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Carleman estimates for semi-discrete parabolic
operators with a discontinuous diffusion coefficient
and application to controllability

Thuy N.T. Nguyen*

Abstract

In the discrete setting of one-dimensional finite-differences we prove
a Carleman estimate for a semi-discretization of the parabolic oper-
ator 0y — O0y(cd,) where the diffusion coefficient ¢ has a jump. As
a consequence of this Carleman estimate, we deduce consistent null-
controllability results for classes of semi-linear parabolic equations.

1 Introduction and settings

Let Q,w be connected non-empty open interval of R with w € €. We
consider the following parabolic problem in (0,7) x Q, with 7" > 0,

Oy — 02 (cOry) = Lyv in (0,T) x Q, ylgo =0, and y|i—o = yo, (1.1)

where the diffusion coefficient ¢ = ¢(z) > 0.

System (ILT)) is said to be null controllable from yo € L?(Q2) in time T if
there exists v € L2((0,T) x ), such that y(T') = 0.

In the continuous framework, we refer to [FI96] and [LR95] who proved
such a controllability result by means of a global/local Carleman observabil-
ity estimates in the case the diffusion coefficient c is smooth. The authors of
[BDLO7] produced this controllability result in the case of a discontinuous
coeflicient in the one-dimensional case later extended to arbitrary dimension
by [LR10]. Additionally, a result of controllability in the case of a coefficient
with bounded variation (BV) was shown in [FCZ02| [L.O7].

The authors of [LZ98] show that uniform controllability holds in the
one-dimensional case with constant diffusion coefficient ¢ and for a constant
step size finite-difference scheme. Here, ”uniform” is meant with respect
to the discretization parameter h. The situation becomes more complex in
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higher dimension. In fact, a counter-example to null-controllability due to
O. Kavian is provided in [Zua06| for a finite-difference discretization scheme
for the heat equation in a square.

In recent works, by means of discrete Carleman estimate, the authors
of [BHL10a], [BHLI10bD] and [BL12] obtained weak observability inequalities
in the case of a smooth diffusion coefficient ¢(z). Such observability esti-
mates are charaterized by an additional term that vanishes exponentially
fast. Morever, also with a constant diffusion coffiencient ¢, under the as-
sumption that the discretized semigroup is uniformly analytic and that the
degree of unboundedness of control operator is lower than 1/2, a uniform
observability property of semi-discrete approximations for System (L)) is
achieved in L? [LT06]. Besides that, such a result continues to hold even
with the condition that the degree of unboundedness of control operator is
greater than 1/2 [N12].

In the case of a non-smooth coefficient, our aim is to investigate the uni-
form controllability of System (L)) after discretization. It is well known that
controllability and observability are dual aspects of the same problem. We
shall therefore focus on uniform observability which is shown to hold when
the observability constant of the finite dimensional approximation systems
does not depend on the step-size h.

In the present paper we prove a Carleman estimate for system (L)) in
the case of:

e the heat equation in one space dimension;

e a piecewise C! coefficient ¢ with jumps at a finite number of points in
Q;

e a finite-difference discretization in space.

The main idea of the proof is combination of the derivation of a discrete
Carleman estimate as in [BHL10al, BL.12] and tecniques of [BDLO7|] for op-
erators with discontinuous coefficients in the one-dimensional case. A similar
question in n-dimensional case, n > 2, remains open, to our knowledge.

When considering a discontinuous coefficient ¢ the parabolic problem (L))
can be understood as a transmission problem. For instance, assume that ¢
exhibits a jump at a € Q. Then we write

Oy — 0z(cOpy) = 1v in (0,T) x ((0,a) U (a,1)),
caﬂﬂy‘a7L = ca$y‘a*7 y’(fr = y‘a*7
ylon =0,  and Ylt=o = Yo-

The second line is thus a transmission condition implying the continuity of
the solution and of the flux at x = a.

When one gives a finite-difference version of this transmission problem,
a similar condition can be given for the continuity of the solution. Yet, for



the flux, it is only achieved up to a consistent term. In what follows, in the
finite-difference approximation, we shall in fact write

{y(a) =y(a™) = Y11,
(CdDy)n-i-% - (cdDy)n-i-% - h(D(cdDy))n_Hv

(the discrete notation will be given below). Note that the flux condition
converges to the continuous one if h — 0, h being the discretization param-
eter. This difference between the continuous and the discrete case will be
the source of several technical points.

An important point in the proof of Carleman estimate is the construction
of a suitable weight function 1 whose gradient does not vanish in the com-
plement of the observation region. The weight function is chosen smooth in
the case of a smooth diffusion coefficient ¢(z). In general, the technique to
construct such a function is based on Morse functions (see some details in
[EFT96]). In one space dimension, this construction is in fact straightforward.
In the case of a discontinuous diffusion coefficient, authors of [BDLO07| intro-
duced an ad hoc transmission condition on the weight function: its derivative
exhibits jumps at the singular points of the coefficient. In this paper, we
construct a weight function based on these techniques in the one-dimentional
discrete case.

From the semi-discrete Carleman we obtain, we give an observability
inequality for semi-discrete parabolic problems with potential. As compared
to the result in continuous case [BDLO7| the observability estimate we state
here is weak because of an additional term that describes the obstruction to
the null-controllability. This term is exponentially small in agreement with
the results obtained in [BHL10a, BHLI0Db] in the smooth coefficient case. A
precise statement is given in Section [Gl

Finally, the observability inequality allows one to obtain controllability
results for semi-discrete parabolic with semi-linear terms. In continuous
case, this was achieved in [BDL07|]. Taking advantage of one-dimensional
situation, the results we state are uniform with respect to the discretization
parameter h (see Section [G).

1.1 Discrete settings

We restrict our analysis to one dimension in space. Let us consider
the operator formally defined by A = —0,(cd,) on the open interval @ =
(0,L) c R. We let @’ € Q and set Oy := (0,d’) and Qy := (a’,L). The
diffusion coeflicient c is assumed to be piecewise regular such that

0 < cmin < ¢ < Cmaz (1.2)

Co in Ql,
c= ]
¢y in o,



with ¢; € CH(;),i = 1,2.

The domain of A is D(A) = {u € H}(Q); cdu e HY(Q)}.

Let T > 0. We shall use the following notation Q' = Q; U Qs, Q =
0,7)x Q, Q' = (0,T) x @, Q; = (0,T) x , i = 1,2, T = {0,L}, and
¥ =(0,T) x I'. We also set S = {a'}. We consider the following parabolic
problem

Oy + Ay = f in @,
y(0,7) = yo(z) in

(real valued coefficient and solution), for yo € L?(Q2) and f € L?(Q), with
the following transmission conditions at a’

c y(a'™) = y(a'™),
(TC) {C(a/_)am (') = c(a)dpy(a').

Now, we introduce finite-difference approximations of the operator A.
Let 0 = o <2} < ...<a, 1=d < ... < i1 < Thimio = L.
We refer to this discretization as to the primal mesh 9 := (2)1<i<n+m+1-
We set [ :=n+m+ 1. We set h;Jr% = xj,, — x; and x;+% = (wjq +

x)/2,i=10,...,n+m+1, and b’ = maxo<i<ntm+1 h;+1- We call I =
2
(x;+%)0§i§n+m+1 the dual mesh and set h, = x;+% —xéi% = (h;+% +n é)/2,

1=0,....,n+m-+ 1.

In this paper, we shall address to some families of non uniform meshes,
that will be precisely defined in Section
We introduce the following notation

[p1%]a = p1(a™) — p1(a”), (1.3)
o2l = pa(n+ ) — paln + 3), (1.4)
1% pala = (@ pa(n +3) — pr(a)paln + ). (1)

We follow some notation of [BHLI10a|] for discrete functions in the one-
dimensional case. We denote by C™ and C™ the sets of discrete functions
defined on 9t and 91 respectively. If u € C™ (resp. C™), we denote by u;
(resp. uZJr%) its value corresponding to z (resp. x;+%) For u € C™ we

define
n+m+1

=1

o Wi € LOO(Q).
it

Nl
[N

And for u € C™ we define [, u:= [y u™(x)dz = 31" ha,.



For u € C™ we define

n+m-+1

m _
=D Uiagat i

=0
As above, for u € C™ | we define [, u = [, u™(z)dz = S h;+%uiJFE

In particular we define the following L? inner product on C™ (resp. (Cﬁ)

(u,v)r2 :/Qum(x)vm(x)dm, resp. (u,v)re2 :/Qum(m)vm(x)dm.

For some u € C™, we shall need to associate boundary conditions u?™ =

{ug, Untm+i2}. The set of such extended discrete functions is denoted by
CMUOM  Homogeneous Dirichlet boundary conditions then consist in the
choice ug = Uptm+2 = 0, in short u9™ — (0. We can define translation

operators 7T, a difference operator D and an averaging operator as the map

CMOM _y M given by
(T+u)i+% = ui+17 (T_u)i—f—% = Uy, ZZO,n—i-m—i—l,
1 - -~ J—
(DU)H% = W (7-+u—7' U)H%’ i = §(T++T ).
it+1

We also define, on the dual mesh, translation operators 7=, a difference
operator D and an averaging operator as the map C™ — C™ given by

(T+u)i::ui+%, (T_u)i::ui_%, i=1,...n+m+1,
_ 1 1
(Du); := W(T‘Fu — T u);, U= §(T+ + 77 )u.
i

1.2 Families of non-uniform meshes

In this paper, we address non-uniform meshes that are obtained as the
smooth image of an uniform grid.

More precisely, let Qg =]0, 1[ and let ¥ : R — R be an increasing map
such that

Q) =0, 9eC>® infd >0and 9(a)=d (1.6)

with a to be kept fixed in what follows and chosen such that a € (0,1) N Q,
iea= g with p,q € N*. Clearly, we have ¢ > p. We impose the function 9
to be affine on [a — 6, a + 6] V|[4_5444 (for some § > 0).

Given r € N* and set m = (¢ — p)r and n = pr. The parameter r is
used to refine the mesh when increased. Set a = 2,41 = Tpr41. The interval
Qo1 = [0, a] is then discretized with n = pr interior grid points (excluding 0

1.



and a). The interval Qg = [a,1] is discretized with m = (¢ — p)r exterior
grid points (excluding a and 1). Let My = (ih)1<i<ntm+1 with b = m
be uniform mesh of Qg and My be the associated dual mesh. We define a
non-uniform mesh 9 of 2 as image of My by the map ¥, settings

x; =9(ih), Vie{0,..n}uU{n+2,...,n+m+2}
z, 1 =d =9a). (1.7)

The dual mesh 9T and the general notation are then those of the previous
section.

1.3 Main results

With the notation we have introduced, a consistent finite-difference ap-
proximation of Awu with homogeneous boundary condition is

APy = —D(cyDu)

for u € CMYM gatisfying ulgq = u?™ = 0. We have

Ujp1—Uj Ui —Ui—1

o Ccl(95i+%)th%z - Cd(%—%)ﬁ .

(A7), = — = , i=1,..,n+m+1.
i

For a suitable weight function ¢ (to be defined below), the announced
semi-discrete Carleman estimate for the operator P = —9, + A™ with a
discontinuous diffusion coefficient ¢, for the non-uniform meshes we consider,
is of the form

2 2 2
71 Hé?_%eTe‘thuH +7 ‘ H%eTe‘pDuH + 73 ‘ H%eTe‘pu‘
L2(Q) L2(Q) L2(Q)
2 2
< Cha <‘ eTe‘meu‘ + 73 ‘ H%eTe“ou‘
’ L2(Q) L2((0,T)xw)
2
—2| 70 —2| 76
+h™% €7 uli—o L@ +h"" e ‘Pu]tT‘LQ(Q)) , (1.8)

for properly chosen functions § = (t) and ¢ = ¢(z), for all 7 > (T +T?),
0 < h < hgand 7h(aT)™ ' < ¢, 0 < a < T and for all u € C>(0,T;C™)
satisfying the discrete transmission conditions, where 79, hg, €9 only depend
on the data. We refer to Theorem A.] (uniform mesh) and Theorem [5.6] (non
uniform mesh) below for a precise result. The proof of this estimate will be
first carried out for piecewise uniform meshes, and then adapted to the case
of the non-uniform meshes we introduced in Section



From the semi-discrete Carleman estimate we obtain allows we deduce
following weak observability estimate

_C
14(0)| 2y < Cobs 14117207y + € 7 [0(T) 720 +
for any ¢ solution to the adjoint system
diq+ AMg+ag =0,  gloo =0.

A precise statement is given in Section

Moreover, from the weak observability estimate given above we obtain a
controllability result for the linear operator P™. This result can be extended
to classes of semi-linear equations

(0 + Ay +Gy) =Lov, y€(0,7)  ylon =0, y(0)=yo,

with G(z) = zg(x), where g € L*°(R) and

3
lg(z)] < KIn"(e+|z|), x€R,  with 0<r<s.

We shall state controllability results with a control that satisfies

[0l 22 (@) < C lyol -

Thanks to one space dimension the size of the control function is uniform
with respect to the discretization parameter h.

1.4 Sketch of proof of the Carleman estimate

The main idea of the proof lays in the combination of the derivation of
a discrete Carleman estimate as in [BHL10al [BL12] and techniques used in
[BDLO7|] to achieve such estimates for operators with discontinuous coeffi-
cients in the one-dimensional case.

We set v = e *?u yielding e’¥ Pe™ %%y = e*? f1 in Q) if Pu = f,

We obtain g = Av + Bv in Q)), with A and iB ’essentially’ selfadjoint.

We write [|g]|72 = [|Av||32 + | Bv||32 + 2(Av, Bv) > and the main part
of the proof is dedicated to computing the inner product (Av, Bv) L2(Q})
involving (discrete) integration by parts.

We proceed with these computations separately in each domain gy,
Qp2. As in [BLL12] we obtain terms involving boundary points x = 0 and
x = 1 such as v(0),v(1),0;v(0),0v(1), (Dv)n+m+%, (Dv)n+m+%. In our case
we obtain additional terms involving the jump point a such as v(a), dyv(a),
Uy 15Uy 3, (Dv)n+%, (Dv)n+g. Main difficulties of our work come from
dealing with these new terms. To reduce the number of terms to control, we
find relations among connecting these various values at jump point allowing
to focus our computations on terms only involving v(a), dyv(a) and (Dv)nJr%.



Those relations are stated in Lemma B.17l In the limit A — 0 they give
back the transmission conditions for the function v = e™*fu used crucial
way in [BDL0O7]. The idea of this technique comes from a similar technique
shown in continuos case by [BDLOT].

The discrete setting could allow computation on the whole Q. Yet such
computation would yield constant that would depend on discrete derivatives
of the diffusions coefficient, yielding non-uniformity with respect to the dis-
cretization parameter h. This explains why we resort to working on both
Qo and 7 separately and deal with the interface terms that appear. As in
[BDLO7] the weight function is chosen to obtain positive contributions for
these terms.

Sketch of proof Theorem

1. We compute the inner product (Av, Bv) in a series of terms and collect
them together in an estimate (see Lemma 4. 4-Lemma [4.72]). In
that estimate, we need to tackle two parts: volume integrals, integrals
involving boundary points and the jump point. Volume integrals and
boundary terms are dealt with similar to [BL12]. Terms at the jump
point require special case.

2. Treatment of terms the jump point

e Terms at jump point involving O,v : when treating the term Y73
we obtain a positive integral of (9;v(a))? in the LHS of the esti-
mate as shown in Lemma We keep this term in the LHS
of the estimate.

e Other terms: We collect together the terms at the jump point
that already exist in the continuous case. As in [BDLO7| we ob-
tain a quadratic form because of the choice of the weight function
(jump of its slope). This allows us to obtain positive two inte-
grals involving v?(a), (Dv)?  , in the LHS of our estimate (see

2
n+3
Lemma [4.74).

e The remaining terms at the jump point are placed in the RHS
of estimate. After that, we apply Young’s inequality to them (as
shown in Lemma [4.16]) and they then can be absorded by the
positive integrals involving v?(a), (Dv)f”rl, (0yv(a))? in the LHS
2

of estimate as described above.

1.5 Outline

In section 2], we construct the weight functions to be used in the Carle-
man estimate. In section [3l we have gathered some preliminary discrete cal-
culus results and we present how transmission conditions can be expressed



in the discretization scheme. Section M is devoted to the proof the semi-
discrete parabolic Carleman estimate in the case of a discontinuous diffu-
sion cofficient for piecewise uniform meshes in the one-dimensional case. To
ease the reading, a large number of proofs of intermediate estimates have
been provided in Appendix A. This result is then extended to non-uniform
meshes in Section Bl Finally, in Section [l as consequences of the Carleman
estimate, we present the weak observability estimate and associated some
controllability results.

2 Weight functions

We shall first introduce a particular type of weight functions, which are
constructed through the following lemma.
We enlarge the open intervals 21, Q5 to large open sets 1, s.

Lemma 2.1. Let Qy, Qs be a smooth open and connected neighborhoods of
intervals Q1, Q9 of R and let w C Qs be a non-empty open set. Then, there

exists a function ¢ € C(2) such that

_Jrin @,
¥l = {1/12 in Qy,

with ; € C°(),i =1,2, ¥ >0 in Q=0 on T,y # 0 in Uy \ w, ¥ #
0 in Q and the function v satisfies the following trace properties, for some
ag > 0,

(Au,u) > ag |ul* ueR?

with the matriz A defined by
A= < air a2 > ’
a1 a2
with
a1 = [V Ao,

azy = [/ +5 () (") + [ () Har,

ary = agy = [+ (¥')(a"),
(see the notation (L3) - (LH) introduced in Section [I1]).

Remark 2.2. Here we choose a weight function that yields an observation
in the region w C Qg in the Carleman estimate of Section[fl This choice is
of course arbitrary.

Proof. We refer to Lemma 1.1 in [BDL07] for a similar proof. O



Choosing a function %, as in the previous lemma, for A > 0 and K >
Y]] o, we define the following weight functions

(@) = M) — K <0 () = M), (2.1)
r(t,a) = 090 p(t, ) = (r(t,a))7,

with
s(y=710(t), 7>0, ) =(t+a)(T+a—1))" ",

forO0<a<T.
We have
I[Bl%?}(@ =0(0)=6(T) =a YT+ )71, (2.2)

and fmﬁ@ > T2, We note that
07

o0 = (2t — T)62. (2.3)

For the Carleman estimate and the observation/control results we choose
here to treat the case of an distributed-observation in w C 2. The weight
function is of the form r = e*? with ¢ = ¥, with ¢ fulfilling the following
assumption. Construction of such a weight function is classical (see e.g

[F196)).

Assumption 2.3. Let w C Q be an open set. Let Q be a smooth open and
connected neighborhood of Q in R. The function ¢ = (x) is in CP(Q,R),
p sufficiently large, and satisfies, for some ¢ > 0,

Y >0in Q, VY| > cin Q\wo,
Onp(z) < —e <0,  I(z) <0in Vo

where Vyq is a sufficiently small neighborhood of 8 in Q, in which the
outward unit normal n to Q is extended from Of).

3 Some preliminary discrete calculus results for
uniform meshes

Here, to prepare for Section [, we only consider constant-step discretiza-
tions, i.e., hi+% =h,i=0,....,n+m+ 1.

We use here the following notation: Qg = (0,1), Qo1 = (0,a), Q2 =
(a,1), Q/O = Qo1 UQo2, Qo = (0,T) x Qo, Q/O =(0,T) x QIO, Qoi = (0,T) x Qq;
with ¢ = 1,2 and 09 = {0,1}.

This section aims to provide calculus rules for discrete operators such
as D;, D; and also to provide estimates for the successive applications of
such operators on the weight functions. To avoid cumbersome notation we

10



introduce the following continuous difference and averaging operators on
continuous functions. For a function f defined on €y we set

TUf(@) = flz+h/2), T f(@) = fla - R/2),
Df(z) = (r" =77 )f(x)/h,  fla)=("+77)f(x)/2

Remark 3.1. To iterate averaging symbols we shall sometimes write Af =
f, and thus A%f = f.

3.1 Discrete calculus formulae

We present calculus results for finite-difference operators that were de-
fined in the introductory section. Proofs can be found in Appendix of
[BHLI0a] in the one-dimension case.

Lemma 3.2. Let the functions f1 and fo be continuously defined in a neigh-
borhood of Q. We have:

D(f1f2) = D(f1)f2 + fiD(fa).

Note that the immediate translation of the proposition to discrete func-
tions f1, fo € C™ and g1, g2 € C™ is

D(f1f2) = D(f1)f2 + fiD(f2), D(9192) = D(g1)g2 + G1D(g2).

Lemma 3.3. Let the functions f1 and fo be continuously defined in a neigh-
borhood of Q. We have:

o 2
fife=fifo+ %D(fl)D(fé)-

Note that the itmmediate translation of the proposition to discrete func-
tions f1, fo € C™ and g1, g2 € C™ is

h2

7 D(91)D(92)-

L 2
fife= fife + %D(f1)D(f2), 9192 = 192 +

Some of the following properties can be extended in such a manner to
discrete functions. We shall not always write it explicitly.
Averaging a function twice gives the following formula.

Lemma 3.4. Let the function f be continuously defined over R. We then
have

2 ; h?
A%f = f = f + ~-DDf.

The following proposition covers discrete integrations by parts and re-
lated formula.

11



Proposition 3.5. Let f € CMYOM gnd g € C™. We have the following
formulae:

. f(Dg) - = /Qo (Df)g + fn+m+29n+m+% - f09%7

_ = h h
/Qo fg = . fg - §fn+m+29n+m+% - §f09%-

Lemma 3.6. Let f be a smooth function defined in a neighborhood of .
We have

h T
Tf=f+ 5/0 Oy f(. £ oh/2)do,

1
mf=f+am{/(yqﬂmgp+wmm@

-1

1
. . . . 1
Wf=%f+@*/ﬁG—WW“%“N+QMMmj=LZh:§,h:L
-1

3.2 Calculus results related to the weight functions

We now present some technical lemmata related to discrete operators
performed on the Carleman weight functions that is of the form e*?, ¢ =
M — M where 1) satisfies the properties listed in Section @in the domain
Q. For concision, we set r(t,z) = e*®#®) and p = =1, with s(t) = 70(¢t).
From Section 2] we have ¢‘901 = 1/)1‘901, ¢‘901 = ¢2|901 where 1; € C2(Qq;).
Then p = %% can be replaced by

pr=e % with ¢ = M1 — M

Ao e)\K

in domain Qg

p1=¢e %P2 with @9 =c¢ in domain Qg9

And r = p~! is also replaced by

r= P1_1 in domain Qg

Ty = Py in domain Qg

The positive parameters 7 and h will be large and small respectively and we
are particularly interested in the dependence on 7, h and A in the following
basic estimates in each domain g1, Q2.

We assume 7 > 1 and A > 1.

Lemma 3.7. Let o, S €N, i=1,2. We have

07 (ridgp) = a’(=s¢) NP (i) *P
+ aB(s¢) NP0, (1) + s Lo — 1) 04 (1) = O (s%).

12



Let 0 € [-1,1], we have
02 (ri(t, )02 pi)(t,. + oh)) = Ox(s*(1 + (sh)?))eOr ),

Provided 0 < Th(maz|y)0) < & we have A (ri(t, )(0%pi)(t,. + oh)) =
O)\,ﬁ(8|a|). The same expressions hold with r and p interchanged and with s
changed into -s.

A proof is given in [BHLIOal proof of Lemma 3.7] in the time indepen-
dent case. Additionally, we provide a result below to the time-dependent
case whose proof is refered to [BL12, proof of Lemma 2.8]. Note that the
condition 0 < Th(mawyf) < & implies that s(t)h < & for all t € [0,T7.

Lemma 3.8. Let o € N, i=1,2. We have
O (105 pi) = s*THON(1).
With Leibniz formula we have the following estimates
Corollary 3.9. Let o, 3,6 € N, i=1,2. We have
R(ri07p)07p) = (a+ B)(=s¢i) TINTIF (Gypy)tie?

5(0[ + ﬁ)(sqbi)aJrﬁ)\aJrﬁJréflO(l)

+
+ s ala = 1) + (8 - 1)Ox(1) = Oz(s*H).

The proofs of the following properties can be found in Appendix A of
[BHL10a].

Proposition 3.10. Let a € N, i=1,2. Provided 0 < Th(mazxymf) < &, we
have
riT =02 p; = 102 pi + s*Oxa(sh) = s*Ox (1),
ri AP0 pi = 10 pi + s Ox s(sh)® = s*Ox5(1), k=0,1,2,
riA"Dp; = 1;05p; + sOx a(sh)? = sO\ 5(1), k= 0,1,
riD?p;i = 1;02p; + $°Ox a(sh)? = s°O) x(1).

The same estimates hold with p; and r; interchanged.

Lemma 3.11. Let o, € N and k = 1,2;j = 1,2;i = 1,2. Provided
0 < Th(max)y ) 0) < &, we have

DF(02 (102 pi)) = OF P (1:02 pi) + h* Oy a(s%),
A8 (0% p;) = 0P (1:0%p;) + h2 O a(s%).

Let o € [—1,1], we have D*98(r;(t,.)0%pi(t,. + oh)) = O x(s!*). The
same estimates hold with r; and p; interchanged.
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Lemma 3.12. Let a, 5,0 € N and k = 1,2;5 = 1,2;i = 1,2. Provided
0 < Th(mazjym0) < K, we have

AT (r? (05 pi)05 pi) = O (rF (D5 pi)O pi) + W2 Ox a(s°H) = Ox 1 (s*T7),

DR (r}(09p:)00pi) = N (r}(09%P pi) + WP O\ a(s*T7) = O a(s*7).
Let 0,0’ € [-1,1]. We have
AT (ri(t, )2 (0% pi(t, . + ah))DP pily, . + o'h)) = Oxa(s*H7),
D*OP (ri(t, )2 (0% pi(t, . + oh))3pi(t, . + o'h)) = Oxa(s*T7).
The same estimates hold with r; and p; interchanged.

Proposition 3.13. Leta € Nand k=0,1,2;5 =0,1,2;¢ = 1,2. Provided
0 < sh < R, we have

DN A9 (riDpy) = 95 (ridupi) + sOx5(sh)? = sOxa(1),
DF(r; D?p;) = 8§(Ti62pi) + 520)\7ﬁ(8h)2 = 520A7ﬁ(1),
riA?p; = 1+ Oy a(sh)®, D¥(r;A%p;) = Oy x(sh)?.

The same estimates hold with r; and p; interchanged.

Proposition 3.14. Provided 0 < Th(maz1)f) < & and o is bounded, we
have

Oy (ri(, 2)(0%pi) (s x + oh)) = Ts"0(t)Ox a(1),
at(TiA2Pi) = T(Sh)20(t)0)\7ﬁ(1),
O(riD*p;) = Ts*0(t)Ox 5(1).

The same estimates hold with r; and p; interchanged.

Proposition 3.15. Let o, f € N and k = 0,1,2;5 = 0,1,2;¢ = 1,2,
provided 0 < sh < R, we have

AIDROP(r2(0*)Dpy) = OFFP(r2(9°p)p;) + 52Oy a(sh)? = 2710 4(1),
AIDPOP(r2(8*)A%p) = EFP(1:(8%p)) + s°Ox a((sh)?) = sOp 4(1),
AIDROP(r2(8*)D2p;) = OETP(r2(8%p)0%pi) + 2 T2O) a(sh)? = 520, 4(1),

and we have

AT DR (r2Dpi D pos) = 05T (12(0pi) 9 pi) + 5 Ora(sh)? = s°Ox 5(1),
AJ DR (r2Dp; A%pi) = 08T (ri0p;) + sOx a(sh)? = sOx 1(1).
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3.3 Transmission conditions

We consider here discrete version of the transmission conditions (TC) at
the point a. For u € C™ we set f := D(cqDu) we then have

u(a™) = u(a®) = un41,

Remark 3.16. These transmission conditions provide the continuity for u
and the discrete flux at the singular point of coefficient up to a consistent
factor.

From these conditions, we obtain the following lemma whose proof is
given in Appendix A

Lemma 3.17. For the parameter A chosen sufficiently large and sh suffi-
ciently small and with u = pv we have

[xcaDv]a = (€aDV)py 3 — (caDV)py 1 = J1vng1 +J2(caDv)y, 1+ J3h(r a1 (3.1)
where

Ji = (14 Oy a(sh)) As[xcgi']q + sOx s(sh),
Jo = OA“Q(Sh), Js = (1 + O)\ﬁ(sh)).

Furthermore, we have

atjl = STe(t)O,\7ﬁ(8h),
atJQ = T@(t)O)\”Q(Sh), ath = TH(t)OM(sh)

For simplicity, B1l) can be written in form

[xcaDv]a = As[xcdt)']qvni1 + 70, (3.2)

where 7o = AsOx a(sh)vp41 + O)\,R(Sh)(CdD'U)n_,’_% + h(l + O)\,R(Sh)) (rf)nt1-

4 Carleman estimate for uniform meshes

In this section, we prove a Carleman estimate in case of picewise uniform
meshes, i.e, constant-step discretizations in each subinterval (0, a) and (a, 1).
The case of non-uniform meshes is treated in Section [l

We let wy C Qg2 be a nonempty open subset. We set the operator P™ to
be P = —9; + A™ = —0; — D(cqD), continuous in the variable ¢ € (0,7)
with T" > 0, and discrete in the variable z € €.

The Carleman weight function is of the form r = e*¢ with ¢ = e*¥ — e}
where v satisfies the properties listed in Section [2]in the domain €. Here,
to treat the semi-discrete case, we use the enlarged neighborhoods Qo1. Qo2

of Qo1, Qg2 as introduced in Lemma Il This allows one to apply multiple

K
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discrete operators such as D and A on the weight functions. In particular,
we take 1) such that d;¢ > 0 in V and 0, < 0 in V4 where V and V; are
neighborhoods of 0 and 1 respectively. This then yields on 0

(rDp)o <0, (rDp)pimt2 >0 (4.1)

Theorem 4.1. Let wg C Qg2 be a non-empty open set and we set f :=

D(cqDu). For the parameter A\ > 1 sufficiently large, there exists C, 19 > 1,
ho > 0, €g > 0, depending on wq so that the following estimate holds

2

L2(Qo)

0% eTg“"u‘ ?
L2((0,T)Xwo)

2
1
1 "975679“"(9tu‘

02 eTe‘PDu‘
L2(Qo)

2
H%GTG‘PU‘
L2(Qo)

+7-3‘

7|

<Chs (

eTngmu‘

+7'3‘

2
L2(Qo)

+h2

+h~2
L2(Qo)

6T6¢U|t=T

2
L2(QO)> (4.2)

for all 7 > 1o(T +T?), 0 < h < hy and Th(aT)™* < € and for all u €
C>(0,T; C™) satisfying ulpn, = 0.

676¢u|t:0

Remark 4.2. Observation was chosen in Qoo here. This is an arbitrary
choice (see Remark[2.2).

Proof. We set f1 := —P™ = 0;u+ D(cqDu) and f = D(cqDu). At first,
we shall work with the function v = ru, i.e., u = pv, that satisfies

r(@t(pv) + D(cdD(pv))> =rf in Q. (4.3)

We have
rO(pv) = Opv + 1(Orp)v = Opv — 7(0:0)pu.

We write: g = Av 4+ B,
where Av = Ajv + Asv + Asv, Bv = Biv + Byv + B3v with

Av =1pD(cgDv), Asv = cr(DDp)v, Azv = —7(90)pv,
Byv = 2crDp Dv, Bov = —2sc¢”v, Bsv = v,
h — = h? o
g=rf— ZTDp(DCd)(T+DU — 7 Dv) — Z(Dcd)r(DDp)Dv
—hO(1)rDp Dv — (r(Dcq) Dp + hO(1)r(DDp))t — 2s¢(¢” v,

as derived in [BL12].
Equation (£3) now reads Av + Bv = g and we write

HAUH%Q(Q{)) + HBUH%Q(Q{)) + 2(Av, Bo)r2(q) = ”gH%?(Q{)) : (4.4)

First we need an estimation of HQH%Q(Q@' The proof can be adapted from
[BHLI0a].
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Lemma 4.3. For Th(max|y 1) 0) < & we have

HQH%%Q;)) < C)\,ﬁ(HTfIH%Q(Q())) + HSUH%?(Q()) +h? HSDUH%%%) . (45)

Most of the remaining of the proof will be dedicated to computing the
inner product (Av, Bv)LQ(%). Developing the inner-product (Av, Bv)r2 @)
we set I;; = (Ajv, Bjv)r2(qy)- The proofs of the following lemmata are
provided in Appendix A.

Lemma 4.4 (Estimate of I11). For Th(maz)10) < & we have
In 2 = [ s\ (@0 P)ul Do) - X + Y
where X117 = f% v11(Dv)? with v11 of the form sA¢O(1) + sOy z(sh) and
Y = Yl(ll) + Y1(1271) + Y1(12’2)a
T
y ) /0 (1+ Oxa(sh)) (cca) ) (rDR) (D)D), 5
T
~ [ (14 Oaloh)) (eca) O/ D)0} (Do)},
0
ey _ [T 2 2
v = /O sAo(a)ea(a) ((ev!) (@) (Dv)2 5 = () )(Dw)2, 1 ),
2,2) T T
Y = / s(’)Aﬁ(sh)Q(Dv)ile - / SOA7ﬁ(Sh)2(D’U)Z+§.
0 2 0 2

Lemma 4.5 (Estimate of I;2). For Th(max[O7T}6?) < R, the term I3 is of
the following form

Iy = 2/ sA2(p()H)a(Dv)? — X2 + Yo,
Qb
with
Yis = / sX20(a)o(@)[c(s)? * caDvl

T T
+ / 512v(a)(ch)n+% +/ 5120(0)(CDU)n+év
0 0

where 812,612 are of the form s(Ap(a)O(1) + Oy a(sh)?) and

X12:/
Q

vig = sA@O(1) + 5Oy q(h + (sh)?).

1/12(D’U)2+/ sOx,2(1)0Dv,
o

’
0

where
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Lemma 4.6 (Estimate of I13). There exists €1(\) > 0 such that, for 0 <
Th(mazy10) < €1(N), the term I3 can be estimated from below in following
way:

Iz > — /Q/ Cra(1)(Dv(T))* — X13 + V3.
0

with
X3 = /
Q
T

Yig = — / rp(at)d(a)(caDv),, s + / rpa)Or(a)(caDv) sy

(s(sh) + T(sh)?0)Ox a(1)(Dv)* + /Q s 1Oy a(sh)(O)?,

/
0

Lemma 4.7 (Estimate of Ia1). For Th(maz|y ) < &, the term Is1 can be
estimated as
In > 3/ X ¢3c? () 0? — Xo1 + Yau,
Q

’
0

with
Xo1 = / p210? +/ Vo1 (Dv)?,
Qg Qo
where
pia1 = (sA@)>O(1) + 5°Ox (1) + s°Op a(sh)?, va1 = sO, a(sh)?,
and

(1,1) T 20 P 2 ’ 2+ Do
v = /0 Oxs(sh)*(rDp)(1)(Dv)} 5 + /0 Oxa(sh)”(rDp)(0)(Dv)

)

=N

T
Y = /0 SN (@) W) % (0)7ar
T
V) = [ (POA1) + S On(sh)) (02, + (02 ).
T
YQ(lz) :/ 52(9>\7ﬁ(5h)vz(a).
0

Lemma 4.8 (Estimate of Is2). For sh < &, we have

122 = —2/ 0283A4¢3(T/Jl)402 - X22 + YQQ,
Q

/
0
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with
YQQ — Y2(21) + Y2(22),

(1) T s h? 3 h?
Y22 :/ S O)\ﬁ(l)?}(a)?(DU)n_’_% + s O)\,ﬁ(l)v(a)_(Dv)n-l-%’
0

and

X22=/
Q

Moo = (s)\gb)g(?(l) + 52(9,\73(1) + 830)\7ﬁ(sh)2, Vo = 50A7ﬁ(5h)2-

M22U2+/ VQQ(D’U)Q,
Q

/ ’
0 0

where

Lemma 4.9 (Estimate of I3). For Th(maz|y ) < &, the term Is3 can be
estimated from below in the following way

I > / s (O)\,ﬁ(l)vﬁzo + O)\,ﬁ(l)vﬁ:T) — Xo3 + Yag,
Q/

0

with

Xog = /TSQHOA,ﬁ(l)U2+/ S_lox,ﬁ(Sh)Q(atv)Q

0 0

n /Q (sh)?sOx.a(1) (Dv)?,

o
and
Yoz = Y2(31) + Y2(§) + Y2(§’),

T
1 h, h .
vl = /O 20xw(1040(0)5 (3, 1) + $Ox a(1)00(a)5 (B,,3).

T
Y2(32) = / sTOO) g(sh)v?(a),
0
Vg = Oxs(sh)**(@)](=5
Lemma 4.10 (Estimate of I31). For Th(mazjynf) < &, we have

I31 = — X371 + Y3y,
with

X31=/
Q

T0s*Oy g(1)v* + / TOO) x(sh)*(Dv)?,
Q

/
0
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and
Yo =Yy + Y5,

T T
v = [ 1020, s(1)0la)y (D), + [ T65°00a(10(a)
0 0

(D)

n—l—%’

| S

T
v = / T05*0x 5(1)v?(a).
0

Lemma 4.11 (Estimate of I32). [BL12] For Th(mazjym0) < &, the term
I35 can be estimated from below in the following way

132 = —X32 = / TS290>\”§(1)U2.
Q

0
Lemma 4.12 (Estimate of I33). [BL12, proof of Lemma 3.9] For Th(mazy 10) <
R, the term I33 can be estimated from below in the following way

1
I33 > — X33 = 57/ dp(070)v*.
Qb

Continuation of the proof of Theorem 4.1. Collecting the terms we have
obtained in the previous lemmata, from (€.4) and (4.3]) for 0 < 7h(maz(y10) <
€1(A) we find

||A’UH%2(Q6) + ||BU||%2(Q6) + Q/Q/ 3)\2(02¢(w/)2)d(D’U)2 + 2/(2/ 0253A4¢3(w/)4v2
0 0

+2(Y1(11) + Y2(1171)) + 2(Y1(1271) + Y2(11721)) + 2Y13

< C)\,K(Hrfl||i2(Q6) + /Q s*(vf_, +vi_,) +/Q (Dv(T))Q) +2X +2Y,
0

:
with
= - (Yﬁ“) +Yio + Y2 VD Yoy + Yas + Ym),

Y
X = X1+ X2+ Xz + Xo1 + Xoo + Xog + Xa1 + Xaso + Xas
2 2
+Ox s (lI5v1172qp) + 1 [1sDvl72(0) )-

With the following lemma, we may in fact ignore the term Y1(11 )+ Y2(11 D in the
previous inequality.

Lemma 4.13. For all X there exists 0 < e2(A\) < €1(A) such that for 0 < Th(mazo 10) <
e2(\) we have Yl(ll) + Y2(11’1) > 0.
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Recalling that V¢ > C > 0 in Q\wy we may thus write

2 2
40132 + 1Bulaigyy + [ su2+ [ s
Qo Q5
2,1)

Jr2(Yl(l + Y2(11721)) +2Y13

T T
< Chs <||rf1||iz(Q/0)+2/ / S(D’U)2+2/ / s30?
0 wo 0 wo
+/ 52(vi:0+vi:T)+/
Q

Q
Lemma 4.14. With the function 1 satisfing the properties of Lemmal21] and for
Th(mazyp ) < K, we have

(D’U(T))2> +2X +2Y. (4.6)

i i
0 0

T T
Y1(12,1) . Y2(11,21) > Cao/ s/\d)(a)(cde)iJr% + C’ao/ 53/\3¢)3(a)vz+1 + p1 + o,
0 0

with ag as given in Lemmal2] and where

T T T
Hr = / SO,\(l)T8+/ 520/\(1)r0vn+1+/ sOx(1)ro(caDv),, 41
0 0 0

T
+ / s°Oxr(sh)vp +/
0 0

with ro as given in Lemma[3.17 and

T T
SO,\,g(sh)vnH(cde)nJr% —|—/ sOx q(sh)rovp41,
0

1 2
= 4 )

where
a T T
I ) :/ sO,\ﬁ(sh)(cde)iJr% —|—/ SO,\ﬁ(sh)(cde)iJr%,
0 0

T T
,U§2) — / 52(9/\7~Q(Sh)(CdD’U)n+%’Un+1 —+ / 520/\7~Q(Sh)(CdD’U)n+%’Un+1-
0 0

For a proof see Appendix A.

Lemma 4.15. With 0 < e3(\) < e2(X) sufficiently small we obtain
T T
Yi3 > / Cx.ah(0rv(a))? —|—/ (sTOOx a(sh) + T?6°Oy x(sh))v*(a)
0 0

T T
+ SOAﬁ(l)U?(a)H:TqL/O O/\,.Q(Sh)at”(a)(Cde)n+§+/O Oxs5(1)0v(a)h(rfi)nt1-

where Cy g is positive constant whose value depends on A and sh.

For a proof see Appendix A.

If we choose Ay > A; sufficiently large, then for A = Ay (fixed for the rest of the
proof) and 0 < Th(max(, 1) 0) < €3, from (&) and Lemma ET4 and Lemma ZT5]
we can thus achieve the following inequality
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140022y + B0l + / s|Dof dt + / 2t
T
+ Cao/ (cde) 1 +Ca0/ $3v? / Ch,5h(0v( (a))?

CAR(H?‘leLz(Q +2/ s(Dv) +2/ / 302
wo wo

[ SR, )+ [ (Do) sl )

IN

T

T
+ / (ST@O}HQ(S}L) + T292(9A7ﬁ(sh))v2(a) + / OA,ﬁ(sh)atv(a)(cde)nﬁ_%
0 0

+ / Oxa(1)0w(a)h(rfi)nt1 +2X +2Y +2Z : (4.7)
0

where Z = p, + p1 with g, and pp are given as in Lemma [.14] and where

X = /ﬂv2 + /17(D’U)2
0 0

+  Xio+ X3+ Xo3 + X31 + X320 + X33,

with i = 520, (1) + 530, a(sh) and ¥ of the form sOy g(sh).

By using the Young’s inequality, we estimate in turn all the terms of Y, Z and
the two terms at the RHS of (@7) through the following Lemma whose proof can
be found in Appendix A

Lemma 4.16. For sh < K, we have

T T T
/ Ox2(1)0w(a)h(rfi)ns1 < e/ O,\yﬁ(l)h(atv(a))Qﬂ’Ce/ Oxa(VA(rf1)2 .1,
0 0 0

/ (9,\7~Q(sh)8tv(a)(cde)n+% < e/ (9,\7~q(1)h(8tv(a))2+06/ SOAﬁf{(Sh)(CdD'U)i{Fl
0 0 0

T

T T T
’Y1(12’2)’ S/O 04111)721+1+/0 ﬂllh(atv>72z+1+/0 711(Cde)i+%+/O mih(rf1)p 1,

oyl = (SBOAﬁ(sh)Q + sTQOQOAﬁ(Sh)‘l) Bi1 = OA,ﬁ(sh)g,
Y11 = 50 a(sh)? mi1 = Ox a(sh)®.

T

T T T
[Yiz] < / Q1202 1 + Bi2h(8pv)2 14 +/ ’Y12(CdDU)i+% +/ mah(rfi)2,1,
0 0 0 0
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Qg = (52(’),\,@(1) + ST292OA7ﬁ(Sh)2) B12 = Ox a(sh),
v12 = Oy 5(1) M2 = Ox a(sh).

T T T T
‘}/2(11,22)‘ < / 04211)3+1+/ ﬂglh(atv)i_i_l‘i’/ ’}/21(CdD’U)i+%+/ 7721h(7"f1>72l+1,
0 0 0 0

o1 = (SBOA,.Q(U + STQ@QO,\,Q(Sh)4) Ba1 = Oy g(sh)?,
Y21 = SO)\,R(Sh)s 21 = O,\Vq(sh)zg.

T T T T
‘Yg(gl)} S/ 04221),21“ +/ 522h(3tv)i+1 +/ 722(CdDU),2,+; +/ U22h(Tf1)%+1;
0 0 0 2 0

oy = (SQOA,R(sh)Q + ST292OA7ﬁ(Sh)4) Bo2 = (’)A,g(sh)g,
Yoz = Oy a(sh)? N22 = Ox a(sh)®.
T T
0

T T
’}/2(31)’ S/ 0423“3+1+/ ﬂzsh(atv(a))2+/ 723(CdD”)721+§ +/ Mook (rf1)7 41,
0 0 0

a3 = (530A,ﬁ(1) + 5T2920m(5h)3) Ba3 = Ox.a(sh),
Vo3 = 50 a(sh)? Naz = Oy a(sh)?.

T T T T
‘5/3(11)‘ S/ az1v +/ Bash(9pv)s 11 +/ Y23(caDv)} 1 +/ Mool (r f1) 41
0 0 0 0

gy = (52T9(9m(sh) + sT292(9m(sh)) Ba3 = Ox.a(sh),
Y23 = SO)\,R(Sh) Moo = OA,R(Sh).

T

T T T
p1 S/O 041%21+1+/0 Brh(0w)s 1 +/O 71(CdD”)721+§ +/O mh(rf1)ai1,

o = (53(9,\7;;(sh) + ST292OA7ﬁ(Sh)3) B = O)\,R(Sh)Q,
v1 = sOx q(sh) nm = (9,\7~q(sh)2.

T T T T
Mo S/O Oérvi.HJF/O ﬂrh(aﬂ))%.HJF/O 'YT(CdDU)iJr% +/O nrh(rfl)i-i-la
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ar = (530A,ﬁ(sh) + ST2020, 5 a(sh)? + eSBOAﬁ(l)) By = Ocrnlsh),
Yy = (SO)\,R(S]”L) + es(’)A,ﬁ(l)) Ny = O ,5(sh).

Futhermore, we can estimate the term in X5 as follows

[ sosaive < [ s0na@p+ [ sona)o?

/
0

IN

/
0

[ 500 + [ s0rsey
= [ sonatpt+ | s0rstyon

0
—_2
by Lemma B3 and as [, Oxa(1) [v] = [, Oxs(1)0?
0
Observe that
1 <770 and |0;6| < CT?6°.

We can now choose €4 and hg sufficiently small, with 0 < e4 < e3(A2), 0 < hg <
hi()2), and 75 > 1 sufficiently large, such that for 7 > 7o (T'+712), 0 < h < hg, and
Th(mazyp 110) < €4, from @7) and Lemma E.T6 we get

2 2 2
401 gy + 1By + [ 31D+ [ st
0

0

T T T
+ Cao/ s(cqgDv)? nl JrC’Ozg/ ngn+1+0)\ﬁ/ h(dpw(a))?

S <|Tf1||L2(Q/) +/ / D'U / /w
+h*2(/ U|2t:0+/ Uﬁ:T)-i-sv ) / O, a(1 rfl)nJr1
2 2
+ / SO,\,R(l)UQ—l—/ silok,ﬁ(sh)(atv)Q—i—/ s*TO0 a(1)v*

(4.8)

where we used that (Dv)? < Ch=2((77v)%?+4 (77 v)?) and the last three terms whose
integral taken on domain Q)¢ come from the term in Xj2, X13 and Xs3 respectively.
As 7> 7o(T +T?) then s > 75 > 0 and furthermore we observe that

2

L2(Qp)

1
520

IN

1 2 2
LZ(Q’

L2(Qp)

C,\ﬁ( Hs_%Bv‘

. 2
SEDU‘ )
L2(Qp)

)
2@y /)’

We then add the following terms fOT hsv2,, and fo hs~1(0;v(a))? on both
the right hand side and the left hand side of (@38]). This allows us to change the
domain of integration from @ to Qo for the discrete integrals on the primal mesh.

IN

520

1
s2Dv‘

CATR(HBUHLQ(Q 1) + ‘ L2(Q)) + ‘
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No additional term is required for discrete integrals on the dual mesh. For sh
sufficiently small and s > 1 sufficiently large, these terms at the right hand side are
then absorbed by the terms at the left hand side. More precisely, with 0 < €y < ¢4
sufficiently small and for 7 > 7o (T +T?), 0 < h < hg, and 0 < Th(mazp 110) < €

we thus obtain
2
+ / s(Dv)?  + / 5302
L2(Qo)

< cun(itiias [ [ awore [ [ o

([ [ ) +sOnsR@E ). @)

_1
s 20w

Now we shall estimate the term sOx (1)v?(a)|,_,.. We have

n+m+1

H”\t:THiz(szg) - Z hv]?‘t:T >h H“It:r”iw(no)'
j=1

It follows that, as sh is bounded

IN

CA“Q sh™!

|sOx a(1)v*(a)),_,| < Cra s Hv‘t:THiOO(QU) 01— 20

IN

Caa D2 |v),_r Hiz(ﬂo) :

Similarly, we treat the term sOx z(1)v*(a)|,_, as

2
‘Sok,ﬁ(l) \r o‘ <Cxa h™ ||v|t:0HL2(QO) :
Therefore, ([£9) can be written as
1 2 1 2 3 2
s 20 + sz Dv + ’siv’
L2(Qo) LZ(QO) L2(Qo)

2

< C 3)) ||
= R <Hrf1”L2(Q )T [Er Y LZ((O T)xwo) L £2((0.7) xwo)

+h—2(/ Uﬁ:0+/ uﬁT)).
Q0 Q0

| 2
52 Dv
L2((0,T) xwo)
proof of Theorem 4.1 in [BHL10a] we thus write

We next remove the volume norm ‘ by proceeding as in the

) 2 ) 2
71 H@fEeTWatuH +7 ’ 92679‘PDUH + 73 ’ 9%67990”’
L2(Qo) L2(Qo) L2(Qo)
2
< T0p PM 3 } 5 1o }
<O <||e P uHLZ(Qo) +7° |62 %u L2((0,T) xwo)

o 2 o . 2
B2 |l ol gy + B2 Pl )+ (4.10)
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As we have r[naT>]<9 < T , we see that a sufficient condition for 7h (r[naTXG) < €
0, 0

then becomes Th(T'a)~! < €. To finish the proof, we need to express all the terms
in the estimate above in terms of the original function u. We can proceed exactly
as in the end of proof of Theorem 4.1 in [BHL10a].

5 Carleman estimates for regular non uniform meshes

In this section we focus on extending the above result to the class of non piece-
wise uniform meshes introduced in Section We choose a function 9 satisfy-
ing (L6) and further ¥|[4_sq+5) is chosen affine (for some ¢ > 0 to remain fixed in
the sequel). The way we proceed here is similar to what is done in [BHLIO0a]. In
this framework, we shall prove a non-uniform Carleman estimate for the parabolic
operator P™ = —9, + A™ on the mesh 9 by using the result on uniform meshes
of Section [

By using first-order Taylor formulae we obtain the following result.

Lemma 5.1. Let us define ¢ € R™ gnd ¢ e R™ as follows

h/
Gy = 1;22 i€{0,...,n+m+1}  G=

!/

!
#,ie{l,...,n—i—m—i—l}

These two discrete functions are connected to the geometry of the primal and dual
meshes N and M and we have

0 <infd' < (1 <sup?d’, Vie0,...,n+m+1
Qo 2 Qo

0 < inf¥’ < ¢; <sup?, Viel,...,n+m+1
Qo QO

1971l 19|
|D<}Lm(9) S inf9’ ’ |DC}L0¢(Q) S infy’
Qo Qo

We introduce some notation. To any u € C™Y9M  we associate the discrete
function denoted by th u € CPMoY9Mo Jefined on the uniform mesh My which

takes the same values as uw at the corresponding nodes. More precisely, if u =

n+m+1
Zi:l ]-[z’_ 1793/- l]ui, we 1et
i-3 Vit g

n+m+1
Ou = Z Lii—3)n,(i+ 2 n Wi

m n . 57
and (Qn’u)o = uo, (oUW ntm+2 = Ungmi2. Similarly, for u € C™ u =
S we set

1=1 [zi,zi+1] ZJF%’

n+m—+1

Q— u= Z Liin, (i+1)R) Wis L -
i=0
The operators Qm“ and Qm“ are invertible and we denote by Q%O and Qg— their
0

respective inverses. We give commutation properties between these operators and
discrete-difference operators through the following Lemmata whose proofs can be
found in [BHL10a].
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Lemma 5.2. [BHLIOd, see the proof of Lemma 5.2]

1. For any u € C™YM and any v € (Cﬁ, we have

D(QPou) = Q20 (¢Du),  DQZoy = QI (C Dv)

(CEIYIUBQT(

2. For any u € we have

DleaDu) = ()~ O3, (D@5 F)D(Q5w) )

Lemma 5.3. [BHLI10d, see proof of Lemma 5.3]
For any u € C™ and any v € C™, we have

2

L2(Q0)

Z1042 0
(Sué)oﬁl) ! lulp2(q) < ‘szou

< (ingfloﬂ’fl |u|2L2(Q)

nN—11..2 Do
(smp )™ felyag) < | Q5] , <

. N—1 2
L2(c) < (1n£019 )7 vl

Futhermore, the same inequalities hold by replacing Q) by w and Qg by wg, respec-
tively.

For any continuous function f defined on ©Q (resp. on Q) we denote by
Oonf = (f(2)))o<i<ntmtz € CTUIM the sampling of f on M (resp. Iop, f =
(f(ih))0§i§n+m+2 € CPWUdMo the sampling of f on 9)’(0)

Lemma 5.4. [BHLIOd, see the proof of Lemma 5.4]
Let f be a continuous function defined on )

O Tan f = T, (f © ).

In particular, for u € C™Y9™ we have

O (Mo ) = Mo, (f 0 9) (Q0w).
Moreover, by making use of Taylor formulae we get the following result
Lemma 5.5. With { defined as in Lemmal5]] we have

IDDY| <00 D7, <00, 0< Wil Il < o0

o |

1

where V 1= —5—.
90" ¢

Proof. From the definition of (, Q%" and D acting on C™, D acting on CMo we
have

_ 1 -
( ngg )z
Vi1 — 2V + Vi
= 2
N e e e L0 (5.1)
h h2—1h2h§+1
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We find
9U§+1 — Ty 79((2 + 1)h) - 19((@ - 1)h) i1 — 91

hi =iy 2 - 2 - 2 ’
_O(@+2)h) —9(ih) _ Dirs Vs
2 2 ’
, ( i=2)h) _ ¥ —Yis
i—1 = B) .
By using Taylor formulae we write

(2h)

/
— .
i—

[

/
i+1 —

<2h> (2)"*
24

(2h)

Divo = Ui+ (20)0, + 0+ 0+ 9 + o),

(2h) (2h)

Oio = 0;— (Qh)ﬂ; 19// 19/// 19(4) + O(h5)

B2 b h

Dir = Ot bk 0] %195‘” n O(h5),
e h)*

iy = O i — 0 ( i 99 + o).

Thus we have

/ / 2h3 " 5
h; = 2h19i+719i + O(r?),

2h)? 2h)? 2h)*
h/i+1 — 2h19/i+( ]27‘) 19/1_/_’_( Z) 19///_’_ (QZ) 19(4)_’_0(]15)’

2h)? 2h)? 2h)*
; ah, — ¢ ;) o+ | Z) 9" — (22) 9+ O(h?).

i—1

From (5. we obtain
_ 1
DD(——
¢

Sl=

)i =

where
N = (h 7,+1)h’; 1 (h; 1 h/)h;-i-l
(2h)*
24
(2h)

(2h)

9 4 0(h5)) ((2h)0; — 9" + O(h%))

- ( G g g —
(-*

D)% g _ g — =) g O(hs)) () + (2%)192’ +O(h?))

- (2’;) (W) + O(h°).

and
D =hx hi_ x hl x bl = (2h)*(9))> + O(h?).
Thus, we have

1
DD(—5=)i
¢
which proves the first result. Next, we proceed with the second result in the same
manner as above. We have

< (inf¥') ™2 < o0,

. Vigd = Vil yy —via_ 1, h h hi_y —hi 4
(Dl/)i: 3 2 _ 1+ 7 _ _ = 1+

h 2h h(h’;-‘rl h;_l) B hz-‘,—lh; 1
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By using the computations of hj_,, hj,, above we find

—(20)*0" + O | o 119"l
(2h)29"% + O(h3) | ~ (inf ¥’)?

[(Do);| = < 00,
which yields the second result.
Moreover, with the properties of ( shown as in Lemma [5.0] we can assert

0 < v V|| oo < 00.

oo |

O

From Lemmata — B4 we thus obtain the following discrete Carleman esti-
mate for the operator P™ = —3; — D(cqD.) on the mesh .

Theorem 5.6. Let w C o be a non-empty open set and we set f := D(cqDu).
For the parameter A > 1 sufficiently large, there exists C, 79 > 1, hg > 0, g > 0,
depending on w such that for any mesh 9 obtained from ¥ by (LO) - (LT), we

have

1 i 70 2 2
T Hﬁ_feT “Oiu
L2(Q)

’ 92 eTwuH2
L2(Q)

L2(Q)

+T‘

G%eTe‘pDuH + 73 ‘

\ 2
3
02 eTe“ou’

- 2
< Chs (He WPW“HL%Q) +7° ‘ L2((0,T) xw)

9+ 2 o 2
172 [0 ul o g + B2 Pt gy ) 5 (5:2)

forallT > 170(T+T?%),0 < h < hg and Th(aT)™! < ¢y and for allu € C>=(0,T;C™)
satisfying uloq = 0.

Proof. We set w = Q%"u defined on the uniform mesh 9y. By using Lemma
we have

QN (CP™Mu) = —(Q°C)dhw — D((Q?%)Dw). (5.3)

We observe that the right-hand side of (53] is a semi-discrete parabolic operator
of the form P = ¢/'(—9; — éD(de.)) applied to w, where

Cd

; (5.4)

¢ =ao0C &=

\/k/e Set e A T a.Ild we ﬁIld
v f Q 0<

by using Lemma and Lemma
Thus, the operator P™° can be written in form as

PPy = ¢'(— 0w — vD(€4Dw) + h*O(1)D(€4Dw)).
Moreover, using Lemma we have

IiD(de’u}) = D(ﬂdew) - D(ﬁ)ng’w
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We set Pém“w = —Oyw — D(0€yDw) = —0yw — D(bgDw) with by = €,. From
the properties of 7 and &, it follows that

0 <bmin <b<bmae and  ||D(bg)| < oc.

First, we shall obtain a Carleman estimate for Pémo. Then we shall deduce a
Carleman estimate for the operator

PMoy = ¢ ( PYw + D(#)€aDw + h*O(1)D(£4Dw) ) (5.5)

Now, we consider the function ¥ o ¥ : (¢, z) — 1/)(15, ﬁ(z)) By using the prop-
erties listed in Lemma 2] and (L6]), we shall see that ¢ o 1 is a suitable weight
function associated to the control domain wy = ¥~ (w) in Qg, i.e., that ¥od) satisfies
Lemma 2] for the domaims Q¢ and wy.

The important property to checking is the trace property. The remaining prop-
erties are left to the reader. We set

b1 bi2
B =
< ba1  bao >7

b11 = [(’L/} o ﬂ)/*]a
bag = [b(¢ 0 9)'*]2(¥ 0 9) (a) + [b? (¢ 0 9)]a
biz = ba1 = [b(¢ 0 V) *|a(¥p 0 9)' (a™)

Mo c _ cod
mocT o

with

where b = Q%UZQ Morever, we have ¥/, (a) = 9'_(a) and (pp1 = 91y
om

(recall that 9|4—s,a+4] is an affine function). It follows that

bir = [ (9)*]a? (a) = [Y'*]ad (a),
cot

b = (5000200 (0)a )9 (a) + (S0P 0))
—CI/IaJ'_ 02/3*,1
= e/t () + P

bia = bar = (570 0)01 ] (D) (a”)

= [C’L/Jl*] a’ ’L/Jl (a’+ ) .

We can see that (Bw,w) = (Aw,w) > ag ||w||>. This means that ¢ o ¢ satisfies
the trace property.

Through Theorem H.Il we obtained a discrete uniform Carleman estimate for
Pémo and the Carleman weight function is of the form rg = e®*¥°, with g = po ) =
eMo — M where 1)y = 1 0 ¥ on the uniform mesh My . We can deduce the same
result on the non-uniform mesh 9. Namely, through (£2]) we see that the following
estimate holds

2 2

1 1 2 2
1 H@fieTe“o“atW’ + 7 ’ 95670¢“DwH + 73 ’ G%GTWOW’
L2(Qo) L2(Qo) L2(Qo)
2 2
<C < eTW“Pém”wH +7° ’ 9%670”010}
L2(Qo) L2((0,T) xwo)
o . 2 o . 2
L2 le 9¢Uw|t:0‘L2(QU) +h2 le 9¢°w|t:T‘L2(QU)) , (5.6)
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and the constant C' is uniform in A for 7 sufficiently large and with 7h(aT) ™! < €,
for € sufficiently small. Note that, setting & = (infg, ¥')eg, we see that the
condition Th/(aT)™1 < & on the size of the non-uniform mesh 9 implies the
condition Th(aT)~! < ¢ for the uniform mesh M.

From (5.35) — (5:6) we deduce the following Carleman estimate for P™%

2 2
2(Qo) L2(Qo) L2(Qo)
<C (||6T9¢0Pm0w||i2(Qo) + HerezpoD(ﬁ)ngwHiZ(Qo) + B4 HeTe(’DOD(dew)H

2
71 H@fée'rwoath +T}
L

02 eT0%0 Doy }

+73’

H%efeww}

2
L2(Qo)

2
3
92679”%0‘

-2 |,m0¢ 2 —2 | 18 2
LZ((O,T)XWU)+h e OwltZO‘N(Qo)—'—h le Uw|t_T‘L2(QU))‘

+73 ’

(5.7)

Now, by using Lemma we estimate HeTW“D(ﬁ)dewHiZ(QO) in the RHS
of (B7) as
T N(7 2 s 2
e ‘9“’°D(u)§dDwHL2(QU) <Clle %ngwHLQ(QU).
We see that

EaDw = 5 (7 (€aDw) + 7 (€aDw) ).
Hence we find

SO0 T T 2
e %ngme(Qo)

< Ol (D) s gy + €77 (€aDw) B,

< O([ertean@en)],. .+ e @@, )
< c(‘ esvor, (fdQ?(CDu))‘ ;(QU) 4 lesvor (@Q?(CDU))‘ ;(QU))
< o([jersor, 0T (cubu) ;@0) + oo O (eunw)| ;(QO))

< c( ‘ng (es‘/’ﬂ(cdDu)) ] ;(QO) n H Qo (68% (cdDu)) \ ;@0) )

< C(ll’lf 19/)—1 ( ||€S[’D77-+ (CdDu)HiZ(Q) + ||€S[’D77_— (CdDU’)HiZ(Q) ),

by using (54) and Lemmata (21— 54l
We treat [[e*?74(caDu)ll2(q) (the term [|e*?7_(caDu)l|2(q) can be treated

similarly). We find

le*#7 4 (caDu)ll L2y = IrT4(caDu)ll L2 () < I(7-7)(caDu)ll L2 () < C H(T—T)IZUHIj?(Q) -
5.8
We have 7_r = r(pr_r) = r(1 + O, «(sh)) (due to Proposition BI0). From
that we can write

_ 2 . — s
|79 D()eaDw|[ 2 ) < Clinf &)™ € Dutl| 2

which allows one to absorb by the term at the LHS of the Carleman estimate by
choosing 7 sufficiently large.
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Next, we estimate h* HeTWUD(dew)HiZ(QU) in the RHS of (&.7)) as

4 76 B 2
h*||e™%0 D (¢4 Dw) ||L2(Q)
= h?|e*?°7, ((aDw) — €07 (LaDw)| 12,

< N (e (EaDw) gy + €77 (€aD0) 2 g
e
< on?(|eeor (ca0Zon),  +er @ o), )
< (e n O (capu) ;@0) 07 QT (cyDu )\;(QO))

< on( ‘ng (ewﬁL(cdDu))’ i ot HQ (e Wﬁ(cdDu))’ ;(Q@)

< R0t 0) 7 (e T (calu) 32 g + 77— (caDu)l 22 ).

by using (£4) and Lemmata — B4l We proceed with an estimate as in (B.8]).
We thus obtain
4| 7000 T
W €70 D(EaDw) | ;2 g,y < CH2(inf 9') " (€% Du|

which allows one to absorb by the term in the LHS of Carleman estimate by choosing
7 sufficiently large.

Futhermore, by using the previous Lemmata .1 — 5.4 and considering each
term in (B.7)) separately, we see that we have the following estimates

e For the first term in LHS of (&)

(O

H9 2679‘/"’3,510} - “Q%O(g—%erépatu)‘ 2

L2(Qo) L2(Qo)
2
(supﬂ HG_EGT‘Q‘/’@tu ,
Qo L*(Q)
and a similar inequality holds for |62 eTe‘pow‘
L2(Qo)
e For the second term of LHS of (5.7) we use Lemma and Lemma as
follows
T _ 2
92679¢0Dw’ = |jpreroD(@Rou ’ - ‘ 0% 05 (77%) 0% (¢ Du
| o (01 w (TG )|
— 2
1 M 1 2
= |02 Qﬁo (Ce™%° Du) > ’ GEGTG‘PDu’ .
L2(Qo) L2(Q)
e By using (0.3) and Lemma [5.3] we have
THK,D()PmU 2 _ ‘ T0p0 HMo Pm ‘ — H mo 7'94,0 PQJ? ‘
He wHL2(Q0) Q (C ) 2(@) Q C ) L2(QU)

< N CP | gy S 7P ul

(@) (@~
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e For the third term of RHS of (&)

T0po

2
|7 wli=o] 2y = ‘ng(eﬁwwhzo)
S Jul

3 0 2
0ze” ‘/"’w’ .
L2((0,T)xwo)

and a similar inequality holds for ‘679‘p°w|t:T ‘ iQ(QO),

e Finally, since ¥(wp) = w we have

\ 2 2
G%eTWUDu’
L2((0,T) xwo)

= [zt

The proof is complete. O

L2((0,T)Xwo)

A

2
G%eTWDu‘
L2((0,T) xw

6 Controllability results

The Carleman estimate proved in the previous Section allows to give observ-
ability estimate that yields results of controllability to the trajectories for classes
of semi-linear heat equations.

6.1 The linear case
We consider the following semi-discrete parabolic problem with potential

y+ Ay +ay=1,0, t€(0,T) ylaa=0 (6.1)

The adjoint system associated with the controlled system with potential (6.1])
is given by
— 0+ ATy +ay=0, te(0,T) qlog=0 (6.2)

We assume that a piecewise C! diffusion coefficient ¢ satisfies (I2]) and Q = (0, 1).
From Carleman estimate ([@2)) we obtain a following observability estimate.

Proposition 6.1. There exists positive constants Cy,Cy and Co such that for all
T > 0 and all potential fucntion a, under the condition h < min(hg, h1) with

1 2\ -1
hy = Co(1+ Tt lallZ,)
any solution of ([G.2)) satisfies
2 _& 2
12(0)] L2(q) < Cobs lall 20,y xwy +€ 7 el la(T)[ 720 » (6.3)
,2
with G = A0 bt
Remark 6.2. In comparision the observability inequality in continuous case which

performed in [BDLOT], we find that the observability inequality obtained here is weak
since there is an additional term depending upon h at right-hand-side of inequal-

ity 6.3).
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From the result of Proposition 6.1 we deduce the following controllability result
for system (6.1]).

Proposition 6.3. There exists positive constants C1,Cs, Cs and for T > 0 a map
Lt : R™ — L20,T;R™) such that if h < min(hg, ha) with

1 2 (-1
hy = Co(1+ 7 T T lallo + lallZ, )

for all initial data yo € R™, there exists a semi-discrete control function v given by
v = Lqa(yo) such that the solution to (G.I) satisfies

(1) 120 < Coe™ 2/ W0l 2o

and
vl z2(g) < Co lyol 2

2
with Cp = C3 (134T lall o Hlall 2 )
Note that the final state is of size e ¢/ |y0|L2(Q)- The proof of these proposition

are given in [BL12].

6.2 The semilinear case

We consider the following semilinear semi-discrete control problem
(0 + ANy +Gly) =1,v, ye(0,T)  ylaa=0, y(0)=yo (6.4)
where w C Q. The function G : R — R is assumed of the form
G(z) = zg(x), x € R, (6.5)

with g Lipschitz continuous. Here, we consider the function g in two cases: g €
L>(R) and the more general case as

3
l[g(x)] < KIn"(e + |z|), x€R, with 0<r< 3 (6.6)

The results of semi-discrete parabolic with potential above allows one to obtain
controllability results for parabolic equation with semi-linear terms whose proofs
are given in [BL12]

Theorem 6.4. We assume that g € L*(R) and ¢ satisfies (L2). There exists
positive constants Cy,Cy such that for all T > 0 and h chosen sufficiently small,
for all initial data yo € R™, there exists a semi-discrete control function v with

[0l L2y < Clyol2(q)
such that the solution to the semi-linear parabolic equation ([G.4]) satisfies

(1) L2y < CeCo/n vol 2 (o

2
with Co = ¢ (1+F+Tlgl o+l L)
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Theorem 6.5. Let Q = (0,1), ¢ satisfy (L2) and G satisfy (63) - (G6l). There
exists Cy such that, for T > 0 and M > 0, there exists positive constants C, hg such
that for 0 < h < hg and for all initial data yo € R™ satisfying |y0|L2(Q) < M there
erists a semi-discrete control function v such that the solution to the semi-linear
parabolic equation

(0: — DeD)y + G(y) = 1uv, y € (0,T)  ylao =0, y(0) = yo (6.7)

satisfies
Y(T)| 12y < Ce™ " [yol 2y
where C' = C(T,M).

Observe that the constants are uniform with respect to discretization parameter
h.

A  Proofs of Lemma [3.17] and intermediate results
in Section 4

A.1 Proof of Lemma [B3.17
We have
(caDu)pyz — (caDu)py1 = hfnya.
As Du = pDv + Dp? we obtain
Pt (e 3 €DV g = By (€D0)y + (DP)sy (¢D)gy — (D) s (60)ry)
= h(rf)ns1- (A.1)

We write

_ o Tagipatt Frapipere _ LH(((TH)20)r)ngn
rnJrlanr% - 2 - 2 T Kll’

Tnt1(CaDp)py 2 (r7 " p)ns1(carDp)ns g

(rTF p)ns1 ((Cdrap)mg + (carDp)pyz — (Cd?“aﬂ)n+g)
= Ko ((Cdrap)nJr% + K22)a

where K1 = (r77p)ny1 and Koz = (carDp),p 3 — (€ar0p)py 3.

Similarly,
- Tn+1Pn+1 +rn 1Pn 1+ T_)Qp T)n 1
Tn+1Ppyl = e 2 : - = 2 e = Ka,
Tn+1(Cde)n+% = (TTip)nJrl(Cerp)nJr%

= (T P)nt1 ((Cdrap)m% +(carDp)nyy = (Cdrap)"%)

= K41((cdr8p)n+% + K42)7
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where K41 = (r77p)p+1 and (carDp)pq 1 — (car0p)y, 1

Additionally,
~ Un — Un
(D)ptt = Vng1 + % = Un+1 + O(h)(Dv)y 1,
~ Un — Up
(V)nsz =vnp1 + % = Vnt1 + O(h) (D), 5.

From (A1) we thus write
Ku(cde)nJrg — K31(caDv),,4 1
( crdp) nts + Kzz) (Un+1 + 0(h>(Dv>n+g)

— Ky ((crop) ntt+ K42) (Un+1 + O(h)(Dv),,4 )
= h(rf)nt1-

+ Ko

=

Then
K11((Cde)n+g - (CdDU)m%) + (K11 — K31)(caDv), 4 1
K1 [*croplavnsr + (K21 — K41)(C7“5P)n+%vn+1 + (K21 K22 — K41 K42)Upn41
o1 ((cr0p), 13 + K2 ) O)(D0),1y 3 + Ka ((er9p), 1y + Kz ) O(h) (D), 4
h(r f)n+1-

Moreover, as rdp = —As¢pd1p = sOx(1) we have

+ +

K11((Cde)n+g - (CdDU)nJr%) + (K11 — K31)(caDv),, 4 1
= Ko sbreddplavn it — Kvnir + (Ka1Ox(sh) + Ko K220(h) ) ((aDv),i g — (caDv),us ) )
+ (K21Oa(sh) + K21 K220(h) + KOs (sh) + K Ki2O(R) ) (caDv),.4 4
+ h(rf)n+1,
where

K = (Ka— Ku)(erop)p, 1 + KoiKos — KnKae
= (K21 — K41)sOx(1) + K21 Kog — K41 Kao.

From that, we can write
L((caDv)yeg = (caDv)ury)
= Ko As[xcopOv)qvni1 — Kvpy1 + H(cde)n_,_% + h(rf)nss
where

L = K11 — K210x(sh) — K21 K2,0(h),
K = (K91 — K41)sOx(1) + K21 K22 — K41 K42,
H = K210,(sh) + K21 K220(h) + K410x(sh) + K41 K420(h) — K11 + Ka1.

36



As L =1+ Oy q(sh) # 0 (see below) then we read
(CdD’U)n-‘,-% - (cde>n+%
= (L_1K21)\5[*C¢a¢]a - L_lK) Uny1 + L_lH(CdDU)nJr% + L7 f)nga

We set
J1 = L™ Koy As[xcpdip], — LUK,
Jy =L 'H, Jy =
We thus have
(caDv)y,y 3 = (caDv)yy1 = Jrvpgr + Ja(caDv)y, 1 + Jsh(r f)nsa (A.2)

By using Proposition we find
1 )2 n
O B (G ) 1o 1o

9 =1 + OA,Q(Sh)v
1 —)2 .
K3 = e 2) Pt 1 4 Oy &(sh),

Ko1 = (r7tp)py1 = 1+ Oy q(sh),

Ky = (r77 p)ny1 =1+ Oy q(sh),

Kaz = (carDp)yy 3 — (cardp)pz = sOxa(s h)?,
Kz = (carDp)yi i — (cardp)py1 = 5Oz a(sh)?.
From that we estimate

K = (K21 — K41)sO\(1) + Ko1Ka9 — K41 K42 = sO) a(sh),

H = K210y(sh) + K21 K220(h) + K410 (sh) + K41 K420(h) — K11 + K51
= Ox,a(sh),

L =K1 — K210x(sh) + K21 K220(h) =1+ Oy g(sh).

For sh sufficiently small we have L~! = 1+ O, g(sh) and then we obtain
J1 = L™ Koy As[xcpdp], — LK
= (1 + oA,ﬁ(sh))As[*cgbaw]a + 5Oxq(sh),

Jo = L7'H = 0y a(sh),
Jy =Lt =1+ 0, 4(sh).

By using Proposition B14, Lemma 3.8 and Lemma yield

oK = at(<<<7+>2p>r>n+1) = TO)O a(sh),

8i Kz = 0 ((((r™ n+1) TO()Ox a(sh),
0, K91 = Oy(rr™ P)n+1 t)Ox.5(sh),
Or K41 = Oh( (

T6(
T p)n+1 = TO(t)Ox a(sh),
01 K22 = 0y —(

cdrap)nJr%) = sTO(t)Ox z(sh)?,

(carDp)yy = (€ardp)yy ) = sTO)Ox5(sh)?,

(carDp)pqs

/N N

0 Kyo = 04
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which give

oL

oL~ = T = (1 + O/\,.Q(Sh)) (0:K11 + 01 K210x(sh) 4 K21(0¢s)Ox(h)

+atK21K220(h) + atKQQKmO(h))
= T0(t)Ox a(sh),

where sh sufficiently small and

8tH = 8tK21(9>\(sh) =+ KQl(atS)O)\(h) + 8tK21K22(9(h) + KQlatKQQO(h)
+ atK410,\(Sh) + K41(6t8)0,\(h) + GtK41K42(’)(h) + K418tK420(h) — 0: K11 + 0: K31
= T@(t)OAﬁ(sh).

It follows that we have

8tJ1 = ST@(t)O,\PQ(Sh),
O Jo =TH(t)Ox s(sh), O Js = TO(t)Ox a(sh).

Furthermore, we can write (A.2)) in the simple form
(CdD’U)n-‘,-g - (cde)n-‘,-%
= As[xcpOY]qvnt1 + AsOyx g (sh)vn+1
+ Ors(h)(€aDv)py + (14 Oxalsh) )A(rf)usa,

which yields the conclusion.

A.2 Proof of Lemma 4.4
By using Lemma 3.2l in each domain Qg1, Q02 , we have

I, = 2/ CTQEDpD(Cde)m
Q

= 2/ cr?p pD(cde)erQ/ cr?p DpD(cqgDv)Du
01 02

Q
~ / 2 DpeaD(Dv)Dv + 2 / 2 Dp(Dea)(Dv)?

01 01

er2 DpeaD(Dv) Do + 2 / er25 Dp(Deg)(Dv)?

02 02
2 2
= Z/ cr?p DpégD(Dv)? + 22/ cr?p Dp(Deg)(Dv)?.
i=1 02 i=1 0

We then apply a discrete integration by parts (Proposition[B.3]) in each domain
Qo1, Qo2 with 9Qo; = {0,a} and 9y2 = {a,1} for the first two terms and we
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obtain

L1 = —Z D(cégr?p Dp)(Dv)? +22/ cr®p Dp(Dea)(Dv)?
Qoi

T

[ @t DDy~ [ (s Do D

T T
+ [ @i Do) D02y~ [ e D0)(DY)

= N

—Z D(céqr?p Dp)(Dv)? +22/ cr?p Dp(Deg)(Dv)? 4 Yi;.
Qoi

where

Vi = vV 4y @

Vi = [ (s DDy = [ (o™ Do (D0

0

o= N0

T T
VY = [ s Dp)a ) Doy~ [ (eers Dp)O)(D)
0 0
Lemma A.1. (see Lemma B.3 in [BHL10a]) Provided sh < R we have

D(ciairipi Dpi) = —sN*(c;di(¥))?)a + sAdai O(1) + sOx x(sh),
cirpiDpi(Degi) = sAg;O(1) + SO)\,R((Sh)Q),

73 piDpi = 1i0p; + 505 a((sh)?) = —sA¢ih; + sOx a((sh)?),

13 piDpi = ripiriDpi = (14 Ox x(sh))riDp;.

Moreover, by Lemma[3.3]and Proposition[3.5]in each domain Qg1, g2 we obtain

/ D) < / APV = / A’ - ng;m </ D)’
since
BTy = sA¢(a)(Dv)? i1t s)\qﬁ(a)(Dv)Q% >0
BT, = s)\d)(l)(Dv)ierJr% + s/\d)(a)(Dv)iJr% >0

and ¢ = ¢ 4+ h2O,(1) then we can write

/Qm sAp(Dv)? < /Szm- sA¢p(Dv)? +/ SAW20, (1) (Dv)?

Qo

Similarly, we have

/ SO,\PQ(Sh)2(m)2
Qoi

Thus

< // 5 |Ox,a(sh)?| (Dv)? < /Q/ 5 |Ox,x(sh)?| (Dv)>.

I > —// sA2(2p(¢")?)g(Dv)? — X11 + Y11,
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where X1 = ng v11(Dv)? with v17 of the form sA¢O(1) + sO, a(sh) and
Y =Y+ v,
T
¥ = / (1+ O.(sm)) (@) () (D) ()(DV)% 5
0
T —_—
— [ (+ Onalsm) e O DR 0D,
0

T
vl = / sAd(@)ca(a) ( — () (a )PV, + (@) (a")(DV)2, s ).

0

T T
Y1(12’2) :/O SOA7§(S[’L)2(D'U)3+% —/0 SOA7§(Sh>2(D'U)i+%.

A.3 Proof of Lemma

We set ¢ = rpe¢ . By using a discrete integrations by parts (Proposition [3.5)
and Lemma B.2]in each domain Qq1, 02 we have

2
I, = 722/ squD(cqgDv)
=1 01

2 2
= 22/ S(jcd(Dv)Q—i—QZ/ sDqcqvDv
i=1 7 Qoi i=1 Y Qoi
T

T

- / sq(a”)v(a)(caDv)p 41 +/ sq(a*)v(a)(cde)nJr%
0 0
2 2

= 22/ S(jcd(Dv)Q—i—QZ/ s$DgeqgvDvdt + Yia,
=1 01 =1 07

since v|pq, = 0 and with 9Qo1 = {0,a}, Q02 = {a,1}.

Lemma A.2. (see the proof as given in Lemma 4.4 of [BHLIOd]) Let i = 1,2.
Provided sh < & we have

o = N¢i(1])* + A O(1),
G = ripich; = Negi ()% + A O(1) + O.a(sh)?,
G = N (coi(¥))H)a + A\pi O(1) + Oy a((sh)* + h),

Dq; = D(rip;) ;J + (ripi) D(eg;) = Ora(1).

Note that the proof and the use of Lemma [A.2] are carried out in each domain
Qo1, Qo2 independently.
It follows that

2

2
Z/ 1/12(D’U)2+Z/ sOx g(1)0Dv+Yi2,
0i i=1 0i

i=1

B =23 [ N (@00 P)u(Def+
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Then
Iis = 2/ sAH(Po(¥))a(Dv)? — X1 + Y12,

’
0

with
T
Yo = / sA2¢(a)v(a)[c(y)? % caDv],
0
T —
+ / 512’0((1)(CDU),”+% + 5121)((1)(ch)”+%,
0
where 812, 012 are of form s()\qﬁ(a)(’)(l) + O)\,R(Sh)2) and

X12 :/ V12(DU)2 +/ SOAVq(l)’ED’U,

where
vig = sApO(1) + 5Oz a(h + (sh)?).

A.4 Proof of Lemma

We carry out a discrete integration by parts (Proposition [31]) in each domain
QOl; QOQ with 8901 = {0, a} and 8902 = {a, 1} as follows

I3

/ rp:D(cde)atv—l—/ rpD(cqgDv)dsv

— D(rpdyv)cqDv — D(rpdyv)cqDv
QOI Q02

| i@ e, ~ [ 6Hoamo) @),

_|_

T

+ [ EAWO) D)y~ [ 0P 0@ D) g

- D(rpdyv)caDv — D(rpdyv)caDv
Qo1 Qo2

T T
4 / (r5) (™ )0rv(a)(caDv) 4 — / (15)(a*)O0(@) (caDv) s 3

_ Z D (1p)OyvcqgDv — Z/ —E (8¢ Dv)cgDv +Yi3,

Q1 Q2
by Lemma and with

T T
Yis = / (45) (0™ )0rv(a)(caDv) sy — / (r5) (@) Brv(a)(caDV) s 3,

as ’U|6QU =0.
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By applying Proposition B.13] in each domain Qg1, g2 we find

D(Tiﬁz) = OA,ﬁ(Sh)v
rip; = 14 Oxa(sh)? = Oxx(1).

On the one hand, we have

2
|Q1‘ 5710y a(sh)(99)* + Z/ 50x.a(sh)(Dv)?
i=1 v/ Qoi

i\
o

5710, q(sh) W + Z/ | sOx.a(sh)(Dv)?

\'M
—

/ 5710, q(sh)(Ow)? —l—/, sOx.a(sh)(Dv)?,

by (0;)? SW in each domain Qg1, Q92 and Z?Zl me- Ox5(1) (atv fQ Ox.5(1)(00)%
On the other hand, by an integrations by parts w.r.t ¢ we write as

QQ = *—Z/ —;):_CdatD’U)
—Z atrpcde ——Z/ﬂ —75 v)?i=T

Qoi

We observe that for sh < €1(\) with €;(\) sufficiently small we have rp > 0
by Proposition .13l The sign of the term at ¢ = T and ¢t = 0 are thus prescribed.
Furthermore, Proposition B4 leads to 9:(r;ip;) = T(sh)?00x g(1), so that, for
sh < £ we obtain

Qs > Z/ T (sh)*00,4(1)(Dv)* — Cxx(1 Z/Q (Du(T))*.

Thus,

113 Z 7/ C)\”Q(l)(D’U(T))Q — X13 + Y13.

0

with

Xia= [ (s(sh) + T(sh)*0) On a0 + [ 57100 alsh)(Br0)

0

T T
Vo= [ 0R@)0@cD) gy~ [ Ao eD),
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A.5 Proof of Lemma 4.7
We set ¢ = c2r2(DDp)Dp. Observing that Dv = Do we get

I

2/ Ar?*(DDp)Dp o Dv + 2/ r?*(DDp)Dpv Dv
QUI —_— QUZ —_—
q

I
o
S
Q
]
—
<3}
N
[\v}
+
o
V)
<
]l
~
4
S~—
[V}

I
|
o
L=
—
(S
=
o
|
o
L=
—
(s3]
N~—
S

0
2 2 2
= — Z/ Dq v* + Z —- (Dq)(Dv)* + Va
; 4
i=1 01 i=1 0i
2 2 g2
- 1 2
S N AU S MR CHICR R F R e
i=1 7 Qoi i—1 0i

by means of Proposition B.A] Lemma B.2] Lemma B3] in each domain g, Qoo
independently and where

as ’U|6QU =0.

We note that o1 = %(Dv)%, Uy pmy 3 :_f%(Dv)nerJr% . On the one hand,
by Proposition B.I0 we have ¢ = s20 (1)rDp in each domain Qqy, Qo2. It follows
that

[V[=Y )

2

yim = / 20y (1) D) (1)), .5 + / 20y 5(1)(rDp)(0)(3)

T _ T _
- / O s (sh) (rDp) (1) (D02, 5 + / O 5(sh)* (rDp)(0) (Dv)?.

ol N
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On the other hand, by PropositionB3.15, CorollaryB9we have ¢ = —c?(spA)3(¢)3+
s20,5(1) + 530, q(sh)? in each domain Qo1, Qp2. We thus obtain

v = / (20(0)* (= (™)@ )@, + (™) a)E)2, 4 )

+ /OT (20s(1) + 20 (1)) ()24 — (02,3

1,21 1,22
Y2(1 )JFY2(1 )v

where .
Y = [N @l W) Pl
0
Lemma A.3. (see Lemma B.8 in [BHL10d]) Provided sh < R we have

Dq; = 33(9,\75:{(1),
Dq; = =35 M2 (WD)* + (sAdi)>O(1) + 520y 1 (1) + 5Oy 5 (sh)?.

Note that the proof and the use of Lemma [A.3] are done in each domain g1,

Qoo separately.
We then obtain

(2) h T 2 h T 2
v = -2 v (@)(D@nyy — 5 v (@)(Dq)pz

We thus write 1o

I >3 /Q N3 (1) (0) — /

Qp
o1 = (s)\qﬁ)?’O(l) + 52(9,\753(1) + 33(9,\75%(511)2, Vol = SO)\,R(Sh)2,
T D R

po1(v)? — / vo1(Dv)? + Yai,
Q

’ /
0 0

where

A.6 Proof of Lemma 4.8

We set ¢ = c2r(DDp)¢” and by Lemma [3.4] we have © = v+ h?DDuv/4 in each
domain Qg1, Q2. It follows that

—2/ sqlz)v—Q/ sqUV
o1 02
h? -
—2/ sqv2—/ S—q(DDv)v
o1 01 2
h? -
—2/ sqv2—/ S—q(DDv)v.
02 02 2
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Applying a discrete integration by parts (Proposition B3] and Lemma B2 in
each domain Qg1, Qg2 yield

2

2 2
_ 2 sh 1)
b2 = =2 Z; / 0i v Z; / 0i 2 D(qU)DU " 5/22
2 2 sh? sh?
—2 Z/ squ? + Z/ d(Dv)* + Z/ 5 D(@)iDv + VA
i=1 7 Qo i=1 7 Qoi i '

=1 01
2 2 2
sh? _ sh? 1
= o) [ sere [ Srawor+ Y [ SEp@oed) + v
i=1 Y Qoi i—1 Y Qoi i—1 Y Qoi
2 2 2
sh? sh? _
— —22/ squ® + Z/ TQ(DU)Q - Z/ TDqu2 + Y2(21) + }/2(22)7
i=1 Y Qoi i—1 Y Qoi i=1 v Qoi

where

as v|ag, = 0.
In each domain g1, Qg2, we have ¢ = O, (1) and from Proposition B.I3] we
have ¢ = 5?0, (1) and Dg = 520, z(1). We thus obtain

2 2

T
h h
V) = [ 00 a(0)0(@) G (Do) + 5 Osa(1(e) (D).

T
Y2(22) :/ SO)\“Q(Sh>2’U2(0J).
0

Lemma A.4. (see Lemma B.9 and Lemma B.10 in [BHLI0d|]) Provided sh < 8
we have

AriDDp; = 02(7“1-82/)1' + SQOA,R(sh)Q) = 02(5)\@)2(1#;)2 +s0,(1) + 52(9,\75%(511)2,
K2DDg; = s(sh)Ox (1)

Note that the proof and use of above Lemma [A 4] are done in each domain g1,
Qoo separately.

Futhermore, we have ¢” = A2(¢')%¢ + A\pO(1) in each domain Qg1, Q. It
follows that

s = S(CQ(SA@)?W;)? +505(1) + SQOA,ﬁ(sh)Q) (AQ(%’-)Q@ + A@O(l))
= AN (WP + P33 0(1) + 5200 (1) + 530y a(sh)?,

in each domain QOla QOQ.
We thus write I as

122 — 2/Q 6283)\4¢3(,¢/)4v2+/

p22v? + / V22 (Dv)? + Yaa,
Q5 Q

’ ’
0 0
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where
oo = (s/\d))s(?(l) + 52(9,\&(1) + 53(9,\7&(5}1)2, Voo = s@;th(sh)Q,
Yoy = 5/2(21) + }/2(22).

A.7 Proof of Lemma 4.9

By means of a discrete integration by parts (Proposition BA) in each domain
Qo1, Qo2, we obtain

Iy = Z/ cr(DDp)odyv

=1 01
2

= Z/ cr(DDp)oy ©
=1 0%

T T
_ g /O (er(DDp))(0)0rv(0) fg /0 (er(DDp))(a™)dsv(a)t, .1

hofto 3 hoto 3
- 5| @D @iy~ [ (DD ey
= Q1+Q2+YQ(31),
by Lemma B3] and where

2

Q1= Z/ (cr(DDp)) 8,50,

=1 QUi

2 g2
Q2 = Z %/01 D(crDDp)(D0ov),

v = =3 [ erDDp) @ onta)ing ~ 5 [ (DD 0@,y

as atv|ago =0.
With an integrations by parts w.r.t ¢ we have

2 2
— —1 T =, . 1 - =T . _
Q=5 Y [ alaDDa2+ 5> [ (er(DDp) (21
i—1 7 Qoi i=1 Y Q0i
By means of Proposition 313 and Lemma [3.7] in each domain Qq1, Qp2 we get

cri(DDpy)= 5205 a(1),
riDDp; = SQOAﬁ(l),
and we further have

Lemma A.5. (see Lemma A.1 in [BL12])

Gt (CTiDDpi) = TS290)\,R(1).
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Note that the proof and use of Lemma [A 5] are done in each domain Qg1, Qg2
separately.
It follows that

2 —_—
Ql = Z/ TSQQO)\”Q(I) V7 +
i—1 v Qoi

2

Z/ﬂ 52 (O)‘wﬁ(l) ’U~2\t:o +O/\,Q(1) F‘t:T )
i=1 7/ o

as |0* <|v|? in each domain g1, Qos.
Moreover, we observe that 37, Ja,, Ora(l) v? = [ Ox(1)v?. Then,

Q1 :/ TS290)\,R(1)’02 +/ 82(0)\,@(1) U—‘§|t:U +0)\,ﬁ(1) U—Eh:T ) (A.3)
o Qo

We have

V) = [ R Onm @] (Fuss) + O ()
By an integration by parts w.r.t t and Lemma in each domain Qg1, Qo2 we
find
Q2 = 22: U D(crDDp)d)Dv + 22: n D(crDDp)D(v)?|i=] .
- 228 o, t=0

Q5 Q3

By means of Lemma and a discrete intergration by parts in space (Propo-
sition B.3)) in each domain Qg1, Qo2 we see that

2 g2 B2
Qs = Z % 0:(DD(crDDp))v* — Z D(crDDp)(0,)Dv
i=1 Qoi Qoi
h2 T B h2 _
-3 02 (a)at(D(CTDDp))nJr% + 3 / v2(a)at(D(CTDDp))n+%
0 0
- Y= ; (DD(erDDp))* =y = / D(crDDp)(8,7)Dv + Y2
i=1 0i i=1 0i

as v|an, = 0.

Lemma A.6. (Lemma A.2 in [BL12]) Provided sh < 8 we have
h*DD(c;r;(DDp;)) = s(sh)Ox a(1),
h*0y(DD(cir; DDp;)) = Ts*00, x(1),
hoy(D(cir; DDp;)) = Ts*00 z(1),
D(c;r; DDp;) = 52Oy 4(1).

Note that all above terms are done in each domain Q¢1, 92 separately.
We thus obtain

T
Y2(32) :/ ST@O}HQ(S}I)U2(G).

0
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Applying the Young’s inequality and using that |9,5|* <|d,v|* in each domain

Qo1, Qo2, we have
Qs > / Ts*00, (1)v? +/ 5710y a(sh)? |8tv|2+/ 50y q(sh)*(Dv)? +Y2(32)
Qb Q5 Q

/ Ts*00, q(1)0v> + / s Ox.a(sh)?|0w]* + / sOx.x(sh)*(Dv)? + Y2
Q5 o Q5

(A.4)

’
0

Y

as 301 o, Oxs(D) 0]’ = [, Ox2(1) [0r0]*
By using Proposition [3.5] Lemma[A6lin each domain Qg;, Qo2 separately yield

2

~ h2 _ — —_

G = -y | DD(erDDo) ()i
i=1 01

h? - _r h? = -
+=v%(a)(D(crDDp)),, 1 iz — gvz(@ (D(erDDp)),, 5 =0

/98
J

as v|an, = 0 where

5O (sh) (W)t + / 5O a(5h)(0)%—0 + Ox s (sh)20(@)[(=]
Q

/ i
0 0

5O 5 (sh) (v)2]s=7 + / sOx5(5h)(0)?[i=0 + Yoy, (A.5)
Q

/ i
0 0

Yay) = Oxs(sh)*o(a)li=5.
Collecting (A3]), (A4) and (AH) we obtain
I3 > /Sz 52 (Ona(W)vf_, + Oxa(V)of_, ) — Xoz + Yas,
0
where X3 and Y3 are as given in the statement of Lemma 4.9

A.8 Proof of Lemma [4.10

By means of a discrete integration by parts (Proposition B3] in each domain
Qo1, Qo2 separately, we get

I3 = 727/ (8t9)<pch_pvm727/ (010)pcr DpvDv
01

02

—27-/ (0:0) werDpv Dv — 27‘/ (8:0) wer Dpv Dv + 5@(11)a
with
w__h [T o hort Dp
Y3y :TE/ (010)(crDppv)(a™)(Dv), 41 +T§/ (0:8)(cr Dpgu)(a™)(Dv) s 4
0 0

as v|ag, = 0.

We have pcrDpv=pcrDp © + %QD(cpch_p)Dv in each domain Qg;, Qg2. It
follows that
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2

I = 42/ v(ato)(’mfj(v)t r%/ (@8)D(erDpp)(Dv)? + Yy

=1

= TZ/ (040) chp<p v —ZT—/ (atG)D(ch_p@)(Dv)Q—i—Y},(ll)

i=1 017

T —_—
-~ / (0:0)0%(@) (D) s + 7 / (010)v*(a) (D)., 5
0 0

2
h? —
- TZ / @O DD S s [ (@0)D(erDpe) D0 + ¥ + v

i=1 07

by using a discrete integration by parts in each domain 1, {292 separately and

T T
VP =1 [ (@00)0%(@) @Dpp) ey 7 [ @00 (@) (D) ey
0 0

as v|ga = 0.
By using the Lipschitz continuity and Proposition 313 we get

D(criDpipi) = sOx a(1),
D(er;Dpipi) = sOx a(1),

criDpipi= sOx (1),
criDp; = c(r;0p; + 52(9Aﬁ(sh)2) = c(—sA\p;) + SOAﬁ(shf) = 5O a(1).

The proof is done in each domain 1, {292 separately. Note that mgxxaﬁ =T02.
It thus follows that

I3 :/ T0s*0x a(1)v? +/ TOO 5(sh)*(Dv)? + Y31,

0 0
where
T h T
Y3(11) :/ THSQO,\,R(l)v(a)§(Dv)n+% —|—/ T0s*Ox a(1)v(a)
0 0

T
v = / T0s20, x(1)v2(a).
0
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A.9 Proof of Lemma [4.13
We see that

1 1,1
v 4y

T
= /0 (1+OAPQ(Sh))(CEd)(l)(TD_p)l(D’U>2

n+m+%

_ /0 (14 Ox.s(sh)) (c) (0)(rDp)o(Dv)

)= N

T T
[ OralsmP DD + [ OralshPGDRN (DU,
0 2 0 2
Moreover, by (1) we have Y1(11 ) + Y2(11 ") > 0 for sh sufficiently small.

We next focus our attention on the trace term at ‘a’ on Yl(f’l) + 1/2(11’21) as
follows

A.10 Proof of Lemma [4.14]

. Up+1 + Unt2\2 h 2
(1))2 _ ( n . n ) = (UnJrl + §(D’U>n+%)
5 2

anrl +

4 (D’U)iJr% + h’UnJrl(D’U)nJr%
h2

2 e 2
’Un+1 + 4(Cd)721+% (CdD’U)n+% + Un+41

Similarly, we have

- h?
(’U)i—i-% = ’U721+1 + W(Cdl)v)i-i-% — Un+1

nti (cd>n+

20



We thus write Y2(11 21 as follows:
1,21
vy

- /0(sm(a))s[cQ(zb’)g*IﬁIZ]a

T 37203\ 4\ ([,.2 h? 2 h
= /0 (5)@(@)) (C v )(a )(U"+1+m(0dl)v)n+% +Un+1m(cdl)v)n+%)

T 32,3 — 2 h? 2
= ) PN (R + g D0y DOy )
= [ @R,
T 2 2
[ 300 (o)) g (Dol g — (@00 ) (e, )
n+3 n+3
T
[ ot (1) g — (@D - (@) gy — (D) )o@
(A.8)

Moreover, the term Yl(f T given by

Vet = / 5A0(@)(— ¥'(a)e(a)za(a)(D0)%, 4+ (aF)e(a )eaa)(Do)2 )

i o
= [ oo~ v T oz, vat)

We estimate as

cla™)cq(a) _ ((Cd)n+% +O(h)) ((ca)pss + (Ca)nis)
(Cd)i_% Q(Cd)i+%
~ ((ea)ngy +O(R) (2(ca)nyy +O())
B 2(Cd)i+%
— 1+h0(1)
Similarly,
i
C((‘Zd))fd(“) =1+ hO(1).
n+3

We thus obtain Y1(12 1

2,1 T
Y1(17 ) _ /O s/\d)(a)( —¢'(a”)(1+ hO(1)) (cde)f% + ¢/ (a™) (14 hO(1)) (cde)i+%)

/0 sAG(a)[6 * (caDv)?].

+

T T
/0 s/\gb(a)w’(a+)(9(h)(cde)i+% +/O s)\(b(a)zb/(af)O(h)(cde)fH%. (A.9)
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Combining (A.8) with (A.9) we obtain
2,1 1,21
y D 4y 2D

_ / AG(@)[ % (caDv)?]a + / SN () [(1) a2
0 0

T T
b [ sne@u@omeu g + [ sxoa @ )om e,
0 0

g 3(7.2./3 ° (23 a- ° c1Dv)2
+ /0 (sAg(a)) ((C (0 )(a+)4(cd)i+% (caDv)? n+3 (c*")( )4(Cd)i+%( aD )n+ )

(caDv),, 3 — (") (a™)

b [ o (@)

= :u'+/j/13

where

Q(Cd)n+§

2

T T
p= [N (Dot [ NP ke

and p; can be written as
T T
o= / sOAﬁ(sh)(cde)th% +/ sOy f{(sh)(CdD’U)nJrl
0 0
T T
+ / SQOA,R(sh)(cde)n+%vn+1 —|—/ SQOA,R(sh)(cde)n+%vn+1.
0 0

We can write

[(¥)  (caDv)?]a
= [(¥")Ha(caDv)}, 1 1 + [(caD)[3w (a) + 2[x(caDv)]at’ (@) (caDv) 41 -

Indeed, we have

(") * (caDv)*|a = (caDv);,, 59" (a™) = (caDv); 14 (a7),

and
() *la(caDv); 1 + [x(caD)[a4" (a™) + 2bx(caDv)]ath’ (a™)(caDv) 4 1
= (caDv); 19/ (a™) = (caDv); 10 (a7)
+ (caDv)y, 5V’ (™) + (caDv)} 10 (a™) = 2(caDv),y 1 5 (caDv)y 1% (a¥)
+ 2(cde)n+§(cde)n+1z/)( ) - 2(cde) ’(a+)

— (cdDu)i+%¢’(a ) — (CdDU)n+%’L/J (a™).
Moreover, by using Lemma [3.17, we obtain

[(¥") % (caDv)?]a
= [(W)alcaDv); ;1 + [K(caDv) ]3¢ (aF) + 2x(caDv)]at’ (a™)(caDv),, ¢

[ Wa(caDo)2 g + (V2o 202 + 1 + 2Asrolxcn lavnsn )¢ (a*)

+2(5>\[*C¢1//]avn+1 + 7’0)1/) (a™ )(cde)nJr%,
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which gives

T
po= [ @D,

+

T
/ 25 N2 (a) [xep) ot (aT)vn 1 (cde)nJr%

0

T
b [ 000 (st B @)+ 0@
+ /OS/\gb(a)q/)’(a+)rg+2/() $2X2¢(a) [ 1at (a ) rovngt

T
+ 2/ shp(a)y’ (a™)ro(caDv),, 1
0
Moreover, we have:
[xed]a = e, s — |11 = e[+ — cdd o= + ROX(L) = ¢(a)[ct)'*]a + ROA(L),
[regy']s = lepy'*]; + 2[cdp'{]ahOA (1) + h*Ox(1) = ¢*(a)[cy's]; + hOA(D).

We thus write p as
T
po= [ M@ salcabu)l,
0

T
+ / 2520262 (a) [/ *] (a1 (caDV) 1 4
0

! /OT SN (o) ([ew' w20 () + ()4 )
T

T
/ shg(a) (a™)rd + 2/ $2X2¢% (a) [t ¥ ot (aT)Tovn i1
0 0

+

+

T T

2 [ @ (@ rofeaD)y + [ $Ons(sh)edy
0 0
T T

+ / SO,\,ﬁ(sh)vnH(cde)nJr%—i—/ sOx a(sh)rovn41

0 0

T

- /0 AD(@)'a(caDV)2,
T

b [ 2R @l (@ o caDo)
0

T
+ /0 53/\3¢3(a)([01//*]i1//(a+)+[02(¢’)3*]a)vi+1 + L

where p, can be written as

T T T
= / SO,\(l)T8+/ 52(9/\(1)7’0vn+1+/ SOA(I)TO(cde)n_,_%
0 0 0

T
+ / S2OA7ﬁ(Sh)Ui+1+/
0 0

T T
SO}\,R(Sh)'Un—i-l(CdDU)nJr% + / SOA7ﬁ(Sh)7"0’l}n+1.
0
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We have thus achieved

T
w= / sAp(a) (Au(t,a), u(t,a)) + pir,
0

with u(t,a) = ((cde)n+%,s)\¢(a)vn+1)t and the symmetric matrix A defined in
Lemma 211

From the choice made for the weight function 8 in Lemma 2] we find that:

T T
"> Cao/o s)\qﬁ(a)(cde)iJr% + Cao/o sPA3Q (a)v2 iy + pur,

with ag > 0.

A.11 Proof of Lemma

Yis

By using Lemma B.17 we have

- —/O Tﬁ(a+)5tv(a)(Cde)n+g+/O Tp:(a_)atv(a)(cde)nJr%

T
_ 7/ rﬁ(aJr)@tv(a)((cde)n_i_% + J1vns1 + Ja(caDv), ;1 + Jgh(rf)nH)
0

o [ e,

where Jy, Jy and J3 are given as in Lemma B.17

Since Jo = Oy q(sh) and rp = 1+ O, g(sh) we can write
T T
Yis = / Ox,a(sh)9v(a)(caDv)p 1 —/ rp(a™)Jiv(a)dv(a)
0 0
T —
- / rp(a™)J30v(a)h(rf)ni1-
0
Futhermore, as f = f1 — 0:(pv) we thus find
T T
Yis = / Ox5(sh)0w(a)(caDv), 11 —/ rp(a™)Jiv(a)dpw(a)
0 0

T
_ /O rp(a®)Jsdo(a)h(rfi — rd(pv), -

With an integration by parts w.r.t ¢ for the second term above we obtain
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Yis = /OO,\7ﬁ(sh)8tv(a)(cde)n+%—l—%/o O (rp(a™)J1)v?(a)

1 - T _
— GAEORE@IE - [ et Rde@h( e
0

T
+ / rp:(a+)J38tv(a)hrn+1 (p@tv + atp'U)n+1
0
T 1 (T -
= / (9,\7~q(sh)8tv(a)(cde)n+% + 5/ 3 (rp(at)Ji)v?(a)
0 0

T
T Oy R ()R] + / Os (1) (@)h(r f )41

1

T 9 T 3
+ /O (1+ Oxalsh)) h(@eo(@)) + 3 /0 r3(a* ) Jsh(rdup)n 10 (v (a),

where 7p, J3 are of the form 1+ Oy g(sh) and J; of the form sO) «(1).
We apply an integration by parts in time for the last term

T T
Yis /0 Oxa(sh)9v(a)(caDv)py 1 —l—%/o O (rp(a™)Jr)v*(a)

T
L sOaa(DeR(@)=T + / Or(V)r0(@)h(rfi)nis

+ /0 (1 +(9,\7ﬁ(sh))h(8tv(a))2 - %/0 O (rp(at) J5(roep)nt1) hv*(a)

1 - —
+ Erp(a+)J3(r8tp)n+1hv2(a,.)|§;0T.

Moreover, we have

Ops = s(2t —T)0 = sTOO(1),
Op = —p(x)(0rs)p = —p(x)s(2t — T)0p,
rOp = —p(x)s(2t —T)0 (A.10)
0y (rop) = sT*6%0O(1),
by using €2~ E3).
Now we estimate the terms 0;(rp(a™)J1) and 9y (rp(at)Js(rdp)ns1). By re-
calling 9;J1 = sTOO) x(sh), Oy Js = TOO x(sh) as well as using Proposition 3.14]

and (AI0) we obtain

8t (T;(GJF)Jl) = 8,5 (T;((IJF))Jl + Tﬁ(a+)8tJ1
sTOO a(sh),

and

3 (rp(a™) J3(rdep)n+1)
= Oy (rp(a®)) Js(rdp)ns1 + rp(a™ )01 J3(rdyp)ns1 + ro(a™) I3 (rdrp)ni1)
= ST2920)\”@(1).
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Thus Y33 can be written

T T
Yis = /(’)A,ﬁ(sh)atv(a)(cde)nJr%+/ sTOO a(sh)v?(a)
0 0
T
+ sOLDP@IE] + [ Ora(DB(@h(r e
0

+ /0 (1+O>\,ﬁ(sh))h(0tv(a))2+/0 T2920>\,ﬁ(sh)1)2(a)

1 —
+ S+ Onals(m)A( = pla)s(t)(2t = )0 (a,.) ) =5
We observe that for 0 < sh < e3(\) with e3(\) sufficiently small we have
7’5 =1+ Oy q(sh) > 0.

Additionally, ¢(x) < 0 then the last term of Y;3 are non-negative. From that,
we estimate Y73 as follows

T T
Yis > / C,\ﬁh(@tv(a))Q —|—/ (ST@O)\,R(S]”L) + TQOQO,\,R(sh))UQ(a)
0 0

T T
+ SO}HQ(1>1)2((],)|§2,(1; +/ (9,\7~Q(Sh)8tv(a)(cde)n+% +/ (9,\7~q(1)(9tv(a)h(rf1)n+1.
0 0

A.12 Proof of Lemma [4.16l
On the one hands, as f = f1 — 9:(pv) we write

(rflntr = (rf1)ns1 = (r0(pv))nt1
= f)uns — ((0)0r0 + (o))
n+1
= (Tfi)nt1 = (Or0)nt1 — sTOON(1)vpy1.
We thus obtain
(P nal* < O 1120+ (O0)2 1 + T20°00(1)02,,). (A1)
On the other hands,
[o1 % p2] = [p1]a(p2) sy + p1(a™)[xp2]a, (A.12)
and we recall
(€aD0) g — (€)1 = beeaDvly = Aslestflavn s + 70,
where rq is given in Lemma 317 as

ro = $Ox a(sh)vpi1 + (9,\7ﬁ(sh)(cde)n+% + hOx g(1)(rf)n+1,
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We then have
(cde)iJr% = (cde)iJr% + [xcaDv)? + 2[*cde]a(cde)n+%
= (cde)iJr% + A252[*c¢w’]§vi+1 + 78 4 28 [*ed | aToUn 11
+2)\S[*c¢1//]aun+1(CdDU),,H_% + 279 (CdD’U)n_,’_%. (A.13)

and we compute

rg = 32(9,\75%(511)21},21“ + (9,\7ﬁ(sh)2(cde)i+% + fLQ(Q,\J;{(l)(rf)iJr1
+SOA7~Q(S]’L)2(CdD'U)nJr%'Un+1 + 8Ox g(sh)h(r f)nt1Un+1
+O0x.a(sh)(caDv),, y 1 h(rf)n1.

By applying Cauchy-Schwartz inequality we have

(cde)i+% < 0(1)(cde)i+% + s O\(1)v2 1 + O(1)rg (A.14)

7’8 < 52(9,\7&(5}1)21),2#1 + OAﬁ(sh)Q(cde)Q + h2(9,\“q(1)(7"f)%+1, (A.15)

n+%

SToUni1 < (SQOAﬁﬁ(Sh)+SOA,§(1))U721+1WLO/\,.Q(Sh)(CdD'U)iJF%+hOA,.Q(Sh)(Tf)$z+1;
(A.16)

s$’rovn41 < (5°Oxa(sh)+es’Oxq(1)) v 1 +50x 1 (sh) (caDv);, 1 +CehOx s (sh)(rf)p 41,
(A.17)

sTOrovpe1 < (SQTHO)\,R(S]”L) + ST292OA7ﬁ(Sh))’U,,QL+1
+ SOA7§(Sh)(CdD'U)i+% + h(’),\,g(sh)(rf)iﬂ, (A.18)

sro (ch)mr% < 33(9,\75;{(511)1),21“—}—(SO,\ﬁ(sh)—l—es(’)A,ﬁ(l)) (cde)iJr% —l—CeO,\,g(sh)h(rf)iH,
(A.19)

(Bv(a))ro < Oxs(1)h(Br0(a))*+50x 5 (sh) (caDv); 1 +5°Ox s (sh)vp 1 +Ox s (DA )i 41
(A.20)

We estimate following terms

The first term, by using (AJ4]) we have
T
‘5/1(12’2) = / SOA7§(Sh)2(CdD'U)i+% + S(’))\,ﬁ(sh)Q(cde)i+%
0T T T
< /0 5(9,\7ﬁ(sh)2(cde)i+% Jr/o SSOAﬁ(sh)Qvi_,_l Jr/o 5(9,\7~q(5h)27"3.

o7



Moreover, by using (AT5]) we obtain

T
/ sO,\ﬁ(sh)Qrg
0

T T T
< / SSOAWQ(Sh)ZL’U?H_l +/ SO)\”Q(Sh)ZL(CdD’U)iJrl +/ hO)\”q(Sh)g(Tf)?H_l.
0 0 2 0
Then, by using (ATl we estimate Yl(f 2)
- T T T
]Yfl’ >] < / 20y x(sh)2v2,, + / 55 a(sh)*(caDv)?, , + / hOx s (sh)3(rf)2,
0 0 0
T T
< / (330A7ﬁ(sh)2 + sT292(9A7ﬁ(sh)4)Ufl+l +/ O.a(sh)>h(0v)2
0 0
T T
+ /0 SOA7~Q(Sh)2(CdD'U)i+% Jr/o hOAﬁ(sh)g(rfl)i_H.
For the next term, using (A12) and Lemma BI7] we obtain
T
Yio = / sOx()v(a)[c) ? % (caDv)]a
0
T
+ / sOxa(1)v(a)(cDv)pq 1 + sOx a(L)v(a)(cDv), s
0
T
- / sOx5(1)0(@)(caDv), 1y + 502 5(1)0(a) ((caDv) 4y + sOA(1)u(a) +70)
0

T
= /0 sOxa(1)v(a)(caDv)p 1 + s20x.a(1)v?(a) + 50y g(1)v(a)ro.

Using (AI6) yields
T
/SO,\ﬁ(l)v(a)To
0
T T T
< / (20s s(sh) + 5Ox (L))o + / Oralsh)(caDv)?,, + / hO s (sh)(r )2,
0 0 0

By using (A11)) we obtain

T T
[Yia| < / (520A,R(1)+sT2920A7ﬁ(sh)2)v31+1+/ OM(sh)h(c’),gv)i+1
0 0
T T
+ [ Ona@bery + [ Onslshntr iz,
0 2 0

Moreover, we have

’Dn+% = Un+1 — 2( (CdD’U)nJr% = Un+1 + O(h)(CdD’U)n+%,

Cd)n—i—%
’Dn+% = Unp41 + O(h)(Cde)n+%. (A.21)
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By using (A27)), (A14) we obtain
(@)1 +@)5s < OWvniy +O(R?)(cDv); 5 + O(h?)(cDv); 4
((9(1) + O(Sh)Q)v,QH_l + O(hQ)(ch)iJr% + O(h2)7"3

IN

Thus, we have the following estimate

[rse?| = /OT(520(1>+s30x.«(sh>2)(() @2y
- /T SOr (@25 +(9)2,3)
0

T T T
/ sPOxa(1)v2 1 + / 5(9,\7~q(sh)2(cde)i+% + / sOx.a(sh)?r?.
0 0 0

IN

Futhermore, using (A-15) we have

T
/ SOA7~Q(S]’L)2T3
0
T T T
< / 530,\,g(sh)4v,21+1 —|—/ SO)\,R(Sh)Zl(CdD'U)iJ’_l —|—/ h(’),\,g(sh)?’(rf)iﬂ.
0 0 2 0
By using (ATT) we get

T T
’Y(l 2)| < / (SSOA,K(D+ST2920A,.Q(S}I)4)U721+1 Jr/ Ox5(sh)*h(8v)7 41
0 0

T

T
+ /05(9,\7ﬁ(sh)3(cde)i+%+/O hOx a(sh)(rf1)2 ;.

For the term Y2(21 ) we have

1) T h2 h2
v - / $0x,3(10(0) - (D0) 11y + 5°Ox a(1)o(a) - (Do), 3
0

T
/ (SO,\,g(sh)Q(cde)nJr% + SO,\,g(sh)Q(cde)nJr%)v(a)
0
T
= / (SO)\ﬁﬁ(Sh)2(CdD’U)n+% + 5205 q(sh)?v(a) + SO)\PQ(S]’L)27’O)'U(G)
0
T T T
= / SOA,ﬁ(sh)Qv(a)(cde)nJr% +/ 520 a(sh)*v?(a) +/ sOx.a(sh)?v(a)ry.
0 0 0
Using (AI6) we achieve
T
/ 5O, a(sh)?v(a)rg
0
T T T
< / 520x.q(sh)*v n+1 +/ (9,\7~q(sh)3(cde)72l+% +/ hO,\ﬁ(sh)S(Tf)i_‘_l.
0 0 0
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Using (A.11), we estimate Yy, as:

T T

’}/2(21) < / (52(%\”@(5}1)2 + ST292O,\,.Q(S}L)4)’U72H_1 + / OA,ﬁ(sh)Sh(ﬁtv)%_i_l
0 0
T T

+ [ Onalsh Doy + [ B0 )

And, using (A27)) and Lemma 317 we obtain

w_ (" h ! h
Yo3 :/ SQOA,.Q(l)(atU(a))§5n+% +/ 520A7~ﬂ(1)(3t”(a))§17n+
0 0

Nl

- | 20, a()(@r0(@) 2 (011 + OB caD),

T
n /O 52(9/\ﬁ(1)(8tv(a))g(vn+1+O(h)(cde)n+%)

/ 5O a(sh)(Dyv(a))v(a) + / O 5(5h)2(0,0(a))(caDV) 0y 4
0 0
T
+ [ OralshP@la)caDn), s
0
— [ sOnsh@m@)eta) + [ O alsh@unta)(cado,
0 0

T
+ /0 (9,\7ﬁ(sh)2(8tv(a))((cde)m-% + As[xed) | qvng1 + ro).

In addition, with s, A enough large, sh enough small and with applying Young’s
inequality and (A.20) yield

/ SOAﬁ(sh)(ﬁtv(a))v(a)S/ (9,\7~q(sh)h(8tv(a))2+/ 53(9%52\(1)1)2((1).
0 0 0

/ (9,\7~q(sh)2(8tv(a))(cde)n+; §/ (9,\7~q(sh)h(8tv(a))2+/ 5(9,\7~q(5h)2(cde)i+%.
0 0 0

2

/()O,\7ﬁ(sh)2(0tv(a))ro < /OO,\,R(Sh)Qh(atU(G))Q‘F/O SOA,R(Sh)S(CdD”)iJr%
T T
+ [ O+ [ Oralh R

Using (A1), we estimate Y2(31 )

T T
Y2(31) < / (330)\,3@(1) + STQOQO/\’ﬁ(Sh)?’)UiJrl + / OA,R(Sh)h(atv(a))Q
0 0

T T
+/ SO,\ﬁ(sh)Q(cde)thl +/ (9,\7~q(sh)2h(rf1),21+1.
0 2 0
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Applying Lemma 317 we have

T T
h h
Y3(11) _ / T952(9,\ﬁ(1)v(a)§(Dv)n+% +/ TQSQO/\PQ(l)v(a)i(DU)nJF%
0 0
T
= /STOO,\7ﬁ(sh)U(a)(cde)n+1
0
T
+ / STHO,\ﬁ(sh)v(a)(SOAﬁ(l)v(a)+T0)
0
By using (A18) we obtain
T T
/ sTOO q(sh)vpsiro < / (52T9(9m(sh)2+sT292(9A,ﬁ(sh)2)v§ »
0 0
T T
+ / SO)\,R(Sh)Q(CdD’U)iJ’_% —|—/ Oxa(sh)?h(rf)2 ;.
0 0

We have

T T T
/ sT@OAwq(sh)(cde)nJr%anrl < / 5T292(9/\7~q(5h)v,21+1 +/ 5(9,\7ﬁ(sh)(cde)72l+%
0 0 0

With (A1) we thus estimate Y} as

T T
| < / (2005 a(sh) + ST26°05 a(sh) 21 + / O (sh)h(Dr0)% 4,
0 0
T T
+ / SO,\,g(sh)(cde)er% —|—/ O,\,g(sh)h(rfl)iﬂ.
0
Next, by using (A I4]) we estimate /L( )

T T
p = / SO)\,R(Sh)(CdD’U)iJ’_%‘i_/ 50z, a(sh)(caDv)? el
0 0

IN

T T
/ SO}\,.@(Sh’)(CdD’U)iJF% +/ s°Ox a(sh)vs, +/ sOx a(sh)r
0 0

By making use of (AT5) we have

T

/ 5Oz a(sh)rd
0
T

T T
< / 53(9>\wq(sh)3v,21+1+/ SO)\ﬁﬁ(Sh)g(CdD’U)iJrl +/ OA,ﬁ(sh)Qh(rf)iJrl.
0 0 2 0

Using (AI1) we obtain

T T
ugl) < / (530,\,g(sh) + ST2920)\7_§(S]'L)3)'U31+1 —|—/ Ox,1(sh)?h(0w)?2 4
0 0
T

T
+ /SOA,.Q(Sh)(Cde)i+%+/ Ox(sh)*h(rf1)7 1.
0 0
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By making use Lemma .17 we have

T T
w? = /S2O>\,R(Sh)vn+1(cdDU)n+%+/ s*Ox s (sh)on1(€aDv) 4
0 0

T

T T
= / 520/\7~Q(5h)vn+1 (CdD’U)nJr% —+ / 53(9/\7~Q(Sh)1)721+1 + / SQOAﬁﬁ(Sh)TO’U’nﬁ»l'
0 0 0

Applying Young’s inequality and using (A17) yield

T T T
/ s°Ox a(sh)vpi1(caDv), 1 < / s°Ox a(sh)vi, +/ SOAﬁﬁ(Sh)(CdDU)iA»%.
0 0 0

2

T
/ SQOAﬁ(sh)Toanrl
0

T T T
< / 530,\,g(sh)2v,21+1+/ SO)\,R(Sh)Q(CdD'U)iJ’_l —|—/ (’))\,ﬁ(sh)Qh(rf)iH.
0 0 2 0

Using (A1) we have
) T T
ug ) < / (SSOAﬁ(sh) + STQHQO,\PQ(sh)S)v,QHl + / (9>\wq(sh)2h(&gv)flJr1

0 0

T T
+ /0 s(’),\ﬁ(sh)(cde)iJr% —|—/0 O)\,R(Sh)Qh(rfl)i+1.
‘We thus obtain

T T
o < / (SSOA,R(SI'L)+ST2920A7_R(S]'L)3)’U721+1+/ Ox,(sh)*h(0w)2 14
0 0
T T
+ / SOAﬁvq(sh)(cde)iJrl Jr/ OAﬁﬁ(sh)Qh(rfl)iJrl.
0 2 0

Now, we estimate some terms of u,.. By using (AI5)- (AI9) we have

T
/ s(’),\(l)rg
0

T T T
< / 83(9/\“@(5}1)21)721_’_1 + / SO)\”q(sh)Q(cde)iJrl + / O,\ﬁ(Sh)h(Tf)%_,’_l.
0 0 2 0

T T
/ s20\(Drovpgp1 < / (53(9,\7ﬁ(sh) + 6530,\7&(1))1),,21_’_1
0 0

T T
+ / SO)\7_R(Sh)(CdDU)i+l + Ce/ O,\,g(sh)h(rf)iﬂ.
0 2 0
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T T T
/ sOx(D)ro(caDv), 1 < / s°Ox a(sh)va, | + Ce / Oxa(sh)h(rf)? .,
0 0 0

T
+ / (sOA,ﬁ(sh) + esoA,ﬁ(U) (CdD”)iJrl'
o 2

T T T
/ sO,\ﬁ(sh)vnH(cde)nJr% §/ sO,\ﬁ(sh)(cde)iJrl —|—/ SO,\ﬁ(Sh)U?H_l.
0 0 2 0

Using (A1) we have:

IN

T
. / (530,\,g(sh) + STQGQOe,Aﬁ(sh)Q + 6830,\75%(1))’1}7214_1
0

T T
+ / O a(sh)h(Ow)2 1 + / O a(sB(rf1)2 41
0 0
T
+ / (5(9,\7ﬁ(sh)+650)\,ﬁ(1))(cde)i+l.
O 2
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