}. In this case, one obtains a similar predictor. Details are left to the reader.
5.2. Simulations. In this section, we compare the unbiased (UP), the Bayesian (BP) and the MAP predictors for various Poisson processes. First, we simulate $N=10^{5}$ homogeneous Poisson processes with intensity θ varying in $\{0.5,1,2,5,10\}$. Next, for S in $\{10,15,20,25,30,40,50,75,100\}$ and horizon of prediction h in $\{0.5,1,2,5\}$, we compute an approximation of the empirical L^{2}-error of prediction :

$$
\frac{1}{N} \sum_{j=1}^{N}\left(N_{S+h}^{(j)}-\widehat{p}\left(N_{S}^{(j)}\right)\right)^{2}
$$

where $N_{t}^{(j)}$ stands for the j-th replicate of the process at time t and $\widehat{p}\left(N_{S}^{(j)}\right)$ is the predictor under consideration (Bayesian and MAP predictors are computed with a $\Gamma(a, 1)$ distribution
for the prior). We will also consider the empirical L^{2}-error of estimation (with respect to the probabilistic predictor $\left.\mathbb{E}_{\theta}\left(N_{S+h} \mid N_{S}\right)\right)$ defined by

$$
\frac{1}{N} \sum_{j=1}^{N}\left(N_{S}^{(j)}+\theta h-\widehat{p}\left(N_{S}^{(j)}\right)\right)^{2}
$$

In Table 1, we give the rounded L^{2}-errors of estimation according to S as well as prediction errors (enclosed in parentheses) for the unbiased predictor when $\theta=h=1$. To help the comparison, only the percentage variations of BP and MAP errors (relatively to the UP ones) are reported for $a=1,2,4$. Namely, since $\theta=1$, it is expected from (5.1) that $a=4$ represents a bad choice of prior (while $a=1$ corresponds to the best one, and $a=2$ is acceptable). From Table 1, we observe that :

- as expected, all errors decrease as S increases ;
- for all errors and any value of S, Bayesian and MAP predictors are better than the unbiased one for $a=1,2$, with a clearly significant gain for small values of S in the estimation framework ;
- the bad choice $a=4$ clearly penalizes the predictor, with a significant impact on the L^{2}-error of estimation. Concerning the prediction error, this effect is smaller : unfortunately, the probabilistic error is predominant!

TABLE 1. L^{2} estimation (prediction) error for UP and percentage variation of L^{2} estimation (prediction) error for BP and MAP, in the case where $\theta=1$ and $h=1$.

	$\mathrm{S}=15$			$\mathrm{S}=20$			$\mathrm{S}=30$		
UP	0.066 (1.066)			0.050 (1.050)			0.033 (1.036)		
	$\mathrm{a}=1$	$\mathrm{a}=2$	$\mathrm{a}=4$	$\mathrm{a}=1$	$\mathrm{a}=2$	$a=4$	$\mathrm{a}=1$	$\mathrm{a}=2$	$\mathrm{a}=4$
BP \%	-12.1(-.74)	-6.3(-.42)	40.8(2.42)	-9.3(-.43)	-4.8(-.23)	31.5(1.45)	-6.3(-.21)	-3.2(-.11)	21.8(.69)
MAP \%	-6.1(-.33)	-12.1(-.74)	11.3(.64)	-4.7(-.19)	-9.3(-.43)	8.8(.39)	-3.2(-.10)	-6.3(-.21)	6.2(.19)
	$\mathrm{S}=40$			$\mathrm{S}=50$			$\mathrm{S}=100$		
UP	0.025 (1.027)			0.020 (1.025)			0.010 (1.015)		
	$\mathrm{a}=1$	$\mathbf{a}=2$	$\mathrm{a}=4$	$\mathrm{a}=1$	$a=2$	$\mathrm{a}=4$	$\mathrm{a}=1$	$a=2$	$\mathrm{a}=4$
BP \%	-4.8(-.12)	-2.4(-.05)	16.8(.42)	-3.9(-.08)	-1.9(-.03)	13.7(.28)	-2.0(-.02)	-1.0(-.01)	6.7(.06)
MAP \%	-2.5(-.06)	-4.8(-.12)	4.8(.13)	-2.0(-.04)	-3.9(-.08)	4.0(.09)	-0.9(-.01)	-2.0(-.02)	1.9(.02)

In Figure 1, the L^{2}-error of prediction is plotted as a function of a for $\theta=1$ and $S=20$. As expected by (5.1), parabolic curves are obtained and BP (resp. MAP) is better than UP for a in the interval $] 0,1+\sqrt{S^{-1}+2}[$ (resp. $] 2-\sqrt{S^{-1}+2}, 2+\sqrt{S^{-1}+2}[$). Same conclusions hold for other choices of h and|or θ (see the selected results in Table 2). Errors increase as h and - or θ increase, and a good choice of the prior has a significative impact on the estimation error. In conclusion, at least for this simulated case, it appears that the L^{2}-error of prediction can be quite large, especially for small values of S and or large values of h and θ.

6. Bayesian inference for the Ornstein-Uhlenbeck process

Consider a stationary version of the Ornstein-Uhlenbeck process (O.U.) defined by $X_{t}=$ $m+\int_{-\infty}^{t} e^{-\theta(t-s)} \mathrm{d} W(s), t \in \mathbb{R},(m \in \mathbb{R}, \theta>0)$ where W is a standard bilateral Wiener

Figure 1. L^{2} prediction error for $\theta=1$ in terms of a with $\Gamma(a, 1)$ prior : UP (plain horizontal), BP (dashes), MAP (dots) for $S=20$. Vertical lines corresponds to $a=1+\sqrt{S^{-1}+2}$ (dashes) and $a=2 \pm \sqrt{S^{-1}+2}$ (dots). On the left : $h=0.5$, on the right : $h=1$.

TABLE 2. L^{2} estimation (prediction) error, in the case $S=20$, for UP and percentage variations of L^{2} estimation (prediction) error for $\mathrm{BP} i$ and MAP i, where i refers to $a=i$.

	$\theta=0.5$			$\theta=5$			$\theta=10$		
	$\mathrm{h}=0.5$	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=0.5$	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=0.5$	$\mathrm{h}=1$	$\mathrm{h}=2$
UP	. 01 (.3)	. 02 (.5)	. 1 (1.1)	. 06 (2.6)	. 25 (5.3)	1 (11)	.12 (5.1)	. 5 (10.4)	1.99 (22.1)
BP1 \%	-6.9 (-.16)	-6.9 (-.33)	-6.9 (-.61)	5.1 (.2)	5.1 (.34)	5.1 (.61)	28 (.75)	28 (1.48)	28 (2.7)
BP2 \%	11.5 (.31)	11.5 (.55)	11.5 (1.1)	-1.2 (.02)	-1.2 (.02)	-1.2 (.0)	20.2 (.55)	20.2 (1.09)	20.2 (1.98)
BP4 \%	103.3 (2.58)	103.3 (4.89)	103.3 (9.52)	-8.4 (-.19)	-8.4 (-.37)	-8.4 (-.73)	7.4 (.23)	7.4 (.45)	7.4 (.78)
MAP1 \%	-7.1 (-.19)	-7.1 (-.34)	-7.1 (-.66)	13.2 (.41)	13.2 (.75)	13.2 (1.39)	36.7 (.97)	36.7 (1.91)	36.7 (3.5)
MAP2 \%	-6.9 (-.16)	-6.9 (-.33)	-6.9 (-.61)	5.1 (.2)	5.1 (.34)	5.1 (.61)	28 (.75)	28 (1.48)	28 (2.7)
MAP4 \%	48.3 (1.22)	48.3 (2.29)	48.3 (4.48)	-5.7 (-.1)	-5.7 (-.22)	-5.7 (-.44)	13.3 (.38)	13.3 (.75)	13.3 (1.34)

process. Set $X_{0, t}=X_{t}-m, t \in \mathbb{R}$, then the likelihood of $X_{(S)}=\left(X_{t}, 0 \leq t \leq S\right)$ with respect to $X_{0,(S)}=\left(X_{0, t}, 0 \leq t \leq S\right)$ is given by

$$
\begin{equation*}
L\left(X_{(S)} ; m, \theta\right)=\exp \left(-\frac{\theta m^{2}}{2}(2+\theta S)+\theta m\left(X_{0}+X_{S}+\theta \int_{0}^{S} X_{t} \mathrm{~d} t\right)\right) \tag{6.1}
\end{equation*}
$$

(cf Grenander, 1981, p. 128-129) where $X_{(S)}$ and $X_{0,(S)}$ take their values in the space $C([0, S]),(S>0)$.
6.1. Estimating m. We suppose that θ is known and $m \in \mathbb{R}$ is unknown. In order to construct a Bayesian estimator of m and a Bayesian predictor of $X_{S+h}(h>0)$ given $X_{(S)}$, we consider the random variable \mathbb{M} with prior distribution $\mathcal{N}\left(m_{0}, u^{2}\right)(u>0)$, and suppose that \mathbb{M} is independent from W. Using (6.1), it follows that the posterior density of \mathbb{M} given $X_{(S)}$ is $\mathcal{N}\left(\frac{B}{A}, \frac{1}{A}\right)$ where $A=\theta(2+\theta S)+\frac{1}{u^{2}}$ and $B=\theta Z_{S}+\frac{m_{0}}{u^{2}} \quad$ with $Z_{S}=\left(X_{0}+X_{S}+\theta \int_{0}^{S} X_{t} \mathrm{~d} t\right)$.

Hence the Bayesian estimator of m :

$$
\widehat{m}_{S}=\frac{B}{A}=\frac{Z_{S}+m_{0} \theta^{-1} u^{-2}}{2+\theta S+\theta^{-1} u^{-2}}
$$

when the maximum likelihood estimator (MLE) is $m_{S}=\frac{Z_{S}}{2+\theta S}$. Consequently

$$
\begin{equation*}
\widehat{m}_{S}=\alpha_{S} m_{S}+\left(1-\alpha_{S}\right) m_{0} \tag{6.2}
\end{equation*}
$$

with $\left.\alpha_{S}=\left(1+\theta^{-1}(2+\theta S)^{-1} u^{-2}\right)^{-1} \in\right] 0,1\left[\right.$. Note that $\lim _{u \rightarrow 0} \widehat{m}_{S}=m_{0}$ and $\lim _{u \rightarrow \infty} \widehat{m}_{S}=m_{S}$. Asymptotic efficiency. The MLE m_{S} is efficient (cf Bosq and Blanke, 2007, p. 28) and \widehat{m}_{S} is asymptotically efficient since, from (6.2),

$$
\frac{\mathbb{E}_{m}\left(\widehat{m}_{S}-m\right)^{2}}{\mathbb{E}_{m}\left(m_{S}-m\right)^{2}}=\alpha_{S}^{2}+\left(1-\alpha_{S}\right)^{2} \frac{\left(m_{0}-m\right)^{2}}{\mathbb{E}_{m}\left(m_{S}-m\right)^{2}}
$$

with $\alpha_{S}^{2} \rightarrow 1$ as $S \rightarrow \infty,\left(1-\alpha_{S}\right)^{2}=\mathcal{O}\left(S^{-2}\right)$ and $\mathbb{E}_{m}\left(m_{S}-m\right)^{2}=\mathcal{O}\left(S^{-1}\right)$.
Prediction. We have $\mathbb{E}_{m}\left(X_{S+h} \mid X_{(S)}\right)=\mathbb{E}_{m}\left(X_{S+h} \mid X_{S}\right)=e^{-\theta h}\left(X_{S}-m\right)+m$. The unbiased predictor associated with the MLE is

$$
p_{S}:=p\left(X_{(S)}\right)=m_{S}\left(1-e^{-\theta h}\right)+e^{-\theta h} X_{S},
$$

and using Proposition 4.2, one obtains the Bayesian predictor

$$
\widehat{p}_{0, S}:=p_{0}\left(X_{(S)}\right)=\widehat{m}_{S}\left(1-e^{-\theta h}\right)+e^{-\theta h} X_{S} .
$$

We get

$$
\widehat{p}_{0, S}=\alpha_{S} p_{S}+\left(1-\alpha_{S}\right)\left(m_{0}\left(1-e^{-\theta h}\right)+e^{-\theta h} X_{S}\right)=\alpha_{S} p_{S}+\left(1-\alpha_{S}\right) p\left(X_{S}, m_{0}\right) .
$$

Concerning efficiency, again we deduce that p_{S} is efficient and $\widehat{p}_{0, S}$ is asymptotically efficient. Now, in order to compare $\widehat{p}_{0, S}$ with p_{S}, we use Lemma 4.3 for obtaining the following result.

Proposition 6.1. We have that $\widehat{p}_{0, S} \prec p_{S}$ is equivalent to $\left|m-m_{0}\right| \leq\left(\frac{1}{\theta(2+\theta S)}+2 u^{2}\right)^{\frac{1}{2}}$ and $\left|m-m_{0}\right| \leq u \sqrt{2}$ implies $\widehat{p}_{0, S} \prec p_{S}$ for all $S>0$.

The proof is straightforward since one has $\mathbb{E}_{m}\left(m_{S}-m\right)^{2}=(\theta(2+\theta S))^{-1}$. Of course, the result is strictly the same if one compares \widehat{m}_{S} with m_{S} since $\widehat{m}_{S} \prec m_{S}$ is equivalent to $\widehat{p}_{0, S} \prec p_{S}$.
6.2. Estimating θ. Suppose now that θ is unknown and m is known ; one may take $m=0$. The likelihood of $X_{(S)}$ with respect to $W_{(S)}$ has the form

$$
L\left(X_{(S)}\right)=\exp \left(-\frac{1}{2}\left(X_{S}^{2}-X_{0}^{2}-S\right)-\frac{\theta^{2}}{2} \int_{0}^{S} X_{t}^{2} \mathrm{~d} t\right)
$$

see Liptser and Shiryaev (2001). Even if θ is positive, it is convenient to take $\mathcal{N}\left(\theta_{0}, v^{2}\right)$ (with $\theta_{0}>0$ and $\left.v^{2}>0\right)$ as prior distribution of \mathbb{T}. Then, the marginal distribution of $X_{(S)}$ has density $\varphi\left(x_{(S)}\right)=\frac{1}{\sqrt{\alpha v^{2}}} \exp \left(-\frac{\theta_{0}^{2}}{2 v^{2}}+\frac{\beta^{2}}{2 \alpha}\right)$ where $\alpha=\int_{0}^{S} x_{s}^{2} \mathrm{~d} s+\frac{1}{v^{2}}$ and $\beta=\frac{S-x_{S}^{2}+x_{0}^{2}}{2}+\frac{\theta_{0}}{v^{2}}$.

It follows that the conditional distribution of \mathbb{T} given $X_{(S)}$ is $\mathcal{N}\left(\frac{\beta}{\alpha}, \frac{1}{\alpha}\right)$, hence the bayesian estimator of $\theta: \hat{\theta}_{S}=\frac{\beta}{\alpha}=\frac{\frac{1}{2}\left(S-X_{S}^{2}+X_{0}^{2}\right)+\theta_{0} v^{-2}}{\int_{0}^{S} X_{t}^{2} \mathrm{~d} t+v^{-2}}$ when the MLE is $\theta_{S}=\frac{\frac{1}{2}\left(S-X_{S}^{2}+X_{0}^{2}\right)}{\int_{0}^{S} X_{t}^{2} \mathrm{~d} t}$, consequently

$$
\begin{equation*}
\widehat{\theta}_{S}=\gamma_{S} \theta_{S}+\left(1-\gamma_{S}\right) \theta_{0} \quad \text { with } \quad \gamma_{S}=\frac{\int_{0}^{S} X_{t}^{2} \mathrm{~d} t}{\int_{0}^{S} X_{t}^{2} \mathrm{~d} t+v^{-2}} \tag{6.3}
\end{equation*}
$$

and $\lim _{v^{2} \rightarrow 0} \widehat{\theta}_{S}=\theta_{0}$ while $\lim _{v^{2} \rightarrow \infty} \widehat{\theta}_{S}=\theta_{S}$.
Concerning prediction, we have $\mathbb{E}_{\theta}\left(X_{S+h} \mid X_{(S)}\right)=e^{-\theta h} \cdot X_{S}$, so it is necessary to compute the Bayesian estimator of $e^{-\theta h}$. We get

$$
\mathbb{E}\left(e^{-\mathbb{T} h} \mid X_{(S)}\right)=\int_{\mathbb{R}} e^{-\theta h} \sqrt{\frac{\alpha}{2 \pi}} e^{-\frac{\alpha}{2}\left(\theta-\frac{\beta}{\alpha}\right)^{2}} \mathrm{~d} \theta=\exp \left(-\frac{2 \beta-h}{2 \alpha} \cdot h\right),
$$

hence the Bayesian predictor $\widehat{p}_{0}\left(X_{(S)}\right)=\exp \left(-\frac{2 \beta-h}{2 \alpha} \cdot h\right) \cdot X_{S}$. The predictor associated with the MLE is $p\left(X_{(S)}\right)=e^{-\theta_{S} \cdot h} \cdot X_{S}$ and finally, an alternative form of the predictor, associated with the MAP, should be $\widetilde{p}\left(X_{(S)}\right)=e^{-\widehat{\theta}_{S} \cdot h} \cdot X_{S}$.

Remark : In order to compare $\widehat{\theta}_{S}$ with θ_{S}, one may use an approximation of (6.3) by setting $\gamma_{\mathrm{app}, S}=\left(1+\frac{2 \theta}{S v^{2}}\right)^{-1}$. Then, the equivalent form of Lemma 4.3 for estimation, gives the "approximate" condition

$$
\widehat{\theta}_{S} \prec \theta_{S} \Longleftrightarrow\left|\theta-\theta_{0}\right| \leq\left(1+\frac{S v^{2}}{\theta}\right)^{\frac{1}{2}}\left(\mathbb{E}_{\theta}\left(\theta_{S}-\theta\right)^{2}\right)^{\frac{1}{2}},
$$

note, however that θ_{S} is not unbiased.

Finally, one may consider alternative priors, as well as, the translated exponential distribution with density $\varphi(\theta)=\eta \exp \left(-\eta\left(\theta-\theta_{0}\right)\right) \mathbb{1}_{j \theta_{0},+\infty[}(\theta),\left(\eta>0, \theta_{0} \geq 0\right)$. If ψ denotes the density of $\mathcal{N}\left(-\frac{a}{2 b}, \frac{1}{b}\right)$, with $a=x_{S}^{2}-x_{0}^{2}-S+2 \eta$ and $b=\int_{0}^{S} x_{t}^{2} \mathrm{~d} t$, the Bayesian estimator is implicit and given by $\widehat{\theta}_{S}=\int_{\theta_{0}}^{\infty} \theta \psi(\theta) \mathrm{d} \theta / \int_{\theta_{0}}^{\infty} \psi(\theta) \mathrm{d} \theta$. Derivation is left to the reader.

7. Ornstein-Uhlenbeck process for sampled data

We now consider the more realistic case where only $X_{0}, X_{\delta}, \ldots, X_{n \delta}$ are observed and one wants to predict $X_{(n+h) \delta},(h>0)$.
7.1. Estimation of m. If θ is known, and $m \in \mathbb{R}$ unknown, the associated model is

$$
\begin{equation*}
X_{n \delta}-m=e^{-\theta \delta}\left(X_{(n-1) \delta}-m\right)+\varepsilon_{n \delta}, \quad n \in \mathbb{Z} \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(\varepsilon_{n \delta}\right)=\frac{1-e^{-2 \theta \delta}}{2 \theta}=: \sigma_{\delta, \theta}^{2} \tag{7.2}
\end{equation*}
$$

If $\delta>0$ is fixed, we deal with a classical $\operatorname{AR}(1)$, so we will focus on the case where $\delta=\delta_{n}$ is "small". One may use various condition as $n \rightarrow \infty: \delta_{n} \rightarrow 0$ and $n \delta_{n} \rightarrow \infty$ or $\delta_{n} \rightarrow 0$ and $n \delta_{n} \rightarrow S>0$ for example. Two approaches are possible : either considering the likelihood or the conditional likelihood (X_{0} is arbitrary but non random) which has a simpler form.
7.1.1. Unconditional estimation. Since $X_{0}-m, \varepsilon_{\delta_{n}}, \ldots, \varepsilon_{n \delta_{n}} \sim \mathcal{N}\left(0,(2 \theta)^{-1}\right) \otimes \mathcal{N}\left(0, \sigma_{\delta, \theta}^{2}\right)^{\otimes n}$, one may deduce that $\left(X_{0}-m, X_{\delta}-m, \ldots, X_{n \delta}-m\right)$ has the density

$$
\begin{aligned}
f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(\frac{\theta}{\pi}\right)^{\frac{1}{2}} \frac{1}{\left(\sigma_{\delta, \theta} \sqrt{2 \pi}\right)^{n}} \times \exp (& -\theta\left(x_{0}-m\right)^{2} \\
& \left.-\sum_{i=1}^{n} \frac{\left(x_{i}-e^{-\theta \delta_{n}} x_{i-1}-m\left(1-e^{-\theta \delta_{n}}\right)\right)^{2}}{2 \sigma_{\delta \theta}^{2}}\right) .
\end{aligned}
$$

This yields

$$
\begin{equation*}
m_{n}=\frac{X_{0}+X_{n \delta_{n}}+\left(1-e^{-\theta \delta_{n}}\right) \sum_{i=1}^{n-1} X_{i \delta_{n}}}{n\left(1-e^{-\theta \delta_{n}}\right)+1+e^{-\theta \delta_{n}}} \tag{7.3}
\end{equation*}
$$

for the MLE, while if $\mathbb{M} \sim \mathcal{N}\left(m_{0}, u^{2}\right)$, one has

$$
\begin{aligned}
& L\left(X_{0}, X_{\delta_{n}}, \ldots, X_{n \delta_{n}}, \mathbb{M}\right)=\left(\frac{\theta}{\pi}\right)^{\frac{1}{2}} \frac{1}{\sigma_{\delta, \theta} \sqrt{2 \pi}} \times \exp \left(-\theta\left(X_{0}-\mathbb{M}\right)^{2}\right. \\
& \left.\quad-\sum_{i=1}^{n} \frac{\left(X_{i \delta_{n}}-\rho_{\delta, \theta} X_{(i-1) \delta_{n}}-\mathbb{M}\left(1-e^{-\theta \delta_{n}}\right)\right)^{2}}{2 \sigma_{\delta \theta}^{2}}\right) \times \frac{1}{u \sqrt{2 \pi}} \exp \left(-\frac{1}{2 u^{2}}\left(\mathbb{M}-m_{0}\right)^{2}\right)
\end{aligned}
$$

giving

$$
\begin{equation*}
\widehat{m}_{n}=\frac{X_{0}+X_{n \delta_{n}}+\left(1-e^{-\theta \delta_{n}}\right) \sum_{i=1}^{n-1} X_{i \delta_{n}}+\left(1+e^{-\theta \delta_{n}}\right) \frac{m_{0}}{2 \theta u^{2}}}{n\left(1-e^{-\theta \delta_{n}}\right)+\left(1+e^{-\theta \delta_{n}}\right)\left(1+\frac{1}{2 \theta u^{2}}\right)} . \tag{7.4}
\end{equation*}
$$

Again, we have $\widehat{m}_{n}=\alpha_{n} m_{n}+\left(1-\alpha_{n}\right) m_{0}$ with

$$
\alpha_{n}=\frac{n\left(1-e^{-\theta \delta_{n}}\right)+1+e^{-\theta \delta_{n}}}{n\left(1-e^{-\theta \delta_{n}}\right)+\left(1+e^{-\theta \delta_{n}}\right)\left(1+\left(2 \theta u^{2}\right)^{-1}\right)} .
$$

Since $\mathbb{E}\left(X_{(n+h) \delta_{n}} \mid X_{n \delta_{n}}\right)=e^{-\theta h \delta_{n}}\left(X_{n \delta_{n}}-m\right)+m$, the derived predictors of $X_{(n+h) \delta_{n}}, h \geq 1$ are given by $p_{n}\left(X_{n \delta_{n}}\right)=m_{n}\left(1-e^{-\theta h \delta_{n}}\right)+e^{-\theta h \delta_{n}} X_{n \delta_{n}}$ while $\widehat{p}_{0, n}\left(X_{n \delta_{n}}\right)=\widehat{m}_{n}\left(1-e^{-\theta h \delta_{n}}\right)+$ $e^{-\theta h \delta_{n}} X_{n \delta_{n}}$, and Lemma 4.3 implies that

$$
\begin{aligned}
& \widehat{p}_{0, n} \prec p_{n} \Longleftrightarrow \\
&\left(m-m_{0}\right)^{2} \leq \frac{2 n\left(1-e^{-\theta \delta_{n}}\right)+\left(1+e^{-\theta \delta_{n}}\right)\left(2+\left(2 \theta u^{2}\right)^{-1}\right)}{\left(1+e^{-\theta \delta_{n}}\right)\left(2 \theta u^{2}\right)^{-1}} \times \mathbb{E}_{m}\left(m_{n}-m\right)^{2} .
\end{aligned}
$$

Next, easy but tedious computation gives $\mathbb{E}_{m}\left(m_{n}-m\right)^{2}=\frac{1+e^{-\theta \delta_{n}}}{2 \theta\left(n\left(1-e^{-\theta \delta_{n}}\right)+1+e^{-\theta \delta_{n}}\right)}$ yielding the equivalence : $\widehat{p}_{0, n} \prec p_{n} \Leftrightarrow\left(m-m_{0}\right)^{2} \leq 2 u^{2}+\frac{1+e^{-\theta \delta_{n}}}{2 \theta\left(1+e^{-\theta \delta_{n}}+n\left(1-e^{-\theta \delta_{n}}\right)\right)}$. Asymptotically, we get if $\delta_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0, n \delta_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} S>0, \widehat{p}_{0, n} \prec_{n \rightarrow \infty} p_{n}$ is equivalent to $\left(m-m_{0}\right)^{2} \leq 2 u^{2}+\frac{1}{\theta(\theta S+2)}$. The condition $S \rightarrow \infty$ implying in turn the equivalence $\widehat{p}_{0, n} \prec_{n \rightarrow \infty} p_{n} \Leftrightarrow\left(m-m_{0}\right)^{2} \leq 2 u^{2}$, which are the same results as in the continuous case (cf Proposition 6.1). If $n \delta_{n} \rightarrow S>0$, note that our estimators of m are no more consistent! But still in this case, a good choice of the prior should allow reductions of risks of estimation and prediction.
7.1.2. Conditional likelihood. In this part, we use conditional likelihood on X_{0}, and choosing $\mathbb{M} \sim \mathcal{N}\left(m_{0}, u^{2}\right),(u>0)$, we obtain the "density" of $\left(X_{\delta_{n}}, \ldots, X_{n \delta_{n}}, \mathbb{M}\right):$

$$
\begin{aligned}
\widetilde{L}\left(X_{\delta_{n}}, \ldots, X_{n \delta_{n}}, \mathbb{M}\right)=\frac{1}{\left(\sigma_{\delta, \theta} \sqrt{2 \pi}\right)^{n}} & \exp \left(-\frac{1}{2 \sigma_{\delta, \theta}^{2}} \sum_{i=1}^{n}\left(\left(X_{i \delta_{n}}-\rho_{\delta} X_{(i-1) \delta_{n}}\right)\right.\right. \\
& \left.\left.+\mathbb{M}\left(\rho_{\delta}-1\right)\right)^{2}\right) \times \frac{1}{u \sqrt{2 \pi}} \exp \left(-\frac{1}{2 u^{2}}\left(\mathbb{M}-m_{0}\right)^{2}\right),
\end{aligned}
$$

where $\rho_{\delta}:=\rho\left(\theta, \delta_{n}\right)=\exp \left(-\theta \delta_{n}\right)$ and $\sigma_{\delta, \theta}^{2}$ is defined in (7.2). Since we are in the Gaussian case, the conditional mode and the conditional expectation coincide, now :

$$
\ln \widetilde{L}=c-\frac{1}{2 \sigma_{\delta, \theta}^{2}} \sum_{i=1}^{n}\left(X_{i \delta_{n}}-\rho_{\delta} X_{(i-1) \delta_{n}}+\mathbb{M}\left(\rho_{\delta}-1\right)\right)^{2}-\frac{\left(\mathbb{M}-m_{0}\right)^{2}}{2 u^{2}}
$$

where c does not depend on n. It follows that the Bayesian estimator is now given by

$$
\begin{equation*}
\widetilde{m}_{n}=\frac{\left(1-\rho_{\delta}\right) \sum_{i=1}^{n}\left(X_{i \delta_{n}}-\rho_{\delta} X_{(i-1) \delta}\right)+m_{0} \frac{\sigma_{\delta, \theta}^{2}}{u^{2}}}{\left(1-\rho_{\delta}\right)^{2} n+\frac{\sigma_{\delta, \theta}^{2}}{u^{2}}} \tag{7.5}
\end{equation*}
$$

while the conditional MLE takes the form

$$
\begin{equation*}
\breve{m}_{n}=\frac{\sum_{i=1}^{n}\left(X_{i \delta_{n}}-\rho_{\delta} X_{(i-1) \delta}\right)}{\left(1-\rho_{\delta}\right) n} \tag{7.6}
\end{equation*}
$$

We may slightly modify the estimator (7.5) for obtaining

$$
\begin{equation*}
\bar{m}_{n}=\beta_{n} \bar{X}_{n}+\left(1-\beta_{n}\right) m_{0} \tag{7.7}
\end{equation*}
$$

with $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i \delta_{n}}$ and $\beta_{n}=\frac{\left(1-\rho_{\delta}\right)^{2}}{\left(1-\rho_{\delta}\right)^{2}+\frac{\sigma_{\delta, \theta}^{2}}{n u^{2}}}$. Hence

$$
\frac{1+\beta_{n}}{1-\beta_{n}}=\frac{4 \theta u^{2} n\left(1-e^{-\theta \delta_{n}}\right)+1+e^{-\theta \delta_{n}}}{1+e^{-\theta \delta_{n}}}
$$

and, since $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\left(1-e^{-2 \theta \delta_{n}}\right)+\frac{2}{n} e^{-\theta \delta_{n}}\left(e^{-\theta n \delta_{n}}-1\right)}{2 n \theta\left(1-e^{-\theta \delta_{n}}\right)^{2}}$, asymptotically we get that, if $\delta_{n} \rightarrow 0, n \delta_{n} \rightarrow$ $S>0$,

$$
\bar{m}_{n} \prec_{n \rightarrow \infty} \bar{X}_{n} \Longleftrightarrow\left(m-m_{0}\right)^{2} \leq \frac{\left(1+2 u^{2} \theta^{2} S\right)\left(\theta S-1+e^{-\theta S}\right)}{\theta^{3} S^{2}}
$$

while if $\delta_{n} \rightarrow 0, n \delta_{n} \rightarrow \infty$, we get the equivalence : $\bar{m}_{n} \prec_{n \rightarrow \infty} \bar{X}_{n} \Leftrightarrow\left(m-m_{0}\right)^{2} \leq 2 u^{2}$. Again, the same results are obtained for predictors.
7.2. Estimation of ρ. In the case where m is known (one may set $m=0$), we now choose $N\left(\rho_{0}, v^{2}\right)$ as a prior for $\rho=e^{-\theta \delta_{n}}$, with $0<\rho_{0}<1$ and $v>0$. Note that this prior is reasonable as soon as ρ_{0} is not too far from 1 and v not too large. Using again the

Table 3. L^{2}-prediction error (m unknown) for MLE predictor and percentage variation of L^{2}-prediction error for others in the case where $\theta=1, H=1, u^{2}=1$ and $\delta=0.1$.

	$\mathrm{n}=15$			$\mathrm{n}=30$			$\mathrm{n}=50$			$\mathrm{n}=100$		
MLE	0.548			0.499			0.488			0.464		
Mean (\%)	2.76			2.82			1.61			0.35		
CMLE (\%)	27.97			10.54			5.62			1.35		
	$\mathrm{a}=4$	$\mathrm{a}=5$	$\mathrm{a}=7$									
Bay (\%)	-4.87	-8.52	5.77	-2.79	-4.72	4.78	-1.30	-2.63	2.39	-0.62	-1.08	1.08
CMAP2 (\%)	-1.04	-12.86	33.54	-. 53	-5.02	16.05	. 03	-2.28	6.77	-. 35	-0.99	2.00

conditional likelihood, one obtains the expression :

$$
\begin{aligned}
\widetilde{L}\left(X_{\delta_{n}}, \ldots, X_{n \delta_{n}}, \rho\right)=\frac{1}{\left(\sigma_{\delta, \theta} \sqrt{2 \pi}\right)^{n}} \exp \left(-\frac{1}{2 \sigma_{\delta, \theta}^{2}} \sum_{i=1}^{n}\left(X_{i \delta_{n}}\right.\right. & \left.\left.-\rho X_{(i-1) \delta_{n}}\right)^{2}\right) \\
& \times \frac{1}{v \sqrt{2 \pi}} \exp \left(-\frac{1}{2 v^{2}}\left(\rho-\rho_{0}\right)^{2}\right) .
\end{aligned}
$$

Since $\sigma_{\theta, \delta}^{2}$ depends on ρ, we make the approximation $\sigma_{\delta, \theta} \sim \delta$ for obtaining the posterior distribution $\mathcal{N}\left(\frac{B}{A}, \frac{1}{A}\right)$ where $A=\frac{1}{\delta_{n}} \sum_{i=1}^{n} X_{(i-1) \delta_{n}}^{2}+\frac{1}{v^{2}}$ and $B=\frac{1}{\delta_{n}} \sum_{i=1}^{n} X_{(i-1) \delta_{n}} X_{i \delta_{n}}+\frac{\rho_{0}}{v^{2}}$, hence the "Bayesian" estimator takes the form

$$
\begin{equation*}
\widetilde{\rho}_{n}=\frac{\sum_{i=1}^{n} X_{(i-1) \delta_{n}} X_{i \delta_{n}}+\frac{\rho_{0} \delta_{n}}{v^{2}}}{\sum_{i=1}^{n} X_{(i-1) \delta_{n}}^{2}+\frac{\delta_{n}}{v^{2}}} . \tag{7.8}
\end{equation*}
$$

Comparison with the conditional MLE

$$
\begin{equation*}
\widehat{\rho}_{n}=\frac{\sum_{i=1}^{n} X_{(i-1) \delta_{n}} X_{i \delta_{n}}}{\sum_{i=1}^{n} X_{(i-1) \delta_{n}}^{2}} \tag{7.9}
\end{equation*}
$$

is rather intricate and will be illustrated numerically in the next section.
7.3. Simulation. For $\theta \in\{0.5,1,2\}, m=5$, various sample sizes n and values of $\delta, 5000$ replications of Ornstein-Uhlenbeck sample paths are computed from the autoregressive relation (7.1). First, for known θ but m unknown, we compare various predictors of $X_{n \delta+H}$, $H=h \delta$ and $H=0.5,1$ or 2 , defined by $\mathfrak{m}\left(1-e^{-\theta h \delta}\right)+e^{-\theta h \delta} X_{n \delta}$ where \mathfrak{m} refers to estimators which are either :

- non bayesian : MLE with m_{n} defined in (7.3), Mean \bar{X}_{n}, CMLE with \breve{m}_{n} defined in (7.6),
- or bayesian : Bayes with \widehat{m}_{n} defined in (7.4), CMAP1 with \widetilde{m}_{n} defined in (7.5) $\left(u^{2}=1\right)$ and CMAP2 with \bar{m}_{n} defined in (7.7) $\left(u^{2}=1\right)$.
Among all non bayesian estimators and in all cases, it emerges that MLE outperforms the other two, with a very poor behaviour of the CMLE toward the others, a fact already noticed by Cox (1991). For this reason, our results below do not report the obtained values for CMAP1, because of its too high sensitivity toward CMLE. In Table 3, we give the rounded empirical L^{2}-prediction error of the MLE, and for comparison, the percentage variations observed for the others predictors for $\theta=1$ and $\delta=0.1$. It appears that all errors decrease

Figure 2. L^{2}-prediction error for m unknown $(m=5)$ and $\theta=1$ (known), $\delta=$ 0.1 in terms of m_{0} with $\mathcal{N}\left(m_{0}, 1\right)$ prior : MLE (plain), CMLE (twodash), Mean (dashed), Bayes (longdash), CMAP1 (dotted), CMAP2 (dotdash) when $u^{2}=1$. Vertical lines corresponds to $m_{0}=5 \pm \sqrt{2 u^{2}}$. On the left : $n=30(S=3, S+h * \delta=$ $4)$, on the right : $n=100(S=10, S+h * \delta=11)$.
as n increases, and Bayes predictors are highly competitive for small sample sizes and good choice of priors, namely $\mathbb{M} \sim \mathcal{N}\left(m_{0}, 1\right)$, with $\left.m_{0} \in\right] 5-\sqrt{2+(S+2)^{-1}}, 5+\sqrt{2+(S+2)^{-1}}[$ or asymptotically, $\left.S=n \delta \rightarrow \infty, m_{0} \in\right] 5-\sqrt{2}, 5+\sqrt{2}[$, see Section 7.1.1. By this way, errors are significantly reduced for $a=4$ or 5 and n less than 50 , while a bad choice like $m_{0}=7$ damages them dramatically. It appears also that CMAP2 has the smallest errors but only on a small area around m, the Bayesian predictor (with \widehat{m}_{n} defined in (7.4)) being more robust against the choice of m_{0}. These results are confirmed in the Figure 2 where errors are given in term of m_{0} : as expected, we obtain parabolic curves for bayesian predictors. Again, the Bayesian setting improves the errors for good choices of prior (especially for small values of δ and $n \delta$ where MLE is not so good) and otherwise deteriorate it.

Table 4. L^{2}-prediction error (m unknown) for MLE predictor and percentage variation of L^{2}-prediction error for others in the case where $\theta=1, H=1, u^{2}=1$ and $m_{0} \in\{4,5,7\}$.

| \mathbf{n} | $\mathbf{1 0}$ | | | $\mathbf{2 0}$ | | | $\mathbf{3 0}$ | $\mathbf{1 0 0}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| δ | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 5}$ | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 5}$ | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 5}$ | $\mathbf{0 . 1}$ | $\mathbf{0 . 2}$ | $\mathbf{0 . 5}$ |
| MLE | .586 | $\mathbf{. 5 3 1}$ | $\mathbf{. 4 8 8}$ | $\mathbf{. 5 3 1}$ | .498 | $\mathbf{. 4 6 4}$ | $\mathbf{. 4 8 8}$ | $\mathbf{. 4 6 4}$ | .441 | $\mathbf{. 4 6 4}$ | .461 | .444 |
| Mean (\%) | 2.77 | 2.46 | 1.92 | 2.40 | 2.13 | .44 | 1.61 | .36 | .16 | .35 | .16 | -.06 |
| CMLE (\%) | 47.01 | 17.69 | 5.73 | 17.56 | 7.38 | 1.40 | 5.62 | 1.36 | 0.24 | 1.35 | .47 | -.05 |
| Bay_4 (\%) | -5.06 | -4.23 | -1.31 | -4.22 | -1.84 | -.65 | -1.30 | -.62 | -.03 | -.62 | -.31 | -.04 |
| Bay_5 (\%) | -10.48 | -6.66 | -2.68 | -6.65 | -3.41 | -1.11 | -2.63 | -1.08 | -0.23 | -1.08 | -0.37 | -0.05 |
| Bay_7(\%) | 4.26 | 6.58 | 2.47 | 6.57 | 3.32 | 1.11 | 2.39 | 1.08 | 0.11 | 1.08 | 0.49 | 0.12 |
| CMAP2_4 (\%) | 1.89 | -1.70 | .26 | -1.70 | -.13 | -.30 | .03 | -.34 | .13 | -.35 | -.18 | -.10 |
| CMAP2_5 (\%) | -17.35 | -9.23 | -2.13 | -9.23 | -3.20 | -.96 | -2.28 | -.98 | -.09 | -.99 | -.26 | -.12 |
| CMAP2_7(\%) | 46.63 | 26.12 | 7.21 | 25.96 | 10.04 | 2.15 | 6.77 | 2.02 | .31 | 2.00 | .75 | .07 |

In Table 4, we compare the obtained errors for varying values of δ, while in Table 5 the influence of θ is measured. First it appears, that obtained errors depend only on $S=n \delta$, and not on the individual values of n and δ (see the bold errors). It is not a surprise since examination of L^{2}-risks shows that leading terms are of order $n \delta$ for each estimators. Moreover errors are much larger as δ and - or θ are small. Again, it agrees with our theoretical framework since more observations are correlated (more δ is small), more covariances are important and the overall risk is degraded. Also, weak values of θ corresponds to variables with high variance since $\operatorname{Var}\left(X_{1}\right)=(2 \theta)^{-1}$, and prediction is more difficult in this case. Finally, errors are represented in term of n in Figure 3 (left) : not surprisingly, errors decrease and estimators are asymptotically equivalent.

TABLE 5. L^{2}-prediction error (m unknown) for MLE predictor and percentage variation of L^{2}-prediction error for other in the case where $n=20, \delta=0.1, u^{2}=1$, and $m_{0} \in\{4,5,7\}$.

θ	$\mathbf{0 . 5}$			$\mathbf{1}$			$\mathbf{2}$		
\mathbf{H}	$\mathbf{0 . 5}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0 . 5}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0 . 5}$	$\mathbf{1}$	$\mathbf{2}$
MLE	$\mathbf{0 . 4 2 1}$	$\mathbf{0 . 7 2 8}$	$\mathbf{1 . 1 3 8}$	$\mathbf{. 3 4}$	$\mathbf{. 5 3 1}$	$\mathbf{. 6 7 7}$	$\mathbf{. 2 4 9}$	$\mathbf{. 3 0 3}$	$\mathbf{. 3 3 3}$
Mean (\%)	0.51	1.32	2.23	1.81	2.4	4.07	1.88	2.72	2.85
CMLE (\%)	15.03	27.59	48.31	10.76	17.56	27.37	6.04	9.76	10.65
Bay_4 (\%)	-3.41	-5.9	-9.32	-2.72	-4.22	-6.09	-1.04	-0.92	-2.15
Bay_5 (\%)	-5.27	-9.31	-15.56	-4.11	-6.65	-9.82	-1.99	-2.97	-3.58
Bay_7(\%)	2.18	4.31	5.68	4.04	6.57	9.24	1.82	1.7	3.87
CMAP2_4 (\%)	-2.2	-3.33	-4.77	-1.07	-1.7	-1.96	0.67	1.85	0.33
CMAP2_5 (\%)	-7.41	-12.86	-21.55	-5.5	-9.23	-13.28	-1.35	-2.1	-2.9
CMAP2_7 (\%)	13.2	24.79	38.55	16.06	25.96	37.82	6.56	8.36	12.21

Figure 3. On the left : L^{2} prediction error for unknown m, with prior $\mathcal{N}(5,1)$, known $\theta(\theta=1)$ in terms of n when $\delta=0.1:$ MLE (plain), CMLE (twodash), Mean (dashed), Bayes (longdash), CMAP1 (dotted), CMAP2 (dotdash). On the right : L^{2} prediction error for unknown ρ, prior $\mathcal{N}\left(\rho_{0}, 10^{-2}\right)$ in terms of n when $\delta=0.1$: CMLE (plain), CBayes with $\rho_{0}=0.9$ (dashed), CBayes (dotted) with $\rho_{0}=0.83$.

Table 6. L^{2}-prediction error (θ unknown) for MLE predictor and percentage variation of L^{2}-prediction error for others in the case where $H=1, \delta=0.1, v^{2}=0.01$, and $\rho_{0} \in\{0.5,0.75,0.85,0.9\}$.

$\mathbf{n}=20$	0.5				1				2			
CMLE	0.83				0.503				0.266			
ρ_{0}	0.5	0.75	0.85	0.9	0.5	0.75	0.85	0.9	0.5	0.75	0.85	0.9
"Bayes" (\%)	-8.41	-14.67	-14.90	-13.55	-7.25	-12.05	-12.66	-11.48	-5.82	-6.56	-5.42	-3.21
$\mathrm{n}=100 \quad \theta$	0.5				1				2			
CMLE	0.679				0.444				0.242			
ρ_{0}	0.5	0.75	0.85	0.9	0.5	0.75	0.85	0.9	0.5	0.75	0.85	0.9
"Bayes" (\%)	3.76	-0.25	-1.04	-1.15	0.89	-1.13	-1.22	-0.95	-0.44	-0.77	-0.46	-0.03

Concerning prediction when θ is unknown (m known), we have computed the two predictors derived from the estimators given by (7.7) (CMLE) and (7.8) ("Bayes"). The Figure 3 (right) that errors decrease with n and Bayes predictors are much better for small values of n. A noteworthy result is that errors are significantly improved for any choice of prior, at least for n small : see Table 6 for $n=20$ and Figure 4 (left) for $n=30$. This last conclusion may be tempered by the possibly bad behaviour of the CMLE in this framework. The Bayes predictor is more sensitive to the prior for $n=100$ (and ρ_{0} larger than 0.8).

Figure 4. L^{2} prediction error for $\rho=\exp (-\theta \delta)$ unknown $(\theta=1$ and $\delta=0.1)$ and $m=5$ (known) in terms of ρ_{0} with $\mathcal{N}\left(\rho_{0}, 1\right)$ prior : CMLE (plain horizontal), Bayes predictor (dashed) when $v^{2}=10^{-2}$. On the left : $n=30(S=3, S+h * \delta=4)$, on the right : $n=100(S=10, S+h * \delta=11)$.

References

Bosq D (2012) A note on Bayesian prediction. Rend Circ Mat Palermo Special issue, to appear
Bosq D, Blanke D (2007) Prediction and inference in large dimensions. Wiley series in probability and statistics, Wiley-Dunod
Cox DD (1991) Gaussian likelihood estimation for nearly nonstationary AR(1) processes. Ann Statist 19(3):1129-1142
Grenander U (1981) Abstract inference. Wiley, New York
Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer, New-York
Liptser RS, Shiryaev AN (2001) Statistics of random processes I, II, 2nd edn. Springer, New-York
Thompson B, Vladimirov I (2005) Bayesian parameter estimation and prediction in mean reverting stochastic diffusion models. Nonlinear Analysis 63(5-7):e2367-e2375
Yatracos YG (1992) On prediction and mean-square error. Canad J Statist 20(2):187-200
Université d’Avignon et des Pays de Vaucluse, Laboratoire de Mathématiques d'Avignon, 33 rue Louis Pasteur, 84000 Avignon, France

E-mail address: delphine.blanke@univ-avignon.fr
Université Pierre et Marie Curie - Paris 6, Laboratoire de Statistique Théorique et Appliquée, 4 place Jussieu, 75252 Paris Cedex 5, France

E-mail address: denis.bosq@upmc.fr

[^0]: 2000 Mathematics Subject Classification. Primary 62M20, 62F15.
 Key words and phrases. Bayesian prediction, MAP, Comparing predictors, Poisson process, OrnsteinUhlenbeck process.

