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Local null controllability of the three-dimensional

Navier-Stokes system with a distributed control having

two vanishing components

Jean-Michel Coron ∗ Pierre Lissy ∗

Abstract

In this paper, we prove a local null controllability result for the three-dimensional
Navier-Stokes equations on a (smooth) bounded domain of R3 with null Dirichlet bound-
ary conditions. The control is distributed into an (arbitrarily small) open subset and has
two vanishing components. J.-L. Lions and E. Zuazua proved that the linearized system is
not necessarily approximately controllable even if the control is distributed on the entire
domain, hence it cannot be null controllable and the standard linearization method fails.
We use the return method together with a new algebraic method inspired by the works of
M. Gromov and previous results by M. Gueye.

Keywords:Navier-Stokes System Null controllability Return method.
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1 Introduction

1.1 Notations and statement of the theorem

Let T > 0, let Ω be a nonempty bounded domain of R3 of class C∞ and let ω be a nonempty
open subset of Ω. We de�ne Q ⊂ R× R3 by

Q := (0, T )× Ω = {(t, x)| t ∈ (0, T ) and x ∈ Ω}.

The current point x ∈ R3 is x = (x1, x2, x3). The i-th component of a vector (or a vector �eld)
f is denoted f i. The control is u = (u1, u2, u3) ∈ L2(Q)3. We require that the support of u is
included in ω, which is our control domain. We impose that two components of u vanish, for
example the �rst two:

u1 = 0 and u2 = 0 in Q, (1.1)

1Work supported by the ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme
(FP7)
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so that u will be written under the form (0, 0, 1ωv) with v ∈ L2(Q) from now on, where 1ω :
Ω→ R is the characteristic function of ω:

1ω = 1 in ω, 1ω = 0 in Ω \ ω.

Let us de�ne
V := {y ∈ H1

0 (Ω)3|∇ · y = 0}.
The space V is equipped with the H1-norm. Let us denote by H the closure of V in L2(Ω)3.
The space H is equipped with the L2-norm.

We are interested in the following Navier-Stokes control system:
yt −∆y + (y · ∇)y +∇p = (0, 0, 1ωv) in Q,

∇ · y = 0 in Q,

y = 0 on [0, T ]× ∂Ω.

(1.2)

From [27, Theorem 3.1, p. 282], we have the following existence result: For every y0 ∈ H, there
exist y ∈ L2((0, T ), V ) ∩ L∞((0, T ), H) and p ∈ L2(Q) satisfying

y(0, ·) = y0 in Ω (1.3)

such that (1.2) holds.
Our main result is the following theorem, which expresses the small-time local null-controllability

of (1.2):

Theorem 1. For every T > 0 and for every r > 0, there exists η > 0 such that, for every y0 ∈ V
verifying ||y0||H1(Ω)3 6 η, there exist v ∈ L2(Q) and a solution (y, p) ∈ L2((0, T ), H2(Ω)3∩V )∩
L∞((0, T ), H1(Ω)3 ∩ V )× L2(Q) of (1.2)-(1.3) such that

y(T, ·) = 0, (1.4)

||v||L2(Q)3 6 r, (1.5)

||y||L2((0,T ),H2(Ω)3)∩L∞((0,T ),H1(Ω)3) 6 r. (1.6)

Remark 1. Once a control v ∈ L2(Q) is given, the corresponding solution (y, p) of (1.2), (1.3)
and (1.6) given by Theorem 1 is unique (recall that for the Navier-Stokes system, the uniqueness
of (y, p) means that y is unique and p is unique up to a constant depending on the time). This
comes from the uniqueness result given in [27, Theorem 3.4, p. 297]: One has

L∞((0, T ), H1(Ω)3) ⊂ L8((0, T ), H1(Ω)3) ⊂ L8((0, T ), L4(Ω)3)

thanks to a classical Sobolev embedding, and there is at most one solution (y, p) of (1.2) and
(1.3) in the space

L2((0, T ), V ) ∩ L∞((0, T ), H) ∩ L8((0, T ), L4(Ω)3)× L2(Q).

Remark 2. One observes that in Theorem 1 the initial condition y0 is more regular than usual
(y0 ∈ H). In fact, using the same arguments as in [15] and [16] (see also [6, Remark 1]),
one can easily extend the previous theorem to small initial data in H ∩ L4(Ω)3 with a solution
(y, p) ∈ L2((0, T ), V ) ∩ L∞((0, T ), H) × L2(Q). In this case, Remark 1 is no longer true and
there might possibly exist many solutions (y, p) verifying (1.2) and (1.3) once v is given.
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1.2 Some previous results

The controllability of the two or three-dimensional Navier-Stokes equations with a dis-
tributed control has been studied in numerous papers. In general, for Navier-Stokes equations,
it is relevant to consider the approximate controllability, the null controllability or the control-
lability to the trajectories, the second one being a particular case of the third one.

In [21], a �rst result of local exact controllability to the trajectories was established under
technical conditions: Ω had to be homeomorphic to a ball, the control had to be supported
in a nonempty open subset whose closure is included in Ω, and the target trajectory had to
be a stationary solution of the Navier-Stokes equation. Moreover, there were some technical
regularity conditions for these stationary solutions. A similar result for the linearized Navier-
Stokes equations was established but with the same strong conditions. Many of these hypotheses
were removed in [22].

Then, it was proved in [15] the local exact controllability to the trajectories with regularity
conditions that were weaker and more suitable for the study of the Navier-Stokes equations.
In this article, the authors also proved some exact controllability results for linearized Navier-
Stokes systems, with very weak regularity conditions. The same authors proved in [16] the
local exact controllability with a control having one vanishing component, provided that ω
�touches� the boundary of the domain Ω in some sense. Later on it was proved in [13] a local
null controllability result on the Stokes system with a control having a vanishing component
without the geometrical condition on ω, but the authors were not able to extend it to the
nonlinear Navier-Stokes system. A recent work ([6]) improved the previous one and proved
the local null controllability of the Stokes system with an additional source member by means
of a control having a vanishing component, which enabled the authors to prove the local null
controllability of the Navier-Stokes system for a control having a vanishing component. In all
these articles, the main points of the proof were to establish �rst the controllability of the
linearized control system around the target trajectory thanks to Carleman estimates on the
adjoint of the linearized equation, and then to use an inverse mapping theorem or a �xed-point
theorem to deal with the nonlinear system.

The natural question is then: Can we remove another component of the control, which
would provide an optimal result with respect to the number of controls? Reducing the number
of components of the control is important for applications, and have already been studied many
times for linear or parabolic systems of second order (that are quite similar to linearized Navier-
Stokes systems), see for example [4], where a necessary and su�cient condition to control a
system of coupled parabolic equations with constant coe�cients and with less controls than
equations is given, or [3, 25] for time-dependant coe�cients. If the coe�cients depend on the
time and the space, there are no general results, notably if we consider two coupled parabolic
systems where the coupling region and the control region do not intersect (a partial result
under GCC is given in [1]). For a recent survey on the controllability of coupled linear parabolic
equations, see [5].
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1.3 The linear test

To obtain Theorem 1, the �rst natural idea is to linearize the system around 0, i.e. to
consider the Stokes control system

yt −∆y +∇p = (0, 0, v1ω) in Q,

∇ · y = 0 in Q,

y(0, ·) = y0 in Ω,

y = 0 on [0, T ]× ∂Ω.

(1.7)

It is well known (see for example [16], or [22]) that if this linear system were null controllable
(with, in addition, an arbitrary source term in a suitable space), then applying an inverse
mapping theorem (for example the one presented in [2]) in some relevant weighted spaces,
we would obtain that (1.2) is locally null controllable around 0. However the linear control
system (1.7) is in general not null controllable, and not even approximately controllable: In
[24], it is proved that if we choose Ω to be a cylinder with a circular generating set and with
an axis parallel to e3 then (1.7) is not approximately controllable, even if we control on the
entire cylinder. However, it is proved in [24] that the approximate controllability property holds
generically with respect to the generating set of the cylinder.

Since linearizing around 0 is not relevant, we are going to use the return method, which
consists in linearizing system (1.2) around a particular trajectory (y, p, u) (that we construct
explicitly), verifying y(0, ·) = y(T, ·) = 0, proving that the linearized system (with a source
term f verifying an exponential decrease condition at time t = T ) is null controllable, and then
concluding by a usual inverse mapping argument that our system is locally null controllable. This
method was introduced in [7] for a stabilization problem and �rst used in [8] for controllability
issues for partial di�erential equations. The return method was already successfully used in
[9, 11, 18] to obtain global controllability results for the Navier-Stokes equations and in [12] to
prove the small-time local null controllability for the Navier-Stokes equations on the torus T2

when the control has one vanishing component. For more explanations about the return method
and other examples, see [10, Chapter 6].

2 Constructing a relevant trajectory

In this subsection, we construct explicit particular trajectories (y, p, u) going from 0 to 0
so that, as it will be shown in section 3, the linearized control system around them is null
controllable.

Without loss of generality we may assume that 0 ∈ ω. Let g ∈ C∞(R3),

g : (t, w, x3) 7→ g(t, w, x3),

and h ∈ C∞(R3),
h : (t, w, x3) 7→ h(t, w, x3).
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For (x1, x2, x3) ∈ R3, let r :=
√
x2

1 + x2
2. We de�ne y ∈ C∞(R4;R3) by

y(t, x) :=

g(t, r2, x3)x1

g(t, r2, x3)x2

h(t, r2, x3)

 ,∀t ∈ R, ∀x = (x1, x2, x3) ∈ R3. (2.1)

Let r1 > 0 be small enough so that

C1 := {(x1, x2, x3) ∈ R3; r 6 r1, |x3| 6 r1} ⊂ ω. (2.2)

On the functions g and h, we also require that

Supp(g) ⊂ [T/4, T ]× (−∞, r2
1]× [−r1, r1], (2.3)

Supp(h) ⊂ [T/4, T ]× (−∞, r2
1]× [−r1, r1]. (2.4)

In (2.3), (2.4) and in the following, Supp(f) denotes the support of the function f . From (2.1),
(2.2), (2.3) and (2.4), one obtains

Supp(y) ⊂ [T/4, T ]× C1 ⊂ (0, T ]× ω ⊂ (0, T ]× Ω. (2.5)

Let p̃ ∈ C∞(R3) be de�ned by

p̃(t, w, x3) :=
1

2

∫ ε

r21

(
gt − (4wgww + 8gw + g33)

+ 2wggw + |g|2 + hg3

)
(t, w′, x3)dw′. (2.6)

In (2.6), in order to lighten the notations, for l ∈ N∗, N ∈ N∗ and i = (i1, . . . , iN ), with
ik ∈ {t, w, 3} for every k ∈ {1, . . . N}, and ϕ : D(ϕ) ⊂ R3 → Rl, (t, w, x3) 7→ ϕ(t, w, x3),
ϕi1i2...iN denotes the following derivative:

ϕi1i2...iN :=
∂Nϕ

∂ξi1 . . . ∂ξiN
,

where
ξj = x3 if j = 3, ξj = t if j = t and ξj = w if j = w.

We use similar notations throughout the paper. Let p ∈ C∞(R4) be de�ned by

p(t, x1, x2, x3) := p̃(t, r2, x3). (2.7)

From (2.2), (2.3), (2.4), (2.6) and (2.7), it follows that

Supp(p) ⊂ [T/4, T ]× C1 ⊂ [T/4, T ]× ω ⊂ (0, T ]× Ω. (2.8)
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From (2.1), (2.6) and (2.7), one obtains

y1
t −∆y1 + (y · ∇)y1 + p1 = 0, (2.9)

y2
t −∆y2 + (y · ∇)y2 + p2 = 0. (2.10)

Let u ∈ C∞(R4)3 be de�ned by

u := (0, 0, y3
t −∆y3 + (y · ∇)y3 + p3). (2.11)

From (2.11), one obtains (1.1). From (2.5), (2.8) and (2.11), we have

Supp(u) ⊂ (0, T ]× ω. (2.12)

From (2.9), (2.10), (2.11) and (2.12), we have

yt −∆y + (y · ∇)y +∇p = 1ωu. (2.13)

Finally, in order to have

div y = 0, (2.14)

it su�ces to impose

∂h

∂x3
= −2(g + wgw). (2.15)

Let ν be a positive numerical constant which will be chosen later on. Let a ∈ C∞(R), b ∈ C∞(R)
and c ∈ C∞(R) be such that

Supp(a) ⊂ [T/4, T ] and a(t) = e
−ν

(T−t)5 in [T/2, T ], (2.16)

Supp(b) ⊂ (−∞, r2
1) and b(w) = w, ∀s ∈ (−∞, r2

1/4], (2.17)

Supp(c) ⊂ (−r1, r1) and c(x3) = x2
3 in [−r1/2, r1/2]. (2.18)

We choose

g(t, w, x3) = εa(t)b(w)c′(x3) (2.19)

and

h(t, w, x3) = −2εa(t)(b(w) + wb′(w))c(x3), (2.20)

where ε > 0 will be chosen later on. From (2.19) and (2.20), one obtains (2.15).
In the next section, we prove that, for every small enough T , for every small enough ε > 0 and

for a well-chosen ν, the linearized control system around the trajectory (y, p, u) is controllable.
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3 A controllability result on the linearized system

3.1 De�nitions and notations

The linearized control system around the trajectory (y, p, u) is the linear control system

y1
t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + p1 = f1 in Q,

y2
t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + p2 = f2 in Q,

y3
t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + p3 = 1ωv + f3 in Q,

∇ · y = 0 in Q,

y = 0 on [0, T ]× ∂Ω,

(3.1)

where the state is y : Q → R3, f : Q → R3 is a source term (it will be speci�ed later in which
space exactly it shall be) and the control is v : Q→ R. Let ω0 be a nonempty open subset of

C2 :=
{

(x1, x2, x3); r <
r1

2
, |x3| <

r1

2

}
, (3.2)

which will be chosen more precisely in the next section. Let

Q0 := (T/2, T )× ω0.

The following �gure represents the open subsets of Ω we introduced up to now.
Let L : C∞(Q0)5 → C∞(Q0)4 be de�ned by

L

yp
v

 :=


y1
t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + p1

y2
t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + p2

y3
t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + p3 − v

∇ · y

 , (3.3)

for every y = (y1, y2, y3) ∈ C∞(Q0)3, for every p ∈ C∞(Q0) and for every v ∈ C∞(Q0). Let us
denote by

ξ := (x0, x1, x2, x3) = (t, x1, x2, x3)

the current point in Q0. For α = (α0, α1, α2, α3) ∈ N4 and ϕ : Q0 → Rk, ∂αϕ, denotes, as usual,

∂α0
tα0∂

α1

x
α1
1

∂α2

x
α2
2

∂α3

x
α3
3

ϕ

(in this part, this notation will be more convenient than the one introduced in the previous
section, which is more compact only for derivatives of small order). Let L(Rk;Rl) be the set of
linear maps from Rk into Rl andMk,l(R) be the set of matrices of size k × l with value in the
ring R.

As usual, in the inequalities written in this article C denotes a constant (depending in general
only on ω, Ω, T ) that may change from one line to another.

Let us give some other de�nitions.
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0

Ω

C1 (support of ȳ)

C2 (where ȳ is polynomial)

ω (control domain)

ω0

Figure 1: The open subsets C1, C2, ω0, ω.

De�nition 1. A linear map M : C∞(Q0)k → C∞(Q0)l is called a linear partial di�erential
operator of order m if, for every α = (α0, α1, α2, α3) ∈ N4 with |α| := α0 + α1 + α2 + α3 6 m,
there exists Aα ∈ C∞(Q0;L(Rk;Rl)) such that

(Mϕ)(ξ) =
∑
|α|6m

Aα(ξ)∂αϕ(ξ), ∀ξ ∈ Q0, ∀ϕ ∈ C∞(Q0)k.

A linear map M : C∞(Q0)k → C∞(Q0)l is called a linear partial di�erential operator if
there exists m ∈ N such thatM is a linear partial di�erential operator of order m.

Let k be a positive integer and let B := (B1,B2,B3) : C∞(Q0)k → C∞(Q0)3 be a linear
partial di�erential operator. Let us consider the linear equation

L

yp
v

 =


B1f

B2f

B3f

0

 , (3.4)
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where the data is f ∈ C∞(Q0)k and the unknown is (y, p, v) ∈ C∞(Q0)5. Following [19, Section
2.3.8, p. 148], we adopt the following de�nition.

De�nition 2. The linear equation (3.4) is algebraically solvable if there exists a linear partial
di�erential operator M : C∞(Q0)k → C∞(Q0)5 such that, for every f ∈ C∞(Q0)k, Mf is a
solution of (3.4), i.e. such that

L ◦M = (B, 0). (3.5)

In the following, every function ϕ ∈ C∞(Q0)l with a compact support included in Q0 is
extended by 0 in Q \Q0 and we still denote this extension by ϕ.

The next proposition explains how the notion of algebraic solvability can be useful to reduce
the number of controls as soon as a controllability result is already known for a large number of
controls. In fact, the question of the null-controllability of (3.1) can be split into two distinct
problems: One �algebraic� part (solving system(3.5)) and one �analytic� part (�nding controls
which are in the image of B, the control acting possibly on all the equations and not only the
third one). This proposition has a very general scope and could be formulated for more general
control systems. It is inspired by techniques used in the control of ordinary di�erential equations
(see, in particular, [10, Chapter 1, p. 13-15]).

Proposition 1. Let us consider the linear control system

y1
t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + p1 = B1u+ f1 in Q,

y2
t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + p2 = B2u+ f2 in Q,

y3
t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + p3 = B3u+ f3 in Q,

∇ · y = 0 in Q,

y = 0 on [0, T ]× ∂Ω,

y(0, ·) = y0 in Ω,

(3.6)

where the state is y : Q → R3, the control is u ∈ C∞(Q)k, which is required to have a support
in Q0, and f := (f1, f2, f3) ∈ C∞(Q) is a source term. Let us assume that:

A1. The linear control system (3.6) is null controllable during the interval of time [0, T ] in the
sense that for every y0 ∈ V and for every f ∈ C∞(Q) such that

there exists δ > 0 such that f = 0 on [T − δ, T ]× Ω, (3.7)

there exists u ∈ C∞(Q)k with a compact support included in Q0 such that the solution
(y, p) of (3.6) with initial condition y(0, ·) = y0 satis�es y(T, ·) = 0.

A2.

(3.4) is algebraically solvable.
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Then, the linear control system (3.1) is null controllable during the interval of time [0, T ]: For
every y0 ∈ V and for every f ∈ C∞(Q) satisfying (3.7), there exists v ∈ C∞(Q) with a compact
support included in Q0 such that the the solution (y, p) of (3.1) satisfying the initial condition
y(0, ·) = y0 satis�es y(T, ·) = 0.

Proof of Proposition 1. First of all, we use the null-controllability of (3.6) with controls in
the image of B (Assumption A1): let y

0 ∈ V and let u∗ ∈ C∞(Q)k with support included in Q0

such that the solution (y∗, p∗) of the Cauchy problem (3.6) for the initial condition y∗(0, ·) = y0

satis�es y∗(T, ·) = 0. Let us remark that B is a local operator, which implies that Bu∗|Q0
still

has a compact support in Q0. Now we use the algebraic solvability of (3.4) (Assumption A2):
LetM be as in De�nition 2. For a map h ∈ C∞(Q)k with a support included in Q0, we denote
byM the map from Q into R5 de�ned by

Mh = 0 in Q \Q0,Mh =M(h|Q0
) in Q0.

We shall use this slight abuse of notation until the end of the paper. Note that, for every
h ∈ C∞(Q)k with a support included in Q0,Mh ∈ C∞(Q)5 and has a support included in Q0

(becauseM is a local operator). Let us call

(ỹ, p̃, v) := −Mu∗.

One observes that the support of (ỹ, p̃, v) is still included in Q0. In particular ỹ(T, ·) = 0. Let

(y, p) := (y∗ + ỹ, p∗ + p̃).

Then 

y1
t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + p1 = f1 in Q,

y2
t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + p2 = f2 in Q,

y3
t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + p3 = 1ωv + f3 in Q,

∇ · y = 0 in Q,

y = 0 on [0, T ]× ∂Ω,

y(0, ·) = y0 in Ω,

y(T, ·) = 0 in Ω.

This shows that the linear control system (3.1) is indeed null controllable during the interval of
time [0, T ] and concludes the proof of Proposition 1.

Remark 3. For the sake of simplicity, we have formulated Proposition 1 in a C∞ setting. Let
us assume that the control u coming from Assumption A1 is not of class C∞, but is less regular
(one observes that the regularities of y∗, p∗ and f do not matter for the proof of Proposition 1
since only u∗ is di�erentiated by the linear partial di�erential operatorM). For example, assume
that u∗ ∈ H1 where H1 is a functional space (for example a weighted Sobolev space), and assume
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that M can be extended on H1, Mu∗ being then in another functional space H2 (for example
another weighted Sobolev space of order less that H1 in order to take into account that M is
a linear partial di�erential operator). Then one easily veri�es that Proposition 1 remains true
as soon as every function of H1 (and its derivatives until the order at least the order of M)
vanishes at time t = T , the �rst assumption A1 being changed as the following: the linear control
system (3.6) is null controllable during the interval of time [0, T ], i.e. for every y0 ∈ V and for
every f ∈ L2(Q) satisfying (3.7) there exists u ∈ H1 with support included in Q0 such that the
solution (y, p) of (3.6) satisfying the initial condition y(0, ·) = y0 satis�es y(T, ·) = 0. Similarly,
we will need to relax property (3.7) by replacing it with a suitable decay rate near t = T . This
will be detailed in Subsection 3.4.

It remains to deal, for a suitable choice of B, with Assumption A2 (we shall do it in Subsec-
tion 3.2) and with Assumption A1 (we shall do it in Subsection 3.3).

3.2 Algebraic solvability of (3.4)

We choose k = 7 and de�ne B by

B(f1, f2, f3, f4, f5, f6, f7) :=

f
1
1 + f2

2 + f3
3

f4
1 + f5

2 + f6
3

f7

 . (3.8)

The main result of this subsection is the following proposition.

Proposition 2. There exists ε∗ > 0, there exists T ∗ > 0 such that, for every ε ∈ (0, ε∗), there
exists a nonempty open subset ω0 of C2 such that Assumption A2 holds for every T < T ∗: There
exists a linear partial di�erential operatorM : C∞(Q0)7 → C∞(Q0)5 such that (3.5) holds.

3.2.1 The adjoint problem

Let L0 : C∞(Q0)4 → C∞(Q0)3 be the linear partial di�erential operator de�ned by

L0

(
y

p

)
:=

y
1
t −∆y1 + (y · ∇)y1 + (y · ∇)y1 + p1

y2
t −∆y2 + (y · ∇)y2 + (y · ∇)y2 + p2

∇ · y

 , (3.9)

for every y = (y1, y2, y3) ∈ C∞(Q0)3, and every p ∈ C∞(Q0).
Let B0 : C∞(Q0)6 → C∞(Q0)3 be the linear partial di�erential operator de�ned by

B0(f1, f2, f3, f4, f5, f6) :=

f
1
1 + f2

2 + f3
3

f4
1 + f5

2 + f6
3

0

 . (3.10)

11



Note that the third equation of (3.4) can be read as

v = y3
t −∆y3 + (y · ∇)y3 + (y · ∇)y3 + p3 − f7.

Hence, one easily sees that Assumption A2 is equivalent to the existence of a linear partial
di�erential operatorM0 : C∞(Q0)6 → C∞(Q0)4 such that

L0 ◦M0 = B0. (3.11)

As in [19, p. 157], we study (3.11) by looking at the �adjoint equation�. For every linear
partial di�erential operator M : C∞(Q0)k → C∞(Q0)l, M =

∑
|α|6mAα∂

α, we associate its

(formal) adjoint
M∗ : C∞(Q0)l → C∞(Q0)k

de�ned by

M∗ψ :=
∑
|α|6m

(−1)|α|∂α(Atr

αψ), ∀ψ ∈ C∞(Q0)l, (3.12)

whereAtr

α (ξ) is the transpose of the matrixAα(ξ). (De�nition (3.12) makes sense since
∑
|α|6mAα∂

α =

0 implies that the Aα are all equal to 0.) One hasM∗∗ =M and, ifM : C∞(Q0)k → C∞(Q0)l

and N : C∞(Q0)l → C∞(Q0)m are two linear partial di�erential operators, then (N ◦M)∗ =
M∗ ◦ N ∗.

Hence, (3.11) is equivalent to

M∗0 ◦ L∗0 = B∗0 . (3.13)

Direct computations, together with (2.14), show that, for every z = (z1, z2) ∈ C∞(Q0)2 and for
every π ∈ C∞(Q0),

L∗0

(
z

π

)
=


−z1

t −∆z1 − (y · ∇)z1 + y1
1z

1 + y2
1z

2 − π1

−z2
t −∆z2 − (y · ∇)z2 + y1

2z
1 + y2

2z
2 − π2

y1
3z

1 + y2
3z

2 − π3

−z1
1 − z2

2

 , (3.14)

B∗0

(
z

π

)
= (−z1

1 ,−z1
2 ,−z1

3 ,−z2
1 ,−z2

2 ,−z2
3). (3.15)

Assumption A2 is now equivalent to the following property: There exists a linear partial dif-
ferential operator N (=M∗0) : C∞(Q0)4 → C∞(Q0)6 such that for every ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈
C∞(Q0)4, if (z1, z2, π) ∈ C∞(Q0)3 is a solution of

−z1
t −∆z1 − (y · ∇)z1 + y1

1z
1 + y2

1z
2 − π1 = ϕ1,

−z2
t −∆z2 − (y · ∇)z2 + y1

2z
1 + y2

2z
2 − π2 = ϕ2,

y1
3z

1 + y2
3z

2 − π3 = ϕ3,

−z1
1 − z2

2 = ϕ4,

(3.16)

then (z1
1 , z

1
2 , z

1
3 , z

2
1 , z

2
2 , z

2
3) = Nϕ.

12



Remark 4. The most natural linear partial di�erential operator B to try �rst would have been
B : C∞(Q0)3 → C∞(Q0)3 de�ned by

Bf :=

f
1

f2

f3

 , ∀f = (f1, f2, f3) ∈ C∞(Q0)3. (3.17)

Unfortunately, Proposition 2 does not hold with this B. Indeed, in this case B∗0 : C∞(Q0)3 →
C∞(Q0)2 would be now (compare with (3.15)) such that, for every z = (z1, z2) ∈ C∞(Q0)2 and
for every π ∈ C∞(Q0),

B∗0(z, π) = (z1, z2). (3.18)

Let F1 ∈ C∞(T/2, T ) and let F2 ∈ C∞(T/2, T ). We de�ne z = (z1, z2) ∈ C∞(Q0;R2) and
π ∈ C∞(Q0) by

z1(t, x) := F1(t), z2(t, x) := F2(t),

and
π(t, x) := −F ′1(t)x1 − F ′2(t)x2 + F1(t)y1 + F2(t)y2.

Then L∗0(z, π) = 0. However, if (F1, F2) 6= (0, 0), then B∗0(z, π) 6= 0. Hence, in this case, (3.13)
does not hold whatever the linear partial di�erential operatorM0 is and whatever the trajectory
(y, p, u) is.

3.2.2 Number of variables and equations

Let us give some algebraic results about the number of derivatives of a certain order.

De�nition 3. Consider a scalar PDE with a smooth (enough) variable z depending on 4 vari-
ables x0, x1, x2, x3. We call equations of level n all the di�erent equations we obtain by dif-
ferentiating the PDE with respect to all the possible multi-integers of length n. The number of
distinct equations of level n is denoted E(n), and the number of distinct equations of a level less
than or equal to n is denoted F (n).

Remark 5. Clearly, E(n) is also the distinct number of derivatives of order n for (smooth
enough) functions having 4 variables, and F (n) is also the distinct number of derivatives of an
order less than n for (smooth enough) functions having 4 variables. Moreover, if we consider a
scalar PDE with many variables z1, . . . , zk depending on x0, x1, x2, x3 containing derivatives of
z1, . . . zk of order m at most, the maximum number of derivatives of z1, . . . zk we may expect in
the equations of a level less than or equal to n is kF (n+m).

We want to compute E and F precisely. One has

E(n) =
(n+ 1)(n+ 2)(n+ 3)

6
, (3.19)

F (n) =
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

24
. (3.20)
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Indeed

(α0, α1, α2, α3) 7→ {α0 + 1, α0 + α1 + 2, α0 + α1 + α2 + 3, α0 + α1 + α2 + α3 + 4}

de�nes a bijection between the set of (α0, α1, α2, α3) ∈ N4 such that α0 + α1 + α2 + α3 6 n
and the set of subsets of {1, 2, . . . , n+ 4} having 4 elements. Hence, F (n) being the number of
(α0, α1, α2, α3) ∈ N4 such that α0 +α1 +α2 +α3 6 n, we have (3.20). In order to obtain (3.19),
we just have to notice that

E(n) = F (n)− F (n− 1)

=
(n+ 1)(n+ 2)(n+ 3)

6
.

3.2.3 A related overdetermined system

Let us now study the equation (3.16), where the data is (ϕ1, ϕ2, ϕ3, ϕ4) ∈ C∞(Q0)4 and the
unknown is (z1, z2, π) ∈ C∞(Q0)3.

Let us explain the idea behind the reasoning we are going to develop in this subsection,
which comes from [19, Section 2.3.8, p. 148]. Equation (3.16) is �analytically� overdetermined,
since we have more equations (4) than unknowns (3). However, if we see (3.16) as a linear
system of algebraic unknowns (the unknowns being z1, z2, π and their derivatives) the system
is now �algebraically� underdetermined: We have 4 equations and 19 unknowns. But it is easy
to obtain as many new equations as we want: It su�ces to di�erentiate (3.16) enough times.
Some new �algebraic unknowns� (the derivatives of z1, z2, π) appear, but since the system was
analytically overdetermined, one can hope that they are not too many new unknowns appearing.
Notably, one can hope that, after di�erentiating a su�cient number of times, we obtain more
equations than algebraic unknowns. We would then deduce Assumption A2 by inverting in
some sense this well-posed linear system (this will be explained in detail later).

We �rst eliminate π in our equation (3.16). To reach this goal, in (3.16), we apply ∂3 to the
�rst and second lines, and use the third line. We obtain the following equations:

−2y1
3z

1
1 − y2

3z
1
2 + (y1

1 − y3
3)z1

3 − y1z1
13 − y2z1

23 − y3z1
33 − z1

3t −∆z1
3

−y2
3z

2
1 + y2

1z
2
3 = ϕ1

3 − ϕ3
1,

−y1
3z

1
2 + y1

2z
1
3 − y1

3z
2
1 − y1z2

13 − 2y2
3z

2
2 − y2z2

23 + (y2
2 − y3

3)z2
3

−y3z2
33 − z2

3t −∆z2
3 = ϕ2

3 − ϕ3
2,

−z1
1 − z2

2 = ϕ4.

(3.21)

The �rst and second equation of (3.21) contain derivatives of z1 and z2 up to order 3 and the
third equation derivatives up to order 1. We would like to have the same derivatives of maximal
order appearing in the three equations in order to be sure that the derivatives of maximal order
appearing in the �rst and second equation might also appear in the third one. Hence we are
going to di�erentiate the last equation 2 more times than the others. If we count the maximum

14



number of derivatives of z1 and z2 we create by di�erentiating n times the �rst and second
equation and n+ 2 times the third one, we obtain

H(n) = 2F (n+ 3) =
(n+ 4)(n+ 5)(n+ 6)(n+ 7)

12
(3.22)

di�erent derivatives. The number G(n) of equations we obtain is then

G(n) = 2F (n) + F (n+ 2)

=
(3 + n)(4 + n)(34 + 17n+ 3n2)

24
.

(3.23)

From (3.22) and (3.23), one sees that G(n)−H(n) is increasing with respect to n and that

G(18)−H(18) = −44 < 0 and G(19)−H(19) = 460 > 0.

Hence, in order to have more equations than unknowns and as few equations as possible, we
choose n = 19. We have G(19) = 30360 equations and H(19) = 29900 unknowns. We can see
this system of 30360 partial di�erential equations as a linear system of the form

L0(t, x)Z = Φ,

where L0 ∈ C∞(Q0;M30360×29900(R)), Z ∈ R29900 (Z contains the derivatives of z1 and z2 up
to the order 19) and Φ ∈ R30360 (Φ contains the derivatives of ϕ up to the order 19). We order
the 29900 lines of Z so that 

Z1 = z1
1 ,

Z2 = z1
2 ,

Z3 = z1
3 ,

Z4 = z2
1 ,

Z5 = z2
2 ,

Z6 = z2
3 .

Assumption A2 can then be written in the following form: Prove the existence of a nonempty
open subset ω0 of C2 and of a map N ∈ C∞(Q0;M6×30360(R)) (N is the algebraic version
of the linear partial di�erential operator N introduced in Subsection 3.2, every linear partial
di�erential operator can be alternatively considered as a matrix acting on the derivatives of the
arguments of the operator) such that

N(t, x)L0(t, x)Z = (Z1, Z2, Z3, Z4, Z5, Z6), ∀(t, x) ∈ Q0, ∀Z ∈ R29900. (3.24)

Since the size of the matrix L0(t, x) is very large, it is impossible to �nd some N verifying
System (3.24) by hand and we will have to do computations on a computer. Notably, it would
be more convenient to make L0 be a sparse matrix in order to use relevant tools adapted to

15



the study of big sparse linear systems. This is the reason for our simple choices for a, b and c
given in (2.16), (2.17) and (2.18) (polynomials of small order do not create to many non zero
coe�cients in L0 when they are di�erentiated). Using (2.1), (2.16), (2.17), (2.18), (2.19) and
(2.20), System (3.21) becomes simply, in Q0,

a(t)(−4x3
1 − 4x1x

2
2)εz1

1 + a(t)(−2x2
1x2 − 2x3

2)εz1
2

+a(t)(14x2
1x3 + 10x2

2x3)εz1
3 + a(t)(−2x2

1x2 − 2x3
2)εz2

1 + 4a(t)x1x2x3εz
2
3

+a(t)(−2x3
1x3 − 2x1x

2
2x3)εz1

13 + a(t)(−2x2
1x2x3 − 2x3

2x3)εz1
23

+a(t)(4x2
1x

2
3 + 4x2

2x
2
3)εz1

33 − z1
3t − z1

113 − z1
223 − z1

333 = ϕ1
3 − ϕ3

1,

a(t)(−2x3
1 − 2x1x

2
2)εz1

2 + a(t)4x1x2x3εz
1
3 + a(t)(−2x3

1 − 2x1x
2
2)εz2

1

+a(t)(−4x2
1x2 − 4x3

2)εz2
2 + a(t)(10x2

1x3 + 14x2
2x3)εz2

3

+a(t)(−2x3
1x3 − 2x1x

2
2x3)εz2

13 + a(t)(−2x2
1x2x3 − 2x3

2x3)εz2
23

+a(t)(4x2
1x

2
3 + 4x2

2x
2
3)z2

33 − z2
3t − z2

113 − z2
223 − z2

333 = ϕ2
3 − ϕ3

2,

−z1
1 − z2

2 = ϕ4.

(3.25)

Let us consider the changing of variables

s := εa(t)

and

e :=
1

T − t
.

(e appears when we di�erentiate t 7→ a(t) on Q0). Let R[E,S,X] be the set of polynomials
in the variables e, s, x1, x2, x3, with real coe�cients. The 30360 × 29900 entries of L0 can
alternatively be seen as functions depending on (t, x1, x2, x3, ε) or as elements of R[E,S,X]
and, from now on, we consider L0 as an element of M30360×29900(R[E,S,X]). As we will see
after, it turns out that many of the entries of L0 are the 0 polynomial.

For a positive integer k, let us denote by Sk the set of permutations of {1, . . . , k}. To each
σ ∈ Sk, we associate the matrix Sσ ∈Mk,k(R) de�ned by

Sσ(i)i = 1, ∀i ∈ {1, . . . , k},
Sji = 0, ∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . , k} \ {σ(i)}.

(3.26)

For two positive integers k and l, let us denote by 0k×l the null matrix ofMk×l(R) (which is
included inMk×l(R[E,S,X])). The following lemma is a key step for the proof of Proposition 2.

Lemma 1. There exist
ξ0 := (e0, s0, x0) ∈ R5,

σ ∈ S29900,

σ̃ ∈ S30360,
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P ∈M7321×7321(R[E,S,X]),

Q ∈M23039×7321(R[E,S,X])

and
R ∈M23039×22579(R[E,S,X])

such that

σ(i) = i, ∀i ∈ {1, 2, 3, 4, 5, 6}, (3.27)

Sσ̃L0Sσ =

(
P 07321,22579

Q R

)
, (3.28)

the rank of P (ξ0) is 7321. (3.29)

Let us assume for the moment that this lemma holds and end the proof of Proposition 2. A
consequence of Lemma 1 is the following:

Lemma 2. There exists a nonempty open subset ω0 of C2, T ∗ > 0 and ε∗ > 0, such that

det P (
1

T − t
, εa(t), x) 6= 0, ∀T ∈ (0, T ∗], ∀t ∈ [T/2, T ), ∀ε ∈ (0, ε0], ∀x ∈ ω0. (3.30)

Proof of Lemma 2. Let us �rst point out that det P ∈ R[E,S,X] and, by (3.29), this
polynomial is not the 0 polynomial. Hence there exist a nonnegative integerm and a polynomial
P̃ ∈ R[E,S,X] such that

det P (E,S,X) = SmP̃ (E,S,X), (3.31)

P̃ (E, 0, X) ∈ R[E,X] is not the 0 polynomial. (3.32)

By (3.32), there exist δ > 0, C ′ > 0 and a nonempty open subset ω0 of C2 such that

|P̃ (e, 0, x)| > 2δ, ∀e ∈ [C ′,+∞), ∀x ∈ ω0. (3.33)

By the mean value theorem, there exist a positive integer l and a positive real number C∗ such
that

|P̃ (e, s, x)− P̃ (e, 0, x)| 6 C∗|s|
(
|e|l + |s|l + 1

)
, ∀e ∈ R, ∀s ∈ R, ∀x ∈ ω0. (3.34)

By (2.16), there exists ε∗ such that

ε∗|a(t)|
(
(T − t)−l + ε∗l|a(t)|l + 1

)
6

δ

C∗
, ∀T ∈ (0, 2/C ′], ∀t ∈ [T/2, T ). (3.35)

From (3.33), (3.34) and (3.35), we obtain that

∀T ∈ (0, 2/C ′], ∀t ∈ [T/2, T ), ∀ε ∈ (0, ε∗], ∀x ∈ ω0,

|P̃ ((T − t)−1, εa(t), x)| > δ,

which concludes the proof of Lemma 2.
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Let us now go back to the proof of Proposition 2. For every positive integer l, we denote by
Idl the identity map of Rl. By (3.30), there exists U ∈ C∞(Q0;M7321×7321(R)) such that

U(t, x)P (t, x, ε) = Id7321, ∀x ∈ ω0. (3.36)

Let Ũ ∈ C∞(Q0;M7321×30360(R)) be de�ned by

Ũ(t, x) :=
(
U(t, x) 07321,23039

)
, ∀x ∈ ω0. (3.37)

From (3.28), (3.36) and (3.37), one has

Ũ(t, x)Sσ̃L0(t, x) =
(
Id7321 07321,22579

)
S−1
σ , ∀x ∈ ω0. (3.38)

Let K ∈M6,7321(R) be de�ned by

K :=
(
Id6 06,7315

)
. (3.39)

From (3.27), (3.38) and (3.39), one has

KŨ(t, x)Sσ̃L0(t, x) =
(
Id6 06,29894

)
S−1
σ =

(
Id6 06,29894

)
, ∀x ∈ ω0,

which shows that (3.24) holds with N(t, x) := KŨ(t, x)Sσ̃, and ends the proof of Proposition 2.

To �nish the proof of Proposition 2, it is now enough to prove Lemma 1.
Proof of Lemma 1. The fact that the dependence of y and its derivatives in the time

variable is quite complicated (it is both exponential and fractional) compared to the dependence
in the space variable (which is polynomial) is problematic, because it is not very convenient to
use for computations on a computer. In the previous proof we have seen det P as a polynomial
in s = εa(t), e = 1

T−t (which corresponds to terms appearing when we di�erentiate t 7→ a(t))
and x. Assume that we �x e = 0: This is equivalent to do as if� the derivatives of a were all
identically the null function, i.e. to do as if the function t 7→ a(t) were replaced by a constant
function, which is simpler than our original function a. We will then impose e0 = 0 for our
computations. Let us set ξ0 := (e0, s0, x0) with e0 = 0, s0 = 1 and x0 = (1.1, 1.2, 1.3).

First of all, let us prove that a decomposition under the form of (3.28) exists at least at
point ξ0. We present in the Appendix A how we computed the matrix

L0
0 := L0(ξ0) ∈M30360×29900(R)

thanks to a C++ program.
From now on we assume that we have matrix L0

0 at our disposal and we are going to explain
how to exploit it to obtain Lemma 1.

We begin with reordering the columns so that the null columns of L0
0 are moved to the last

columns. One veri�es for example thanks to Matlab that there are exactly 140 such columns.
There exist σ ∈ S29900 and N0 ∈M30360×29760(R) such that
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L0
0Sσ =

(
N0 030360×140

)
. (3.40)

One problem is that it could happen that some columns of L0
0 are equal to 0 but the correspond-

ing columns of L0 are not identically null. However, we check that it is not the case (thanks to
the evaluation function described in Appendix A).

Let us recall that our goal is to extract a well-chosen submatrix of L0
0 which is of maximal

rank. A reasonable hope would have been that the matrix N0 (of size 30360× 29760) itself is of
maximal rank 29760 (we would then have obtained something similar to Lemma 1 by choosing
some squared extracted matrix of maximal rank P 0 of N0, which is always possible, the matrix
P 0 would then have been of size 29760 × 29760 and the non-selected lines would be permuted
to obtain matrices Q0 of size 600× 29760 and R0 of size 600× 140). However it turns out to be
false, as we will see later on.

Since computing the rank of L0
0 on a computer is too long because of its size, we introduce

the notion of structural rank.

De�nition 4. Let A ∈ Mn,m(R) and B ∈ Mn,m(R). We say that A and B are structurally
equivalent if the following property is veri�ed:

Aij = 0⇔ Bij = 0.

This is an equivalence relation onMn,m(R), and we will call Cl(A) the equivalence class of A.
The structural rank of a matrix A (denoted sprank(A) in the following) is the maximal rank
of the elements of Cl(A). Equivalently, if we �ll randomly the nonzero coe�cients of A with
probability 1 the rank of A is the structural rank.

One sees that the structural rank does not depend on the coe�cients of the matrix but only
on the distribution of the zeros in the matrix and is never less than the rank. The advantage of
the structural rank is that it can be computed fast (in a couple of seconds in our case), especially
on sparse matrices. It corresponds to the function sprank in Matlab.

Computing the structural rank of N0 thanks to Matlab we �nd that

sprank(N0) = 28654 < 29760,

hence there is no hope that the rank of N0 is maximal.
To extract a submatrix of N0 which is of maximal rank, we can, for example, begin with

extracting a submatrix of P 0 which is of maximal structural rank, and verify that it is of
maximal rank too. The right way to do this is to explore more carefully how the structural rank
is computed. In fact the key point is the existence of a decomposition in block triangular form
(which is related to the Dulmage-Mendelsohn decomposition for the bipartite graph associated
to any matrix, see [14] and [26]) of a matrix.
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Proposition 3. Let A be a matrix. Then one can permute the columns and the lines of A to
obtain a matrix of the following form:

A11 A12 A13 A14

0 0 A23 A24

0 0 0 A34

0 0 0 A44,

 (3.41)

where:

1. (A11, A12) is the underdetermined part of the matrix, it always has more columns than
rows.

2. (A13, A14) is the overdetermined part of the matrix, it always has more rows than columns.

3. A12, A23, A34 are square matrices with nonzero diagonals (notably these matrices are of
maximal structural rank)

4. A23 is the well-determined part of the matrix (if the matrix is square and non-singular, it
is the entire matrix).

Moreover, one can permute rows and columns so that A23 is also block triangular. The decom-
position obtained is called the block triangular form of matrix A. The structural rank of A is
given by the sum of the structural ranks of A12, A23, A34.

The block triangular form (3.41) (also called the coarse decomposition) of the matrix is in
fact given by the dmperm function in Matlab, which also gives the permutation that makes the
matrix be in the form of (3.41). It also gives the block form of the well-determined part (which
is called the �ne decomposition). One easily understands how to obtain a matrix of the form of
(3.28) thanks to this decomposition: One can permute the blocks to obtain

A34 0 0 0

A44 0 0 0

A14 A11 A12 A13

A24 0 0 A23

 , (3.42)

from which we easily deduce decomposition (3.28).
To simplify the computations, we are not going to apply this block triangular decomposition

directly to L0
0 but to a well-chosen submatrix L̃0

0. First of all, we go back to L0 and select some

equations and unknowns: There exist σ0 ∈ S29900, σ̃
0 ∈ S30360, Q̃0 ∈ M16623×14630(R) and

R̃0 ∈M16623×15270(R) such that (see (3.42))

Sσ̃0L0Sσ0 =

(
L̃0 013737×15270

Q̃0 R̃0

)
, (3.43)

20



where L̃0 corresponds to the equations we obtain by di�erentiating the two �rst equations
of (3.21) 15 times and the last equation 17 times, so that L̃0 is of size (G(15), H(15)) =
(13737, 14630) (here there are more unknowns than equations but we will see that this will not
be a problem).

Let us call
L̃0

0 := L̃0(ξ0),

and let us call
Q̃0 := Q̃(ξ0),

R̃0 := R̃(ξ0),

S̃0 := S̃(ξ0).

One has

Sσ̃0L0
0Sσ0 =

(
L̃0

0 013737×15270

Q̃0 R̃0

)
.

Thanks to Matlab, we �nd the Dulmage-Mendelsohn decomposition of L̃0
0 and observe that

there exists some permutations matrices σ1 and σ̃1 such that (see (3.42))

Sσ̃1L̃0
0Sσ1 =

(
L

0

0 09050×5578

Q0 R0

)
,

with Q
0 ∈ M4687×9050(R), R

0 ∈ M4687×5578(R), and L
0

0 is of maximal structural rank and
square of size 9050×9050 (it corresponds to the block A34 in the triangular block decomposition).

Applying the Dulmage-Mendelsohn algorithm now on L
0

0, we can write L
0

0 in an block upper
triangular form with 352 diagonal blocks (this is the �ne decomposition), the �rst 351 of them

being of �small� size and the latter one being of size 7321. Let us call L
0

0(i,j) (with (i, j) ∈
[|1; 352|]2) the blocks of L0

0.

Using this decomposition, one can see (using Matlab) that L
0

0 is not of maximal rank.

However, by computing the rank of the block L
0

0352,352 thanks to Matlab, one sees that it is of
maximal rank 7321. Moreover, we verify that

the columns corresponding to the unknowns z1
1 , z

1
2 , z

1
3 , z

2
1 , z

2
2 , z

2
3

appear in this block, (3.44)

by looking carefully on Matlab where the columns corresponding to these unknowns have been
moved under the action of the permutation matrices Sσ0 and Sσ1 . More precisely, z1

i corresponds

to the i-th column of L
0

0(352,352) and z
2
i to the (3632 + i)-th column of L0

352,352.
Let us call

P 0 := L
0

0352,352.
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There exist σ ∈ S29900, σ̃ ∈ S30360, Q
0 ∈M23039×7321(R[E,S,X]) andR0 ∈M23039×22579(R[E,S,X])

such that

Sσ̃L̃
0
0Sσ =

(
P 0 07321×22579

Q0 R0

)
, (3.45)

the rank of the �rst block P 0 being maximal. The distribution of the nonzero coe�cients of P 0

is given in Figure 2.
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Figure 2: Distribution of the nonzero coe�cients of P 0.

Now, we come back to the matrix L0 and we consider the following matrices:

M̃0 := Sσ̃L̃
0Sσ,

where Sσ̃ and Sσ are introduced in (3.45).
Let us call Θ the set of all coe�cients of L0 (considered as a polynomial in the variables

E,S,X) that are not identically zero, and Θ0 the set of all coe�cients of L0
0 that are not equal

to 0. Clearly Θ0 ⊂ Θ (in fact thanks to Matlab one can see that Θ0 is much smaller than Θ),
moreover Θ \ Θ0 corresponds to the nonzero coe�cients of the matrix that become identically
null when we change a(t) into the function identically equal to 1 and apply it at point ξ0. What
could happen is that M̃0 is not of block triangular form as in (3.45) (the null block of the
matrix M̃0 may contain some elements of Θ \Θ0). However, since the only important thing is
the location of the elements of Θ \Θ0 and not their value, one can verify easily on Matlab that
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the coe�cients of Θ \Θ0 do not in�uence the block form (3.45) (by looking where the elemnts
of Θ \Θ0 are moved under the action of Sσ̃ and Sσ), i.e. the permutations Sσ̃ and Sσ also give
a decomposition under the form of (3.45) for L̃0: There exists

P̃ ∈M7321×7321(R[E,S,X]),

Q̃ ∈M23039×7321(R[E,S,X])

and
R̃ ∈M23039×22579(R[E,S,X])

such that

Sσ̃L̃
0Sσ =

(
P̃ 07321×22579

Q̃ R̃

)
, (3.46)

with the relations P (ξ0) = P 0, Q(ξ0) = Q0, R(ξ0) = R0.
Property (3.28) follows then directly from (3.43) and (3.46), (3.29) is a direct consequence of

the above construction, and (3.27) can be easily deduced by permuting some lines and columns
of Sσ̃ and Sσ (thanks to Property (3.44)). Finally, Lemma 1 holds.

Consequently Proposition 2 holds. Moreover, one observes that the linear partial di�erential
operatorM0 that we have just created so that (3.11) holds is exactly P∗, (where P is the di�eren-
tial version of the matrix P seen as a partial di�erential operator acting on (z1

1 , z
1
2 , z

1
3 , z

2
1 , z

2
2 , z

2
3))

and is of order 17 (because we have di�erentiated the equations of (3.16) 16 times, and (3.21)
was obtained by di�erentiating System (3.16) 1 time). Hence, the corresponding operator M
in equality (3.5) is also of order 17.

This concludes the proof of Proposition 2.

3.3 Controllability of the linear control system (3.6)

In this subsection we prove some technical lemmas that imply the null controllability of (3.6)
with controls which are derivatives of smooth enough functions having a small support. This is
needed to ensure that the controls are in the image of B (this is exactly Assumption A1) and
to take into account Remark 3.

The �rst lemma is the following one, (remind that y is one of the trajectories constructed in
Section 2). It consists in a Carleman estimate with curl observation.

Lemma 3. Let θ : Ω→ [0,+∞) be a lower semi-continuous function which is not identically 0
and let r ∈ (0, 1). There exists C1 > 0 such that, for every K1 > C1, every ν > K1(1/r−1), there
exists ε0 such that for every ε ∈ (0, ε0), there exists C > 0 such that, for every g ∈ L2((0, T )×Ω)3
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and for every solution z ∈ L2((0, T ), H)∩L∞((0, T ), V ) of the adjoint of the linearized Navier-
Stokes system 

−zt −∆z − (y · ∇tr)z − (z · ∇)y +∇π = g in Q,

∇ · z = 0 in Q,

z = 0 on [0, T ]× ∂Ω,

(3.47)

one has

||e
−K1

2r(T−t)5 z||2L2((T/2,T ),H1(Ω)3) + ||z(T/2, ·)||2L2(Ω)3

6 C

(∫
(T/2,T )×Ω

θe
− K1

(T−t)5 |∇ ∧ z|2 +

∫
(T/2,T )×Ω

e
− K1

(T−t)5 |g|2
)
. (3.48)

Proof of Lemma 3. In this proof, our system, which is initially de�ned on (0,T), will only
be considered on the interval of time (T/2, T ). In fact, in what follows (see, in particular, the
proof of Proposition 4), we will not act on the system on the interval (0, T/2), hence we only
need a Carleman estimate on (T/2, T ). For our proof, we need to use the particular form of our
y in time, notably that (see (2.16)),

|y(t, x)|+ |∇y(t, x)| 6 Cεe
−ν

(T−t)5 , ∀(t, x) ∈ (T/2, T )× Ω. (3.49)

Without loss of generality, we may assume that there exists nonempty open subset ω∗ of Ω such
that θ = 1ω∗ . Let us now give some extra notations. Let η0 ∈ C2(Ω) such that |∇η0| > 0 in
Ω \ ω∗ and η0 = 0 on ∂Ω. For the existence of η0, see [17, Lemma 1.1, p. 4]. Let us call

α(t, x) :=
e12λ||η0||∞ − eλ(10||η0||∞+η0(x))

(t− T/2)5(T − t)5
, ξ(t, x) :=

eλ(10||η0||∞+η0(x))

(t− T/2)5(T − t)5

and
α∗(t) := max

x∈Ω
α(t, x).

We call
Q/2 := (T/2, T )× Ω.

Using (3.49) and [20, Proposition 3.1, p. 6] on the adjoint system (3.47) (where we see the
�rst and zero order terms of this equation as a second member, because Proposition 3.1 of [20]
concerns only the Stokes system), one has, for λ > C and s > C,

s3λ4

∫
Q/2

e−2sα−2sα∗ξ3|∇ ∧ z|2 + sλ2

∫
Q/2

e−2sα−2sα∗ξ|∇(∇∧ z)|2

6 C

(
s3λ4

∫
(T/2,T )×ω∗

e−2sα−2sα∗ξ3|∇ ∧ z|2 + ε

∫
Q/2

e−2sα∗e
− 2ν

(T−t)5 (|z|2

+|∇z|2) +

∫
Q/2

e−2sα∗ |g|2
)
.
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In fact, looking carefully at the proof of Proposition 3.1 of [20], one remarks (just by changing
the weight ρ(t) := e−sα

∗
by ρ(t) := e−asα

∗
where a is a parameter that can be chosen as large

as we wish), that the previous inequality can be improved in the following way, as soon as s is
large enough, for every a > 0 (the constant C depending on a):

s3λ4

∫
Q/2

e−2sα−2asα∗ξ3|∇ ∧ z|2 + sλ2

∫
Q/2

e−2sα−2asα∗ξ|∇(∇∧ z)|2

6 C

(
s3λ4

∫
(T/2,T )×ω∗

e−2sα−2asα∗ξ3|∇ ∧ z|2 + ε

∫
Q/2

e−2asα∗e
− 2ν

(T−t)5 (|z|2

+|∇z|2) +

∫
Q/2

e−2asα∗ |g|2
)
. (3.50)

As usual, we now change our weights so that they do not vanish at time t = T/2. Let us call
l : [T/2, T ]→ R de�ned by l(t) = T 2/16 on [T/2, 3T/4] and l(t) = (t−T/2)(T − t) on [3T/4, T ].
Let us de�ne

β(t, x) :=
e12λ||η0||∞ − eλ(10||η0||∞+η0(x))

l5(t)
, γ(t, x) :=

eλ(10||η0||∞+η0(x))

l5(t)
,

β∗(t) := max
x∈Ω

β(t, x), γ∗(t) := max
x∈Ω

γ(t, x).

Clearly, the functions α and β coincide on [3T/4, T ], as well as the functions ξ and γ. Using
classical arguments (see for example the proof of Lemma 1 of [15]), one easily obtains (one can
forget the weight s and λ in front of our terms from now on) the existence of C (depending now
on s, λ, which are assumed to be large enough, and a) such that∫

Q/2

e−2(1+a)sβ∗ |∇ ∧ z|2 +

∫
Q/2

e−2(1+a)sβ∗ |∇(∇∧ z)|2

6 C

(∫
(T/2,T )×ω∗

e−2asβ∗γ∗3|∇ ∧ z|2 + ε

∫
Q/2

e−2asβ∗e
− 2ν

(T−t)5 (|z|2 + |∇z|2)

+

∫
Q/2

e−2asβ∗ |g|2
)
. (3.51)

One remarks that, since ∇ · z = 0 in Q and z = 0 on (0, T )× ∂Ω, one has

C||e−2(1+a)sβ∗∇∧ z||2L2(Q/2)3 > ||e−2(1+a)sβ∗∇z||2L2(Q/2)9 . (3.52)

Using Poincaré's inequality, we also have

C||e−2(1+a)sβ∗∇z||2L2(Q/2)9 > ||e−2(1+a)sβ∗z||2L2(Q/2)3 . (3.53)
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Putting this into (3.51), one obtains∫
Q/2

e−2(1+a)sβ∗ |∇z|2 +

∫
Q/2

e−2(1+a)sβ∗ |z|2

6 C

(∫
(T/2,T )×ω∗

e−2asβ∗γ∗3|∇ ∧ z|2 + ε

∫
Q/2

e−2asβ∗e
− 2ν

(T−t)5 (|z|2 + |∇z|2)

+

∫
Q/2

e−2asβ∗ |g|2
)
. (3.54)

Let us de�ne, for a > 1,

K0 := 26(1 + a+
√
a)s

e12λ||η0||∞ − e
λ(10||η0||∞+ min

x∈Ω
η0(x))

T 5
, (3.55)

K1 := 26(a−
√
a)s

e12λ||η0||∞ − e
λ(10||η0||∞+ min

x∈Ω
η0(x))

T 5
. (3.56)

One has the existence of C∗ > 0 (depending on a > 1, λ >> 1 and s >> 1) such that

e−2asβ∗(t)γ∗3(t) 6 C∗e
−K1

(T−t)5 , ∀t ∈ (T/2, T ). (3.57)

Moreover, there exists Ĉ > 0 (depending on a > 1, λ >> 1 and s >> 1) such that

e
− K0

(T−t)5 6 Ĉe
− 2(1+a)sβ∗

l5(t) , ∀t ∈ (T/2, T ). (3.58)

Fixing s, λ and making a→ +∞, one easily sees that K0/K1 = 1+a+
√
a

a−
√
a
→ 1+ so that for every

r ∈ (0, 1), we have for a large enough, K0 < K1/r. For ε > 0 small enough and for ν large

enough (ν > K0−K1), one can absorb the undesired terms ε
∫
Q/2

e−2asβ∗e
− 2ν

(T−t)5 (|z|2 + |∇z|2)

from the right-hand side of (3.54). Then using some classical energy estimates together with
(3.57) and (3.58), one obtains (3.48).

From now on, we set

ρr(t) := e
−K1

r(T−t)5 , ρ1(t) := e
−K1

(T−t)5 .

Let us now derive from this Carleman inequality a result of null-controllability with controls
which are derivatives of smooth functions. Let 1̂ω0 : R3 → [0, 1] be a function of class C∞ which
is not identically equal to 0 and having a support included in ω0, where ω0 was introduced in
Lemma 2. We apply Lemma 3 with θ = 1̂ω0

. One has the following proposition.
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Proposition 4. With the notations of Lemma 3, let f ∈ L2(Q)3 be such that ρr
−1/2f ∈ L2(Q)3

and let us consider the following linearized Navier-Stokes control system
yt −∆y + (y · ∇)y + (y · ∇)y +∇p = f +∇∧ ((∇∧ u)1̂ω0

) in Q,

∇ · y = 0 in Q,

y = 0 on [0, T ]× ∂Ω,

(3.59)

where the control is u. Then, for every y0 ∈ V , there exists a solution (y, p, u) of (3.59), such
that y(0, ·) = y0 and for every K̃1 verifying 0 < K̃1 < K1,

e
K̃1(2−1/r)

2(T−t)5 (∇∧ u)1̂ω0 ∈ L2((T/2, T ), H53(Ω)3) ∩H27((T/2, T ), H−1(Ω)3), (3.60)

e
K̃1

2(T−t)5 y ∈ L2((T/2, T ), H2(Ω)3) ∩ L∞((T/2, T ), H1(Ω)3). (3.61)

Proof of Proposition 4. For what follows, we only control on the interval of time (T/2, T ),
i.e. we set u = 0 on (0, T/2) and let the corresponding solution (y, p) of (3.59) on (0, T/2) evolve
naturally until time T/2. Let yT/2 = y(T/2, ·). We are now going to de�ne (y, p, u) on (T/2, T ).

Let us call Xm := L2((T/2, T ), H2m(Ω)3)∩Hm((T/2, T ), L2(Ω)3), which is an Hilbert space
for the usual scalar product, and X ′m its dual with pivot space L2(Q/2)3.

Let L : C∞(Q/2)3 → C∞(Q/2)3 be the linearized time-dependant Navier-Stokes operator

Ly = yt −∆y + (y · ∇)y + (y · ∇)y

and L∗ : C∞(Q/2)3 → C∞(Q/2)3 be its adjoint. Let P0 be the set of (w, h) such that

w ∈ L2((T/2, T ), H2(Ω)3) ∩H1((T/2, T ), L2(Ω)3) ∩ L∞((T/2, T ), H1(Ω)3),

h ∈ L2((T/2, T ), H1(Ω)) and

∫
Ω

h(t, x)dx = 0,∀t ∈ (T/2, T ),

∇ · w = 0 in Q/2

w = 0 on (T/2, T )× ∂Ω,

L∗w +∇h ∈ C∞0 (Q/2)3.

Let a be the following bilinear form de�ned on P0 (according to the right-hand side of (3.48)):

a((z, q), (w, h)) :=<
√
ρ1(L∗z +∇q),√ρ1(L∗w +∇h) >X26

+

∫
Q/2

1̂ω0
ρ1(∇∧ z).(∇∧ w).

From the unique continuation property for Stokes-like systems induced by (3.48), we deduce
that a is a scalar product on P0. Let P be the completion of P0 for the norm associated to a.
Then, (P, a) is a Hilbert space and a is continuous and coercive on P . Let us now consider the
linear form l de�ned on P0 by

l(w, h) :=

∫
Q/2

fw +

∫
Ω

yT/2w(T/2, .).
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Using the Cauchy-Schwarz inequality together with (3.48), one has, for every (w, h) ∈ P0,

|l(w, h)| 6 ||ρr−1/2f ||L2(Q/2)3 ||
√
ρrw||L2(Q/2)3 + ||yT/2||L2(Ω)3 ||w(T/2, .)||L2(Ω)3

6 C(||ρr−1/2f ||L2(Q/2)3 + ||yT/2||L2(Ω)3)
√
a((w, h), (w, h)). (3.62)

Hence l can be uniquely extended as a continuous linear map from P into R. Then (3.62) holds
for every (w, h) ∈ P . Applying the Lax-Milgram theorem, there exists a unique (ẑ, q̂) ∈ P
verifying

a((ẑ, q̂), (w, h)) = l(w, h),∀(w, h) ∈ P. (3.63)

We then set

ŷ := ρ1(L∗ẑ +∇q̂ +

52∑
k=1

(−1)k(∆̃k(L∗ẑ +∇q̂))

+
√
ρ1(

26∑
k=1

(−1)k∂2k
t (
√
ρ1(L∗ẑ +∇q̂)))) (3.64)

and
û := ρ1∇∧ (1̂ω0∇∧ ẑ),

where
∆̃kf :=

∑
16i16i26...6ik63

fi1i1i2i2...ikik .

Equation (3.63) implies that we have for every (w, h) ∈ P ,

<
√
ρ1(L∗ẑ +∇q̂),√ρ1(L∗w +∇h) >X26

+

∫
Q0

1̂ω0
ρ1∇∧ ẑ · ∇ ∧ w

=

∫
Q/2

fw +

∫
Ω

yT/2w(T/2, .)dx. (3.65)

From (3.65), one obtains that, for every g ∈ C∞0 (Q/2)3,∫
Q/2

fw +

∫
Q0

ûw +

∫
Ω

yT/2w(T/2, .)dx =< ŷ, g >X26′ ,X26
,

as soon as (w, h) veri�es 
L∗w +∇h = g in Q/2,

∇ · w = 0 in Q/2,

w = 0 on [T/2, T ]× ∂Ω,

z(T, ·) = 0 in Ω,

(3.66)
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that is to say there exists a pressure p̂ such that (ŷ, p̂) is the solution by transposition of
ŷt −∆ŷ + (y · ∇)ŷ + (ŷ · ∇)y +∇p̂ = f + û in Q/2,

∇ · y = 0 in Q/2,

y = 0 on [T/2, T ]× ∂Ω,

y(T/2, ·) = yT/2 on Ω.

(3.67)

Moreover, the fact that a((ẑ, q̂), (ẑ, q̂)) < +∞ easily implies (by coming back to the de�nition
of the norm in X ′26 and using equality (3.64)) that

(T − t)512ρ1
−1/2ŷ ∈ X ′26.

Using regularity results about linearized Navier-Stokes systems and a bootstrap argument, one

obtains that, for every K̃1 verifying 0 < K̃1 < K1, we have, with ρ̃1(t) := e
− K̃1

(T−t)5 ,

ρ̃
−1/2
1 ŷ ∈ L2((T/2, T ), H2(Ω)3) ∩ L∞((T/2, T ), H1(Ω)3), (3.68)

and (ŷ, p̂), which was de�ned by transposition, is now the weak solution of (3.67).
Let us now focus on û. Thanks to inequality (3.48), a((ẑ, q̂), (ẑ, q̂)) < +∞ implies that∫

Q/2

ρr ẑ
2 <∞ (3.69)

If we set u := ρ1ẑ, (3.69) is equivalent to

ρ1
−1ρr

1/2u ∈ L2(Q/2).

Using regularity results for L∗ applied on ρ1
−1ρr

1/2u and a bootstrap argument, one obtains

ρ̃−1
1 ρr

1/2u ∈ X27. (3.70)

Proposition 4 follows using (3.68) and (3.70).

3.4 Null-controllability of (3.1)

To �nish, one can gather the results of Subsection 3.2 and Subsection 3.3 in order to apply
Proposition 1 and obtain a controllability result on (3.1). However, we cannot work in the C∞

setting of Proposition 1, so we need to take into account Remark 3 and to be careful concerning
the spaces we are working with.

Proposition 5. For every T > 0 small enough, for every α ∈ (0, 1), there exists r0 ∈ (0, 1) such
that for every r ∈ (r0, 1), there exists C1 > 0 such that for every K1 > C1, for every f ∈ L2(Q)

be such that e
K1

2r(T−t)5 f ∈ L2(Q)3 and for every y0 ∈ V , if

ν =
1− r
r

K1, (3.71)
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there exists a solution (y, p, v) of the following linearized Navier-Stokes control system

yt −∆y + (y · ∇)y + (y · ∇)y +∇p = f + (0, 0, 1ω0v) in Q,

∇ · y = 0 in Q,

y(0, ·) = y0 in Ω,

y(T, ·) = 0 in Ω,

y = 0 on [0, T ]× ∂Ω,

(3.72)

such that

e
αK1

2(T−t)5 y ∈ L2((0, T ), H2(Ω)3) ∩ L∞((0, T ), H1(Ω)3), (3.73)

e
αK1

2(T−t)5 v ∈ L2(Q). (3.74)

Proof of Proposition 5. We want to apply Proposition 1. First of all, we deal with
Assumption A1. We apply Proposition 4: There exists a solution (y∗, p∗, u∗) of (3.59) such that
y∗(0, ·) = y0 and, for every K̃1 verifying 0 < K̃1 < K1,

e
K̃1(2−1/r)

2(T−t)5 1̂ω0(∇∧ u∗) ∈ L2((T/2, T ), H53(Ω)3) ∩H27((T/2, T ), H−1(Ω)3), (3.75)

e
K̃1

2(T−t)5 y∗ ∈ L2((T/2, T ), H2(Ω)3) ∩ L∞((T/2, T ), H1(Ω)3). (3.76)

Using well-known interpolation results (see for example [23, Section 13.2, p. 96]) and setting
n := 27, we obtain that

e
K̃1(2−1/r)

2(T−t)5 1̂ω0(∇∧ u∗) ∈ H(2n−1)/3(Q0) ⊂ H17(Q0).

Let us call w := 1̂ω0(∇∧ u∗), which is supported in Q0. One observes that

∇∧ w =

w
2
3 − w3

2

w1
3 − w3

1

w1
2 − w2

1

 .

Hence in view of equality (3.8) and setting

f1 = 0, f2 = −w3, f3 = w2, f4 = −w3, f5 = 0, f6 = w1, f7 = w1
2 − w2

1,

one has ∇∧ w ∈ Im(B) and Assumption A1 holds.
Now, we observe that Assumption A2 follows from Proposition 2. Let (ỹ, p̃, ṽ) be de�ned by

(ỹ, p̃, v) := −Mw,

whereM is as in (the proof of) Proposition 2. It makes sense to applyM to w becauseM is
a partial di�erential operator of order 17 and w ∈ H17(Q0).
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Using the fact that the operator M is a partial di�erential operator of order 17 and that

the coe�cients of M explodes at time t = T at rate at most e
7321ν

(T−t)5 , as it follows from the
construction of ȳ given in Section 2 (see in particular (2.16)) and the construction of M given
in the proof of Proposition 2, one has

e
K2

2(T−t)5 v ∈ L2(Q0), (3.77)

e
K2

2(T−t)5 ỹ ∈ L2(Q0), (3.78)

for every K2 < K1(2 − 1/r) − 7321ν. In order to obtain ỹ(T, .) = 0, it is enough to have an
exponential decay for y at time T , i.e. to impose

K1(2− 1/r)− 7321ν > 0,

which, with (3.71), is equivalent to

r >
7322

7323
,

which can be insured since r can be arbitrarily chosen close to 1. Let α ∈ (0, 1). We take

r0 :=
7322

7323− α
. (3.79)

Then if r ∈ (r0, 1), one has

αK1 < K1 − 7321K1
1− r
r

. (3.80)

By (3.80), there exists K2 such that

αK1 < K2 < K1 − 7321K1
1− r
r

= K1 − 7321ν. (3.81)

Finally, one can apply Proposition 1 and we set

(y, p) := (y∗ + ỹ, p∗ + p̃).

Thanks to (3.75), (3.76), (3.77) and (3.78), one has

e
K2

2(T−t)5 v ∈ L2(Q0),

e
K2

2(T−t)5 y ∈ L2(Q0).

Then, using usual regularity results for the linearized Navier-Stokes operators on e
K2

2(T−t)5 y
now considered on the entire time interval (0, T ) (y ∈ L2((0, T/2) × Ω), hence we also have

e
K2

2(T−t)5 y ∈ L2((0, T/2)× Ω)), we obtain

e
αK1

2(T−t)5 y ∈ L2((0, T ), H2(Ω)3) ∩ L∞((0, T ), H1(Ω)3),

as soon as y0 ∈ V . The proof of Proposition 5 is completed.
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4 Proof of Theorem 1

To conclude, we are going to apply an inverse mapping theorem to go back to the nonlinear
system, which is the following (see [2, Chapter 2, Section 2.3]):

Proposition 6. Let E and F be two Banach spaces. Let e0 ∈ E and A : E → F which is
of class C1 in a neighborhood of e0. Assume that dA(e0) ∈ Lc(E,F ) is a surjective operator.
Then there exist η > 0 and C > 0 such that for every g ∈ F verifying ||g − A(e0)|| < η, there
exists e ∈ E such that

1. A(e) = g,

2. ||e− e0||E 6 C||g −A(e0)||F .

We are going to use the same techniques as in [12]. Let α ∈ (0, 1), and let us set consider
a r ∈ (r0, 1) where r0 veri�es (3.79). We apply Proposition 6 with E and F de�ned in the
following way. We let E be the space of the functions

(y, p, v) ∈ L2(Q)3 × L2(Q)× L2(Q)

such that

1. e
αK1

2(T−t)5 y ∈ L∞((T/2, T ), H1(Ω))3 ∩ L2((T/2, T ), H2(Ω)3),

2. ∇ · y = 0 in Q,

3. ∇p ∈ L2(Q),

4. e
αK1

2(T−t)5 v ∈ L2(Q)3 and v = 0 on Q \ [T/2, T ]× ω0,

5. e
K1

2r(T−t)5 (yt −∆y + (y · ∇)y + (y · ∇)y +∇p− (0, 0, v)) ∈ L2(Q)3,

6. y(0, ·) ∈ V ,

equipped with the following norm which makes it a Banach space:

||(y, p, v)||E = ||e
αK1

2(T−t)5 y||L∞((0,T ),H1(Ω)3)∩L2((0,T ),H2(Ω))3 + ||p||L2(Q)

+||e
αK1

2(T−t)5 v||L2(Q)3+||e
K1

2r(T−t)5 (yt−∆+(y·∇)y+(y·∇)y+∇p−(0, 0, v))||L2(Q)3+||y(0, ·)||H1(Ω)3 .

We let F be the space of the functions (h, y0) ∈ L2(Q)3 × V such that

e
αK1

2(T−t)5 h ∈ L2(Q)3,

equipped with the following scalar product which makes it a Hilbert space:

((h, y0)|(k, z0)) = (e
αK1

2(T−t)5 h|e
αK1

2(T−t)5 k)L2(Q)3 + (y0|z0)H1(Q)3 .
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We de�ne

A(y, p, v) = (yt −∆y + (y · ∇)y + (y · ∇)y + (y · ∇)y +∇p− (0, 0, v), y(0, ·)).

To apply the previous inverse mapping theorem, we �rst show the following lemma.

Lemma 4. The map A has its image included in F and is of class C1 on E.

Proof of Lemma 4.

We see that A = B + C with

B(y, p, v) := (yt −∆y + (y · ∇)y + (y · ∇)y +∇p− (0, 0, v), y(0, ·)).

and
C(y, p, v) := ((y · ∇)y, 0).

Thanks to the construction of E and F we have B : E → F and B is continuous, so, since B
is linear, B is of class C1. The map C is a quadratic form, hence to prove that it maps E into
F and is of class C1, it is su�cient to prove that it is continuous, i.e. to prove that

||e
K1

2r(T−t)5 (y · ∇)y||L2(Q0)3 6 C||(y, p, v)||2E . (4.1)

We choose r and α so that

K1

r
< 2αK1. (4.2)

(One can take for example α = 3/4 and then r ∈ (0, 1) close enough to 1.) Let us call

ỹ(t, x) := e
K1

4r(T−t)5 y. (4.3)

This de�nition of ỹ and inequality (4.2) imply that

||ỹ||L∞((0,T ),H1(Ω)3) 6 C||(y, p, v)||E ,

which gives that

||∇(ỹ)||L∞((0,T ),L2(Ω)9) 6 C||(y, p, v)||E . (4.4)

We also have

||ỹ||L2((0,T ),H2(Ω)3) 6 C||(y, p, v)||E . (4.5)

A classical Sobolev inequality in dimension 3 together with (4.5) imply that

||ỹ||L2((0,T ),L∞(Ω)3) 6 C||(y, p, v)||E . (4.6)

Direct computations imply that

||(ỹ · ∇)ỹ||L2((0,T ),L2(Ω))3 6 ||∇(ỹ)||L∞((0,T ),L2(Ω)9)||ỹ||L2((0,T ),L∞(Ω)3). (4.7)

From (4.4), (4.6) and (4.7), we obtain

||(ỹ · ∇)ỹ||L2((0,T ),L2(Ω)3) 6 C||(y, p, v)||2E ,

which, together with (4.3), gives (4.1).
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We now consider the element e0 = (0, 0, 0) and we compute

dA(e0)(y, q, v) = yt −∆y + (y · ∇)y + (y · ∇)y +∇p− (0, 0, v).

The application of Proposition 5 we gave in the previous subsection implies that this application
is surjective. Hence, taking g = (0, y0) and applying Proposition 6, Theorem 1 easily follows
(notably because the trajectory ȳ can be chosen as small as we want since ε can be arbitrarily
chosen small).

A Appendix: Creation of the matrix L0

In this appendix we explain how the matrix L0 at point ξ0 which represents all the di�er-
entiated equations of System (3.25) up to the order 19 was created. The program is written in
C++, using the library uBLAS which is well-adapted to the manipulation of sparse matrices.
It is a parallel openMP algorithm, using 8 cores. We are not going to give all the technical
details but just explain rapidly the spirit of the algorithm. To simplify, we will assume that the
following �black boxes� (that had to be created) are at our disposal:

1. An evaluation function ep which evaluates a polynomial (represented by a vector) at
ξ0. This evaluation function can be created so that it can verify that ξ0 is not a root of
the polynomial P (0, ., .). (one just has to see if the evaluation is equal to 0 whereas the
polynomial has nonzero coe�cients).

2. A derivation function deqex which di�erentiates an equation of level m with respect to
x1, x2, x3 or t.

A partial di�erential equation which is a derivative of order m of some of the equations of
(3.25) will be represented in a matricial form in the following way: We know that there are at
most F (n + 3) derivatives appearing, and we observe that the coe�cients are polynomials in
(x1, x2, x3) of an order less than 4 (it is a vector space of dimension 35). Hence the equation is
represented by a matrix with F (n + 3) lines and 35 columns, where on each line one can �nd
the coe�cient of the partial derivatives of z1 (or z2 appearing) corresponding to the number of
this line, thanks to a natural bijection between N4 and N. Since we have 3 equations in (3.25)
and 2 unknowns (z1 and z2), one can write the matrix M in the following way:A1 B1

A2 B2

A3 B3.


For i = 1, 2, 3, Ai represents the derivatives of z

1 appearing in the derivatives of the i-th equation
of (3.25) and Bi those of z

2. Hence, we can compute these Ai and Bi separately and then gather
them to obtain L0

0.
The algorithm is the following. We explain it for the �rst equation of (3.25) and for the

unknown z1 (i.e. for A1, but it is the same for the other matrices).
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1. We create a matrix e that represents the equation. We use ep to �ll the line of L0
0

corresponding to the equation in a .txt �le under the form i j A1(i, j). We create a matrix
h which is empty for the moment. In fact in e we will keep the equations of level m − 1
and in h we will �ll the equations of level m.

2. We create a �for� loop on m which will represent the level of equations we are creating.
The integer m goes from 1 to 19 since we di�erentiate 19 times at most.

3. We create a second �for� loop in the interior of the �rst loop on a number n which represents
one of the equations of level m. Thanks to the de�nition of the function F given in
Subsection 3.2.2, we have F (m − 1) + 1 6 n 6 F (m). If m = 1, then n goes from
F (0) + 1 = 2 to F (1) = 5 (n represents ∂1, ∂2, ∂3 or ∂t). If m = 2, then n goes from
F (1) + 1 = 6 to F (2) = 15 (n represents ∂2

11, ∂
2
12, ∂

2
13, ∂

2
1t, ∂

2
22, ∂

2
23, ∂

2
2t, ∂

2
33, ∂

2
3t or ∂2

tt),
etc. This loop is parallelized on our 8 cores. In this loop, we want to create the n-th
equation denoted En, which is of level m. Hence we take a suitable equation of level m−1
denoted Er which is so that if we di�erentiate Er with respect to 1, 2, 3 or t, we obtain
En. For example, if we consider m = 2 and we want to obtain the �rst equation of (3.25)
di�erentiated two times with respect to 1, then we consider the equation Er to be the
�rst equation of (3.25) di�erentiated one time with respect to 1 and di�erentiated with
respect to 1 to obtain En.

4. Once the loop on n is ended, we have in our matrix e all the equations of level m − 1
and in h we have just created all the equations of level m. Now we just have to use our
evaluation function ep on h to obtain the coe�cients of the lines of A1 corresponding to
the equations that are of level m, i.e. the equations numbered from F (m−1)+1 to F (m).
We write these coe�cients in our .txt �le in the form i j A1(i, j).

5. We update now e, take e = h, we empty h and we can go to the following loop m+ 1.

At the end we have created a �le containing the coe�cients of a sparse matrix A1 of size
(8855, 14950). Using the same program with z2 and the two others equation we obtain �ve
other �les representing �ve matrices that we gather to obtain the matrix L0(ξ0) = L0

0. Our
matrix L0

0, which represents all the equations, is of size (30360, 29900) and has 651128 nonzero
coe�cients. Only 0.0717% of the coe�cients are di�erent from 0, with an average of 21.45
nonzero coe�cients on each row, which is logical since we are working with coe�cients that are
polynomials of small degree, so we do not create many terms on each line when we di�erentiate
the equations. In Figure A, one can observe how the nonzero coe�cients of L0

0 are distributed.
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Figure 3: Distribution of the nonzero coe�cients of L0
0.
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