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Abstract

This paper is concerned with the estimation of a parametric probabilistic model
of the random displacement source field at the origin of seaquakes in a given re-
gion. The observation of the physical effects induced by statistically independent
realizations of the seaquake random process is inherent with uncertainty in the mea-
surements and a stochastic inverse method is proposed to identify each realization of
the source field. A statistical reduction is performed to drastically lower the dimen-
sion of the space in which the random field is sought and one is left with a random
vector to identify. An approximation of the vector components is determined using a
Polynomial Chaos decomposition, solution of an optimality system to identify an op-
timal representation. A second order gradient-based optimization technique is used
to efficiently estimate this statistical representation of the unknown source while ac-
counting for the non-linear constraints in the model parameters. This methodology
allows the uncertainty associated with the estimates to be quantified and avoids the
need for repeatedly solving the forward model.
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1 Introduction

1.1 Scientific context

It is no surprise that statistical estimation of stochastic processes has received
considerable attention from researchers in the past and still continues to be
a very active field as real-world problems are stochastic in nature. It is al-
most always necessary to quantify a stochastic process in the sense of giving it
a tractable representation for further use in subsequent analysis or modeling.
Such a representation allows one to reduce the stochastic process to a finite set
of parameters describing it as closely as possible in a certain statistical sense.
Indeed, techniques for propagating and quantifying uncertainty in numeri-
cal simulations are now widespread and they often require the description of
the corresponding boundary and/or initial conditions. Their description may
come from observational data of experiments, which leads to the problem of
the identification of a stochastic process properties. In the general case, this
stochastic process must be described in a specific space for its use as input
data in a subsequent model. Often, one cannot directly observe the random
process but one can only observe the effects it induces. The problem is then to
identify the underlying stochastic process (in other words, infer its statistical
properties) from a set of observational data.

In this work, we are interested in deriving an approximate probabilistic de-
scription of the sea bottom displacement field caused by earthquakes and
modeled as a random process S(x, t; θ) ∈ Ωx×T ×Θ, where Ωx is the spatial
domain, T is the temporal domain and Θ is the space of elementary events θ.
The stochastic framework is the probability space (Θ, σΘ, PΘ), where σΘ is a
σ-algebra and PΘ is a probability measure. The sea bottom motion field is dif-
ferent from event to event but the local geophysical properties cause the field
to remain close to an “average” field. For instance, the amplitude and spatial
extent of the motion field may vary but the global patterns remain similar
because they are related to active tectonic plate locations, such as the contact
line between two plates. A statistically well characterized approximation of
the displacement random field can be subsequently used for simulating the
uncertain future evolution of the tectonic plates or as an input parameter for
inferring magma motions underneath the outer layer of the Earth. However,
in the identification step of the sea bottom displacement stochastic field, the
model we rely on to predict the output field (which is observed) from the input
source field involves poorly known parameters and is then itself inherent with
uncertainty. Further, the observation sensor on the ocean monitoring satel-
lite is of finite accuracy and also introduces uncertainty in the measurements.
Thus, we also aim to quantify the impact of the random parameters related to
the physical model and sensor uncertainty on the estimate of the source field

2



S(x, t; θ).

Among the usual methods, one of the most popular approaches is to rely on
the maximum likelihood principle combined with an a priori functional form
(e.g., Polynomial Chaos) for the source field probabilistic description (e.g., see
Eggermont & LaRiccia (2001), Ghanem & Spanos (1990), Ghanem & Spanos
(2003)). The probabilistic model of the source-field and all uncertain variables
involved in the problem are then statistically sampled, the model is solved for
the output field and the constitutive parameters of the source field are adjusted
so that the likelihood of the observed data is maximized. This procedure leads
to the optimal, in the likelihood sense, estimate of the source field in the
chosen functional form. However, it does not allow one to provide confidence
intervals to the identified form, nor can it give insights into the parameters
most affecting the identification accuracy. Further, as the optimization step
requires a large number of cost function evaluations, this approach is thought
to become intractable in the general case.

Another popular approach for identifying the most probable parameter val-
ues of a system is the Bayesian approach. It relies on conceptual grounds
similar to the maximum likelihood approach, but incorporates prior informa-
tion in the parameters to estimate, usually leading to a better conditioned
problem. Further, it results in probability distribution functions rather than
in point-estimates. It has been successfully applied to various fields (see for
instance Wang & Zabaras (2004), Marzouk et al. (2007), Marzouk & Najm
(2009), Zabaras & Ganapathysubramanian (2008), Soize & Ghanem (2009) or
Koutsourelakis (2009)). However, it is not easy to incorporate several sources
of uncertainty into the Bayesian framework, as necessary here. Further, the
resulting identified field is often highly sensitive to the prior distribution, con-
flicting with the motivation of this work where we aim at providing confidence
intervals for the identified source field.

In fact, there is a specific point to bear in mind: in the problem at hand, the
uncertainty in the model and the sensor is epistemic as opposed to aleatory

for the random process S(x, t; θ). This different nature of uncertainty allows
one to separate their impact and one can make use of this to quantify the
uncertainty associated with the identified stochastic process. A maximum
likelihood-related approach does not account for this distinction and would
result in a point-wise estimate. Further, the estimate would be erroneous be-
cause it is biased by the uncertainty in the model and the sensor.
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1.2 Proposed method

In this paper, we propose to solve the stochastic data assimilation problem
with the objective to identify a model of the stochastic input linked to the
stochastic model of the physical problem at hand. This means that the stochas-
tic model of the input will depend on the probabilistic models of both the
uncertain constitutive parameters of the physical problem and the output
(sensor uncertain measurements). Indeed, the poorly known parameters are
parameterized with a set of known random variables ξ so that the probabilistic
model of the identified source field is determined up to this ξ-parameterization.
Similarly, the identified source field is determined up to the stochastic param-
eterization of the measurement model.

The identification of the source stochastic properties is achieved through a
combination of inverse problems and statistical reduction. For the m-th real-
ization θm of a seismic event, the solution of an inverse problem allows one to
estimate the deterministic source field Sm ≡ S(x, t; θm) giving rise to them-th
realization of the observed data. A statistical reduction procedure is applied to
the collection of identified source fields Sm at a given time tm,m = 1, . . . ,mobs,
and allows one to approximate it in a Karhunen-Loève-like expansion form.
One could think of letting the ξ-parameterization affect the empirical correla-
tion matrix, which would then result in eigenvectors and eigenvalues directly
parameterized in terms of ξ. However, this approach is hardly feasible since
there is no guarantee of smoothness of the resulting eigenvectors and eigenval-
ues with respect to ξ. Instead, the parameterization is incorporated directly
in the correlation matrix determination: the ξ-parameterization is described
in a given functional form, say polynomial, so that it reduces to a finite set of
variables (say, the polynomial coefficients). It results that the m-th identified
source field is modeled as uncertain and corresponds to the uncertain input
which, combined with uncertainty in the constitutive parameters of the phys-
ical model and uncertainty in the measurements, will result in the m-th mea-
sured data field. Upon describing these latter uncertainties with Polynomial
Chaos (PC), the identified stochastic field is identified with a PC expansion
and results in a vector-valued field of the PC coefficients.

The correlation matrix is then derived from the set of mobs vector-valued fields
and the resulting eigenvectors lie in a Ωx ×Ωξ space. A functional form, e.g.,
Polynomial Chaos-based, is then prescribed for an approximation of the cor-
responding random variables, and the procedure is then conceptually similar
to that of Desceliers et al. (2006) and Desceliers et al. (2007) with a specific
distinction being that no uncertainty was considered in the measurements in
these papers. As a consequence, their approach was to maximize the likelihood
of a deterministic field in contrast with the present work where uncertainty
in the measurements and in some exogenous parameters leads to rely on a
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random field.

In the end, the identified probabilistic model of the source comprises both the
epistemic and the aleatoric uncertainty. One is then able to estimate the un-
certainty with which the stochastic process at the origin of the ocean surface
motion is determined, hence defining the confidence one may have in the iden-
tified model based on the confidence one has in the physical model and the
observational data. Once an optimal identification is found, the impact of the
poorly known, ξ-parameterized, sensor and model parameters onto the iden-
tified source field probabilistic model can be quantified from the eigenvectors’
dependence on ξ.

The paper is organized as follows. Section 2 presents the general seaquakes
source problem considered in this paper for statistical identification. The dif-
ferent sources of uncertainty involved in the problem and their models are
detailed in section 3. In section 4, the stochastic inverse problem is derived.
It allows one to derive the source field corresponding to a given observed
realization of the ocean surface field. This step is carried out for each real-
ization m (seismic event). From a collection of mobs retrieved source fields
(1 ≤ m ≤ mobs), an optimization procedure is used for the final identifica-
tion of the statistical source field properties and is presented in section 5. The
numerical implementation of the solution method is given in section 6. Some
results are finally shown in section 7 both for the stochastic inverse technique
and the full stochastic identification problem. Final conclusions are drawn in
section 8.

2 Shallow water model

2.1 Formulation

Due to tectonic forces, the ocean bottom is sometimes subjected to sudden
motions when and where the material can not sustain the enormous pressure
and slips and deforms to release the strain. These seaquakes induce ocean
surface perturbations that can be monitored and subsequently used to estimate
some parameters of the corresponding ocean bottom displacement field, here
modeled as a source term S. The ocean surface behavior is assumed to be
governed by the Shallow Water Equations, hereafter denoted SWE, and the
bottom motion field is represented by three source terms denoted by Su, Sv and
S. The shallow water flow is then described by the following set of equations:
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D u

D t
= f v − gG

∂w

∂x
− bD u+ Su, (1)

D v

D t
= −f u− gG

∂w

∂y
− bD v + Sv, (2)

∂w

∂t
= −∂ ((H + w) u)

∂x
− ∂ ((H + w) v)

∂y
+ S, (3)

where D/Dt denotes the substantive derivative and the fluid density is as-
sumed to be constant as well as the free surface pressure. Here, f is the
term corresponding to the Coriolis force, bD is the viscous drag coefficient,
u = {u, v} is the fluid velocity vector, w is the deviation of the ocean surface
from its position at rest, gG is the gravity constant and H is the ocean depth
field. Depending on the latitude Φlat, one has f = 2 ωf sin(Φlat), where ωf is
the angular rotational rate. Without loss of generality, it is chosen that the
source field only acts along the w direction (Su = 0, Sv = 0) and that the drag
and the Coriolis forces can be neglected. Boundary conditions are prescribed
along the edge of the domain Ωx ⊂ R

2 as

u · n = 0, (4)

where n is the local normal vector to the boundary.

2.2 Solution of the shallow water model

The problem is discretized using a set of non-overlapping spectral elements
and results in an Nx-degree-of-freedom spatial representation for the ocean
surface perturbation and the source field can be written as

SNx(x, t) =
Nx∑

k=1

Sk(t) ek(x), (5)

where e1(x), . . . , eNx
(x) are the usual finite element interpolation functions

related to a finite element mesh of domain Ωx. More details about the nu-
merical treatment of the SWE problem are provided in section 7.1. The above
equation is rewritten as

SNx(x, t) = e(x)TS(t), (6)

where

e(x) ≡ (e1(x) . . . eNx
(x))T and S(t) ≡

(
S1(t) . . . SNx

(t)
)T
. (7)

The SWE solution wNx(x, t) depends on x, t, S and H so that a functional g
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can be formally introduced, such as:

wNx(x, t) = g(x, t;S, H). (8)

3 Uncertainty sources

3.1 Ocean depth field

From the SWE, it is seen that the ocean depth field H directly impacts the
surface perturbations, w. However, the local ocean depth field is poorly known
and limited knowledge is available to describe it. It is modeled as an uncer-
tain field depending on mH stochastic germs ξ̃1, . . . , ξ̃mH

that are modeled as
mH independent uniform random variables lying on [−1, 1]. Without loss of
generality, one here takes mH = 1:

H(x; ξ̃1, . . . , ξ̃mH
) ≡ H(x) + c0 ξ̃1 H1(x), (9)

with H(x) the mean depth field and c0 ≥ 0 drives the variance of H(x). More
complex descriptions may be used such as a Karhunen-Loève decomposition
if the covariance kernel is known.

3.2 Stochastic Shallow Water Model

To improve on the SWE model, intrinsic uncertainties related to the seaquake
source have to be taken into account. As seen above, the goal is to identify
the bottom displacement field statistics given only observations of the ocean
surface. The representation of the source field is then modeled by a random
field S indexed by Ωx × T written as

SNx(x, t) = e(x)TS(t), (10)

where e(x) is the vector used in the representation introduced in section 2.2
and S is now an R

Nx-valued stochastic process indexed by T .

Consequently, from Eq. (8), the representation of the ocean surface deviation
from its position at rest is now a random fieldWNx indexed by Ωx×T written
as

WNx(x, t) = g(x, t;S, H). (11)
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3.3 Satellite measurements

The surface displacement of the ocean is modeled as a random field W in-
dexed by Ωx×T and which is correlated with the ocean depth and the source
of the seaquake. A tractable and practical way for getting information about
the ocean bottom displacement is through observations of the ocean surface
response to a seaquake event. The available observations comprise measure-
ments of the height of a large area of the ocean surface in time as obtained from
dedicated satellites such as Topex-Poseidon or the recently launched Jason-
2. Let w1

obs(x, t), . . . , w
mobs

obs (x, t) be measurements of ocean height at a given
time t and at position x from mobs statistically independent seismic events.
These measurements constitute the experimental database and are used to
retrieve information about the source of the seaquakes. The set of observa-
tions is modeled as mobs statistically independent realizations of a random
field Wobs(S, H) indexed by Ωx × T . As with any measure, the surface obser-
vations are uncertain and it is assumed that the uncertainties related to the
measurement process are known and that the random field Wsat(S, H) can be
written as

Wobs(S, H) = W (S, H) + csat ξ, (12)

where ξ is a uniform random variable with values on [−1, 1] and the constant
csat represents the amount of uncertainty associated with the measures. Let
the random field Wsat(S, H, ξ) indexed by Ωx × T be the random observation
of surface ocean displacement field constructed with the stochastic shallow
water model. We then have

Wsat(S, H, ξ) = g(x, t;S, H) + csat ξ, (13)

4 Optimal random source field for each observation of the experi-

mental database

4.1 Algebraic representation

We introduce the q-th order Polynomial Chaos expansion (hereafter denoted
PC, Ghanem & Spanos (2003)) of Sm(t) for all t ∈ T writing as

Sm(t) ≈
q∑

α,|α|=0

am
α (t)Lα(ξ), (14)

where ξ = (ξ̃1, . . . , ξ̃mH
, ξ) is an R

mH+1-valued vector of uniform random vari-
ables on [−1, 1], α = (α1 . . . αmH+1) with |α| ≡ ∑mH+1

k=1 |αk| are the N
mH+1-

valued multi-indexes and am
α (t) are the R

Nx-valued coefficients of the PC ex-
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pansion of Sm(t). The polynomials Lα are the multivariate Legendre polyno-
mials such that

Lα(ξ) =
mH+1∏

j=1

Lαj
({ξ}j) , (15)

where Lαj
is a Legendre polynomial of degree αj. Then Eqs. (10) and (14)

yields

SNx(x, t) ≈ e(x)T
q∑

α,|α|=0

am
α (t)Lα(ξ). (16)

4.2 Cost function for identification

For each experimental observation wm
obs, m = 1, . . . ,mobs, we introduce an

optimal stochastic process Sm,opt indexed by T , written as

Sm,opt(t) =
q∑

α,|α|=0

am,opt
α (t)Lα(ξ), (17)

such that ‖Wsat(S
m,opt, H, ξ)−wm

obs‖2S is minimal, where, for any second-order
random field F indexed by Ωx × T , the norm ‖ · ‖S is defined as ‖F‖2S =∫

T

∫

Ωx

E
(
F (t,x)|2

)
dx dt and where E(·) is the mathematical expectation op-

erator. Consequently, the vector am,opt(t) = (am,opt
α (t) , α ; |α| ≤ q) ∈ R

Na
chaos

is solution of an optimization problem

am,opt = argmin
am∈A

∥∥∥∥∥∥
Wsat




q∑

α,|α|=0

am
α Lα(ξ), H, ξ


− wm

obs

∥∥∥∥∥∥

2

S

, (18)

where A is the set of all mappings am from T to R
Na

chaos such that am(t) =
(am

α (t) , α ; |α| ≤ q). The length of am,opt is Na
chaos = (P + 1) Nx where

(P + 1) = (q + mH + 1)!/(q! (mH + 1)!) is the number of terms in the PC
expansion, Eq. (14).

Formulating Eq. (18) in words, one looks for the set of coefficients am,opt such
that the corresponding stochastic source field, combined with the uncertainty
in the ocean depth field and the measurement, leads to the same (determin-
istic) ocean surface displacement field for all statistical realizations. Then, for
each experimental observations, we construct the stochastic field Sm,opt for
m = 1, . . . ,mobs, such that

Sm,opt(x, t) = e(x)T
q∑

α,|α|=0

am,opt
α (t)Lα(ξ). (19)
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The unconstrained optimization problem, Eq. (18), is here solved using a
second-order quasi-Newton memory-limited technique, Gilbert & Lemaréchal
(1989), relying on the gradient of the functional computed from the solution
of the adjoint Shallow Water Equations. Iteratively solving the primal and
dual SWE allows to converge to am,opt within just a few tens of iterations.
No regularization term was found necessary thanks to the weakly non-linear
character of the governing equations.

5 Global optimal random source field for the experimental database

5.1 Algebraic representation

For each observation wm
obs, m = 1, . . . ,mobs, the polynomial expansion of a

random field Sm,opt is constructed by solving Eq. (18). While the random
fields S, SNx and Sm,opt are indexed on the time and space domain, we are
only interested in describing their spatial structure at the time tm when their
mean mechanical energy is maximum. For a given stochastic source Sm,opt, tm

is then
tm ≡ argmax

t∈T

∥∥∥E{Sm,opt(x, t)}
∥∥∥
2

Ωx

. (20)

In the rest of the paper, we will hence drop the dependence in time and all
time dependent quantities will be evaluated at t = tm.

In this section, a global optimal representation of the random fields Sm,opt

is constructed by considering each coefficient am,opt as the m-th independent
realization of a random vector A such that A ≡ (Aα , α ; |α| ≤ q), where Aα

is an R
Nx-valued random vector. We then define Sopt as

Sopt(x) = e(x)T
q∑

α,|α|=0

Aα Lα(ξ). (21)

In this section, an algebraic representation of random vectorAα is constructed
using Polynomial Chaos expansion. Since such a construction can be compu-
tationally expensive, a statistical reduction of the random vector A is first
introduced. Different approaches may be thought of to derive a suitable rep-
resentation of a random vector. Among them, one can cite Principal Com-
ponent Analysis (also termed Karhunen-Loève), as will be considered in this
work; factor analysis, useful when noise is present in the identification process;
projection pursuit, which basically tries to find “meaningful” directions in the
data (Webb (2002)); and Independent Component Analysis (ICA), where a
basis leading to the least dependent components is searched for (Hyvärinen
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(1999)). In the present case, the Karhunen-Loève approach is the method of
choice since one is basically interested in reducing the size of the dataset to the
most significant modes in the L2-sense rather than deriving a basis spanned
by a potentially large number of independent random variables.

Let [C] be the (Na
chaos ×Na

chaos) positive-definite symmetric real matrix esti-
mated for large value of mobs > Na

chaos by

[C] ≃ 1

mobs

mobs∑

m=1

(
am,opt −A

) (
am,opt −A

)T
, (22)

with

A ≡ 1

mobs

mobs∑

m=1

am,opt. (23)

Let λ1 ≥ . . . ≥ λN
a
chaos > 0 and ψ1, . . . , ψNa

chaos respectively be the eigen-
values and the normalized eigenvectors of matrix [C] such that ‖ψ1‖Ωx

=
. . . = ‖ψNa

chaos‖Ωx
= 1. Then, a Nred-term statistically reduced represen-

tation of the random vector A is expressed in terms of the random vector
BT = (B1 . . . BNred

) such that

A ≈ A+ [ψ] [Λ]B, (24)

where [ψ] is an Na
chaos ×Nred orthonormal matrix with [ψ]jk = {ψj}k, [Λ] is a

Nred ×Nred matrix with [Λ]jk =
√
λk [I]jk and where [I] is the identity matrix

of RNred . We then have

B = [Λ]−1 [ψ]T (A−A) . (25)

From the zero-mean orthonormal properties of [ψ], it follows that:

E (B) = 0, E
(
BBT

)
= [I]. (26)

Since am,opt is assumed to be the m-th realization of A, the realization B(θm)
of B is such that, for all m = 1, . . . , mobs,

B(θm) = [Λ]−1 [ψ]T
(
am,opt −A

)
. (27)

In order to derive a tractable statistical representation of B, it is decomposed
into a PC expansion:

B ≈ B̂ ≡
p∑

β,|β|=0

bβHβ(ζ), (28)
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where, for a given ν ∈ N, ζ is an R
ν-valued normal random variable of proba-

bility density pζ, β
T ≡ (β1 . . . βν) with |β| = ∑ν

k=1 |βk| ≤ p are the Nν-valued
multi-indexes and Hβ are the unit-norm multivariate Hermite polynomials,
such that

Hβ(ζ) =
ν∏

j=1

Hβj
({ζ}j) , (29)

with Hβj
the Hermite polynomial of degree βj. Then, from Eqs. (26), it can

be deduced that the constraints bβ(t) must obey:

b0 = 0,
p∑

β,|β|=0

bβ bβ
T = [I]. (30)

5.2 Cost function for identification

Let b = (bβ , β ; |β| ≤ p) be the vector which consists of all the coefficients
of the Polynomial Chaos expansion of B. Let b 7→ p

B̂j
(b;b) be the proba-

bility density function of the j-th random component B̂j = {B̂}j. Then, the
coefficients bβ of the polynomial chaos expansion in Eq. (28) are identified

as the vector b ∈ R
Nb

chaos , N b
chaos ≡ Nred (p+ ν)!/ (p! ν!), such that the most

likely (highest probability) approximated representation ofB, Eq. (28), is that
derived from the observations through Eq. (27). In other words,

b ≡ argmax
b′ ∈B

mobs∏

m=1

p
B̂
(Bm;b

′) = argmax
b′ ∈B

L(b′), (31)

which constitutes an optimization problem constrained by the fact that b lies
on the manifold B defined by Eq. (30).

Finally, we can summarize the main equations at hand,

Sopt(x) = e(x)T
q∑

α,|α|=0

Aα Lα(ξ), [Eq. (21)] , (32)

with A = (Aα , |α| ≤ q) and

A ≈ A+ [ψ] [Λ]
p∑

β,|β|=0

bβHβ(ζ), [Eqs. (24) and (28)] , (33)

where b ≡ (bβ , β ; |β| ≤ p) is solution of the optimization problem defined
by Eq. (31).
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6 Statistical identification

6.1 Regularized optimization problem

The probability density function p
B̂
(B(θm);b

′) reads

p
B̂
(B(θm);b

′) =
∫

Rν
δ0


B(θm)−

p∑

β,|β|=0

b′
βHβ(s)


 pζ(s) ds, (34)

where δ0 is the Nred-dimensional Dirac distribution,

δ0(s) : R
Nred ∋ s 7→ δ0(s) =

Nred∏

i=1

δ(si) ∈ R. (35)

As seen from Eqs. (31) and (34), the determination of the optimum b′ im-
plies the computation of ν-D integrals. The integrand is inexpensive to eval-
uate since it only involves basic operations on the PC series, and a Monte-
Carlo method can be used to compute the integrals. For the subsequent use
of gradient-based methods, a derivable integrand is desirable. Consider a sur-
rogate delta operator defined as

δ0 (s̃) ≈
a

a2 + d(s̃)2nδ
, d(s̃) ∈ R

+, s̃ ∈ R
Nred , (36)

with 0 < a ≪ 1, nδ ∈ N and where d(s̃) is the distance in R
Nred between

B̂ and B(θm). Note that this is in a similar spirit as the approximation of
probability distribution functions using a kernel density estimation approach.

However, as the dimension Nred of the random vector B̂ grows, the support of
the delta function δ0 or its surrogate decreases exponentially and thus requires
an increasing number of Monte-Carlo samples to accurately evaluate the in-
tegrals. This makes this approach difficult even for moderate length random
vectors, say for Nred & 5. Effectively sampling such integrals has attracted
a great deal of attention in the past two decades and usually relies on an
adaptive defensive importance sampling based on some approximation of the
integrand, see Owen & Zhou (1998) among others. Another approach is chosen
here and a modified expression of the cost function is defined in Eq. (31) is
considered:

logL ≡ −
mobs∑

m=1

logLm, Lm ≡
Nred∏

j=1

p
B̂j

(Bj(θm);b
′). (37)

This alternative formulation prevents very low probabilities from having to
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be estimated as is the case when the support of the integrand decreases, thus
softening the requirement on the number of Monte-Carlo samples necessary
to estimate the integrals with a given accuracy. Of course, the optima from
the two formulations of the cost function are the same when the random
components Bj, 1 ≤ j ≤ Nred, are independent. This alternative definition of
the likelihood will be used throughout the rest of the paper.

This kind of optimization problem is often solved with a simplex approach
based on point estimations of the cost function for different sets of parameters
b′. Here we take advantage of the regularity of the cost function expression to
derive an efficient gradient-based second order optimization technique.

A potential issue is that the solution of the optimization problem lies in a
high-dimensional

(
R

Nb
chaos

)
space, bringing specific difficulties. In particular,

the cost function response surface may exhibit local extrema and the opti-
mization problem achieves only local convexity. The solution method relies on
a combination of techniques. A good initial point candidate is given by match-
ing the first statistical moments, Eggermont & LaRiccia (2001). However, this
can only be done up to a limited order since it involves increasingly higher
order inner products E

(
Hβi

Hβj
Hβk

. . .
)
of the PC basis, which are costly

to evaluate. Further, the accuracy of the experimental high order statistical
moments estimation is poor since the number mobs of observations is limited.
The first four moments are considered and an initial point candidate is deter-
mined. Because the optimization space is of dimension N b

chaos, which is much
higher than four, we also rely on a collection of randomly chosen vectors on
the constraint manifold B. From the best, in the sense of L, initial point found,
a simulated annealing procedure is carried-out until it is reasonable to think
that the basin of attraction of a good minimum (rather than a maximum, note
the minus sign in Eq. (37)) has been reached. The optimization problem is
then assumed locally strictly convex and a gradient-based approach is applied.

From Eqs. (34) and (37), the gradient of the cost function L can be computed
as

∇{b′

β}j

logL =
mobs∑

m=1

Nred∑

j=1

2 nδ a

p
B̂j

(Bj(θm);b′)

∫

Rν

d2nδ−1
j (s)Hβ(s)(
a2 + d2nδ

j (s)
)2 pζ(s) ds, (38)

with |β| ≤ p and

d2j(s) =
(
B̂j − Bj(θm)

)2
. (39)

To solve the optimization problem involving the non-linear constraint defining
the manifold B, a SQP technique achieving quadratic convergence is employed.
It relies on a memory-limited second-order quasi-Newton algorithm (Gilbert
& Lemaréchal, 1989) and estimates the Hessian matrix without computing
it. The optimal point in R

Na
chaos is found through a multi-grid-like procedure
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as the PC order is initially set to a low value to find a coarse estimate of
the stochastic source field. Once this estimate is found, a finer discretization
is used from that initial point to determine the accurate source field. This
approach reduces the risk of ending-up in a local, as opposed to a global,
minimum of the Lagrangian and lightens the overall computational burden.

6.2 Algorithm

The global algorithm for solving the stochastic identification problem is sum-
marized as follows:

(1) for each observation of the ocean surface field wm
obs(x, t) after the m-

th seismic event, solve the corresponding optimal stochastic problem,
Eq. (18), to determine am,opt = am,opt(tm),

(2) from the collection of mobs vectors am,opt, 1 ≤ m ≤ mobs, carry-out a
statistical reduction and determine B(θm), Eq. (27),

(3) compute the cost function from Eq. (37) for different randomly chosen ini-
tial vector-valued functions b′ onto the constraint manifold B and retain
the best (lowest L) as the initial point,

(4) from this selected initial point, determine the optimal set b, solution of
Eq. (31), through a SQP-based solution method,

(5) use Eqs. (32)-(33) for constructing the optimal random field Sopt.

Remark The approach followed in this paper involves two main steps. In a
first step, a random field is constructed, through an inverse procedure, in order
to represent the observed surface displacement for each 1, . . . ,mobs observa-
tions (section 4, Eq. (18), step (1) of the algorithm). This first inverse problem
requires the use of a mechanical solver (solving the governing equations of the
physical problem at hand). The second step consists in constructing a unique
random field for which the set of realizations constructed in step (1) would
maximize the likelihood (section 5, Eq. (31), steps (2)-(4)). In these last steps,
the estimation of the likelihood does not require the use of the mechanical
solver. The only difficulty lies on the high number of parameters required to
represent the solution.

Alternatively, one could avoid this first step by directly searching for the pa-
rameters that would maximize the likelihood of the mobs observations. As for
the proposed methodology, one of the difficulties would lie on the high number
of parameters required to represent the solution. But, in such method, addi-
tional difficulties arise due to the necessary intensive use of the mechanical
solver involved in the evaluation of the likelihood at each iteration of the op-
timization procedure. This approach is hence not thought to be tractable in
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the general case, unless the direct problem is very significantly cheaper than
the inverse procedure and/or if the inverse step is overwhelmingly ill-posed.

7 Convergence analysis and results

7.1 Shallow Water numerical solver and solution method

To identify the seaquake source field, the inverse Shallow Water problem is
solved. We rely on a 10 × 10-element mesh for the physical space, discretized
with px = py = 6-th order Legendre cardinal polynomials for the fluid ve-
locity. The unknowns are interpolated with these Legendre cardinal functions
collocated at the Gauss-Lobatto points. The surface height, w, is discretized
with a lower order polynomial to prevent spurious pressure modes from occur-
ring (QN −QN−2 scheme), see Iskandarani et al. (1995). An additive Schwarz
preconditioner is used to accelerate the solution process; see Douglas et al.

(2003).

Solving the inverse SWE requires the solution of the adjoint equations which
brings a potential issue since they involve the primal fields u, v and w. These
fields may be large and their storage over the time horizon of the optimization
procedure may introduce some difficulties. Different techniques exist to cope
with this issue such as the check-pointing strategy. The interested reader may
refer to Biros & Ghattas (2005) for further details. However, such an issue is
not encountered in the present work due to its moderate size and the primal
fields can be stored without specific problems.

As mentioned in section 3.1, mH = 1 was retained for describing the uncertain
ocean depth field. The random vector ξ̃ thus reduces to a random variable ξ̃

and the random vector ξ then reduces to
(
ξ̃ ξ
)T

. Other retained parameters

include csat = 10−3 (Eq. (13)), q = 2 (Eq. (16)) and mobs = 1514.

7.2 Inverse problem verification for Sm,opt

For the purpose of verification, let us first consider the case c0 = 0 in Eq. (9)
and csat = 0 in Eq. (13). Determining Sm,opt thus reduces to identifying the sea
bottom displacement field giving rise to the observed surface perturbation: this
is an inverse problem (IP) which solution is given by Eq. (18). This verification
step is necessary since the IP is an essential ingredient of the whole statistic
identification problem considered in this paper.
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7.2.1 Identification of Sm,opt for csat = 0 and c0 = 0

In this case, no uncertainty affects the physical model or the observation sensor
and the inverse problem is deterministic. The surface is initially at rest and a
time-varying source is applied at point x0 = {x0, y0}:

S(x, t) = e
−

[
1

σ2

S

‖x−x0‖
2

2

]

×
(

t2

1 + t4

(
1− e−20 t

))
, (40)

with σ2
S = 0.005 and x0 = {0.4, 0.9}. All variables are non-dimensional and

we are interested in the source field at the time of its maximum amplitude,
corresponding to t = tm ≃ 4. Using the deterministic SWE model, the cor-
responding synthetic observation field wobs may be derived and mimics an
observation wm

obs that would have risen from an actual seismic event.

The inverse problem is initialized with an arbitrary source field at all time, as
shown in Fig. 1. In general, one often has some expertise about the most likely
location of the seaquake but the goal here is to investigate the efficiency of the
inverse method and its robustness. The solution field of the IP is plotted in
Fig. 2 (right) together with the true solution (left) and the agreement is seen
to be very satisfying. No regularization terms were found necessary to achieve
good identification results, even not a simple Tikhonov approach. This mainly
comes from the fact that the problem at hand is only weakly non-linear and
exhibits a one-to-one correspondence between the surface fluctuation w and
the source S for a whole basin of considered parameters set. The problem is
then bijective in a subdomain of these parameters’ space. Further, the whole
solution domain is observed and the null space of the inverse SWE operator is
thus essentially not in the primal space. The inverse problem is then well-posed
and essentially does not require regularization.

7.2.2 Identification of Sm,opt for csat 6= 0 and c0 6= 0

A more complex, and somehow more realistic, case is now considered for verify-
ing the determination of the source field through a stochastic inverse problem
(SIP): the ocean depth H is considered uncertain and the problem is then
to determine a stochastic source field which, through the (uncertain) SWE
equations, and given the uncertainty in the measure, would lead to surface
data as close as possible to the observed (deterministic) data.

Relying on a similar synthetic observed field as for the previous test but cen-
tered around x0 = {0.3, 0.9}, the mean of the identified source field (PC mode
0) at t = 4 is plotted in Fig. 3 together with the first, Fig. 4 (left), and second,
Fig. 4 (right), stochastic modes of the identified stochastic source field decom-
position. The initial field was the same as that plotted in Fig. 1 (deterministic).
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Fig. 1. Chosen initial source field S(x, ·).

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1−0.05

0

0.05

0.1

0.15

0.2

0.25

y

x

S
ou

rc
e

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1−0.05

0

0.05

0.1

0.15

0.2

0.25

y

x

S
ou

rc
e

Fig. 2. Plot of S(x, t) (left) and Sopt(x, t) (right) for csat = 0, c0 = 0 and t = 4.

Again, the identified source is centered around the true solution. In this case,
non-zero PC modes are also present as a consequence of the uncertainty of
the problem.

The identified source field is stochastic instead of being deterministic, since, to
lead to a given (deterministic quantity) surface observation at all times within
the observation horizon T despite an uncertain depth field and observation
device, the source term in the SWE equations must itself be uncertain. It
represents the information one can derive on the source field from a given
observation wm

obs provided the uncertainty in the sensor is well characterized
as well as the uncertain model describing the effects of the source field onto
the ocean surface field.

The validity of the implementation is confirmed in Figs. 5, 6 and 7 where
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α (x, t) = e(x)Tam,opt

α (t) with α = (1 0)T (PC modes 1), (left) and α = (0 1)T

(PC mode 2), (right). t = 4.

the resulting surface motion at a particular time (t = 300) is computed from
the SWE equations with the actual, i.e., deterministic and given by Eq. (40),
source field S(x, t) (left plots) and the identified source field issued from the
SIP (right plots). Both surfaces are issued from the same stochastic code and
only the source terms differ. In the left plots, the source term is deterministic
and corresponds to the true, synthetic, source. On the right plots, the source
term is that identified by the SIP. The resulting sea surface motion is seen to
be similar in the statistical average sense (Fig. 5). However, the actual (de-
terministic) source term leads to an uncertain surface field (non-zero higher
stochastic modes) while the identified (uncertain) source leads to a quasi de-
terministic surface (stochastic modes higher than 0 are essentially null), as
shown in Figs. 6 and 7. This clearly shows that a deterministic source field
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cannot induce a deterministic surface displacement field through the stochastic
SWE model.

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1−0.05

0

0.05

0.1

0.15

y

x

w 0

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1−0.05

0

0.05

0.1

0.15

y

x

w 0

Fig. 5. Mean surface field at intermediate time (t = 300) for the actual (determin-
istic) source field (left) and the IP-computed source field (right). Both surfaces are
issued from the same stochastic code and only the source terms differ.
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Fig. 6. Stochastic mode 1 surface field at intermediate time (t = 300) for the actual
source field (left) and the SIP-computed source field (right).
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Fig. 7. Stochastic mode 2 surface field at intermediate time (t = 300) for the actual
source field (left) and the SIP-computed source field (right).

This example and the essentially null uncertainty (quantified by the magnitude
of the stochastic modes of non-zero index) in the predicted surface is a strong
argument supporting the validity of the stochastic inverse problem strategy.
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The subsequent global statistical identification of the seaquake random process
can then reliably rely on the source estimation step. In particular, it shows
that the uncertain source field, with first modes plotted in Figs. 3 and 4, is
indeed a versatile description of the source field which leads to a deterministic
surface field given the uncertainty in the sensor and the physical model at
hand.

7.3 Convergence analysis

7.3.1 Convergence analysis of the random vector B

In this section, the convergence of the stochastic identification process in terms
of the Polynomial Chaos order p of the PC expansion of B, see Eq. (28), and
stochastic germ dimension ν of ζ is investigated. For sake of clarity, we focus
on the first random vector component B1. The fourth statistical moment for
different PC orders p and a 2-D stochastic germ (ν = 2) is given in Table
1. The moment converges to an asymptotic value as the approximation relies
on a finer discretization. The corresponding probability density function of
the vector component is plotted in Fig. 8 for p = 5 and already exhibits a
reasonable agreement with the pdf estimated from the data.

p 2 3 4 5 6 7 8 9

m1
4 13.09 13.23 13.19 13.26 13.25 13.31 13.32 13.32

Table 1
Fourth statistical moment of the first random vector component m1

4 ≡ E
(
(B1)

4
)

for different PC orders p. ν = 2, Nred = 4.

A similar study is carried-out for different germ dimensions ν at a given PC
order (p = 5). Results are gathered in Table 2 in terms of the fourth statistical
moment of the first component B1. Again, the statistical moment is seen to
converge when the stochastic discretization is enriched enough. A germ di-
mension ν & 4 leads to a reasonably converged estimation. Similar findings
(not shown) hold for the other components of B.

ν 1 2 3 4 5 6

m1
4 13.42 13.26 13.34 13.44 13.45 13.45

Table 2
Fourth statistical moment of the first random vector component m1

4 ≡ E
(
(B1)

4
)

for different PC dimension ν. p = 5, Nred = 4.
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Fig. 8. Probability density function of the first random vector component B for
a p = 5-PC order. ν = 2. The pdf estimated from data is plotted for comparison
(histogram).

7.3.2 Identified source statistics

The mean-square convergence of the statistically reduced decomposition (Eq.
27) resulting from the identification procedure can be appreciated from Fig. 9
in terms of the eigenvalues spectrum. The spectrum decays quickly as higher
index eigenvalues are considered. Since the variance of the approximation error
σ2
ε can be expressed as

σ2
ε =

Na
chaos∑

i=Nred+1

λi, (41)

with Nred being the number of modes retained, the approximation of the iden-
tified sources rapidly converges in the mean-square sense as more modes are
accounted for in the reduction. The approximation series can then be trun-
cated to a limited number of terms. From the eigenvalue spectrum, it is seen
that retaining only the first four modes (Nred = 4) already accounts for most
of the variance: ∑4

i=1 λi
∑Na

chaos

i=1 λi
≃ 94 %. (42)

Once the coefficients bβ are found, we focus on the statistics of the identified
source field, which is the main quantity of interest in this work. To this end,
the auto-covariance function of the identified source random field is plotted in
Fig. 10 together with that directly estimated from the collection of observa-
tions. The auto-covariance function writes

CS(x,x
′) ≡ E

((
Sopt(x)− E

(
Sopt(x)

)) (
Sopt(x′)− E

(
Sopt(x′)

)))
. (43)

It is a 4-D object and it is thus here plotted as a function of x only for the
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Fig. 9. Spectrum of the identified sources covariance kernel. The eigenvalues decay
quickly and most of the statistical variance is accounted for by the first few modes.

sake of clarity. As expected from Fig. 9, as more modes are accounted for, the
agreement between the experimental and the identified random field quickly
improves as a few modes are sufficient to reach a decent approximation.

The retained approximation parameters then include Nred = 4, ν = 4, p = 5
and the identified stochastic source field can now be fully characterized. It is
finally represented in Fig. 11 in terms of its 20% and 80% quantiles (nested
plots). It is seen to be essentially located in a particular region of space, with
a slight elongation along the x-axis, and exhibits a large uncertainty.

Since the identification procedure is subject to uncertainty (due to sensor
and direct model uncertainty), the accuracy one can identify the underlying
stochastic source field with is intrinsically limited. The method employed in
this work allows one to distinguish between the intrinsic uncertainty of the
physical system at hand (seaquakes) and that introduced by the identification
procedure relying on limited knowledge of the physical system. As an illustra-
tion of the confidence one can have in the identified source description, the
variance of Sopt solely arising from the uncertainty introduced by the finite
accuracy of the sensor and the poor knowledge of the ocean depth field, i.e.,
in the case E

(
ζ2
)
= 0, is plotted in Fig. 12. The uncertainty brought to the

identified source field is seen to be reasonably low in the present case. Its
spatial distribution resembles that of the source field, while exhibiting a more
pronounced elongation along the x-axis. This plot shows how accurate and
quantitative the estimation can be over the whole physical domain.
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Fig. 10. Auto-covariance CS (x1, x2, y1, y2) 1-D field for different numbers Nred of
modes in the reduced representation. From top left to bottom right, Nred = 1, . . . , 4;
ν = 2; p = 3. x2 ≃ 0.38, y1 = y2 ≃ 0.62. The auto-covariance estimated from the
experimental data is plotted with a solid black line.

8 Concluding remarks

An efficient statistical estimation procedure has been proposed for use with
realistic, uncertainty affected, data obtained from the indirect observations
of statistically independent realizations of a random process that needs to
be identified. The measurements are done on some quantity affected by the
random process at hand and are subject to uncertainty arising from the ex-
perimental observation device and a poor knowledge of the physical model.
For each statistical realization of the random process, a stochastic inverse
problem is solved to evaluate the source field giving rise to that observation.
A statistical description of the resulting set of source fields is then sought.
A statistical reduction is performed to lower the dimensionality of the solu-
tion space and the random process to be identified is approximated under the
form of a truncated Principal Component series. The resulting random vector
is approximated with a Polynomial Chaos decomposition and an optimality
principle, reminiscent of a maximum likelihood approach, is invoked to derive
a good estimation of the PC development of the random vector components.
To find the maximum of the manifold-constrained regularized cost function,

24



Fig. 11. Confidence interval for Sopt(x). The two nested surfaces plotted correspond
to the 20% and 80% quantiles.
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Fig. 12. Plot of the variance of Sopt(x) in the case E
(
ζ2
)
= 0.

a Sequential Quadratic Programming algorithm was used, providing a second
order convergence rate and allowing for non-linear, equality and/or inequality,
constraints on the parameters to identify.

The methodology derived in this work was applied to the estimation of the
stochastic properties of a seaquakes source. Input data were available from
uncertainty subjected satellite observations of the ocean surface after each
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seismic event and a statistical description of the ocean displacement field was
determined. Results show that the statistical behavior of the identified random
field (auto-covariance, probability density function) reproduces that given by
empirical estimators from the experimental data.

Compared to the usual maximum likelihood-based method, and at the price
of an additional effort in the development, the present inverse problem-based
approach avoids the need for multiple resolutions of the forward model, a
step that is CPU challenging for many problems of practical interest. Further,
in addition to the estimation of the source field statistical properties, the
precise uncertainty associated with this estimation is available and allows one
to define, say, confidence bounds. Future developments of this methodology
include improvements in the search of a global optimal estimation and an
alternative, numerically more efficient, optimality principle.
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