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Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and application to controllability

In the discrete setting of one-dimensional finite-differences we prove a Carleman estimate for a semi-discretization of the parabolic operator ∂ t -∂ x (c∂ x ) where the diffusion coefficient c has a jump. As a consequence of this Carleman estimate, we deduce consistent nullcontrollability results for classes of semi-linear parabolic equations.

Introduction and settings

Let Ω, ω be connected non-empty open interval of R with ω ⋐ Ω. We consider the following parabolic problem in (0, T ) × Ω, with T > 0, ∂ t y -∂ x (c∂ x y) = 1 ω v in (0, T ) × Ω, y| ∂Ω = 0, and y| t=0 = y 0 ,

(1.1)

where the diffusion coefficient c = c(x) > 0. System (1.1) is said to be null controllable from y 0 ∈ L 2 (Ω) in time T if there exists v ∈ L 2 ((0, T ) × Ω), such that y(T ) = 0.

In the continuous framework, we refer to [START_REF] Fursikov | Controllability of evolution equations[END_REF] and [START_REF] Lebeau | Contrôle exact de léquation de la chaleur[END_REF] who proved such a controllability result by means of a global/local Carleman observability estimates in the case the diffusion coefficient c is smooth. The authors of [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] produced this controllability result in the case of a discontinuous coefficient in the one-dimensional case later extended to arbitrary dimension by [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]. Additionally, a result of controllability in the case of a coefficient with bounded variation (BV) was shown in [START_REF] Ernández -Cara | On the null controllability of the one-dimensional heat equation with BV coefficients[END_REF][START_REF] Rousseau | Carleman estimates and controllability results for the onedimensional heat equation with BV coefficients[END_REF].

The authors of [START_REF] Lopez | Some new results related to the null controllability of the 1-D heat equation[END_REF] show that uniform controllability holds in the one-dimensional case with constant diffusion coefficient c and for a constant step size finite-difference scheme. Here, "uniform" is meant with respect to the discretization parameter h. The situation becomes more complex in higher dimension. In fact, a counter-example to null-controllability due to O. Kavian is provided in [START_REF] Zuazua | Control and numerical approximation of the wave and heat equations[END_REF] for a finite-difference discretization scheme for the heat equation in a square.

In recent works, by means of discrete Carleman estimate, the authors of [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF], [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators in arbitrary dimension and applications[END_REF] and [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF] obtained weak observability inequalities in the case of a smooth diffusion coefficient c(x). Such observability estimates are charaterized by an additional term that vanishes exponentially fast. Morever, also with a constant diffusion coffiencient c, under the assumption that the discretized semigroup is uniformly analytic and that the degree of unboundedness of control operator is lower than 1/2, a uniform observability property of semi-discrete approximations for System (1.1) is achieved in L 2 [START_REF] Labbé | Uniform controllability of semidiscrete approximations of parabolic control system[END_REF]. Besides that, such a result continues to hold even with the condition that the degree of unboundedness of control operator is greater than 1/2 [N12].

In the case of a non-smooth coefficient, our aim is to investigate the uniform controllability of System (1.1) after discretization. It is well known that controllability and observability are dual aspects of the same problem. We shall therefore focus on uniform observability which is shown to hold when the observability constant of the finite dimensional approximation systems does not depend on the step-size h.

In the present paper we prove a Carleman estimate for system (1.1) in the case of:

• the heat equation in one space dimension;

• a piecewise C 1 coefficient c with jumps at a finite number of points in Ω;

• a finite-difference discretization in space.

The main idea of the proof is combination of the derivation of a discrete Carleman estimate as in [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF][START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF] and tecniques of [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] for operators with discontinuous coefficients in the one-dimensional case. A similar question in n-dimensional case, n ≥ 2, remains open, to our knowledge. When considering a discontinuous coefficient c the parabolic problem (1.1) can be understood as a transmission problem. For instance, assume that c exhibits a jump at a ∈ Ω. Then we write      ∂ t y -∂ x (c∂ x y) = 1 ω v in (0, T ) × (0, a) ∪ (a, 1) , c∂ x y| a + = c∂ x y| a -, y| a + = y| a -, y| ∂Ω = 0, and y| t=0 = y 0 .

The second line is thus a transmission condition implying the continuity of the solution and of the flux at x = a.

When one gives a finite-difference version of this transmission problem, a similar condition can be given for the continuity of the solution. Yet, for the flux, it is only achieved up to a consistent term. In what follows, in the finite-difference approximation, we shall in fact write y(a -) = y(a + ) = y n+1 , (c d Dy) (the discrete notation will be given below). Note that the flux condition converges to the continuous one if h → 0, h being the discretization parameter. This difference between the continuous and the discrete case will be the source of several technical points.

An important point in the proof of Carleman estimate is the construction of a suitable weight function ψ whose gradient does not vanish in the complement of the observation region. The weight function is chosen smooth in the case of a smooth diffusion coefficient c(x). In general, the technique to construct such a function is based on Morse functions (see some details in [START_REF] Fursikov | Controllability of evolution equations[END_REF]). In one space dimension, this construction is in fact straightforward. In the case of a discontinuous diffusion coefficient, authors of [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] introduced an ad hoc transmission condition on the weight function: its derivative exhibits jumps at the singular points of the coefficient. In this paper, we construct a weight function based on these techniques in the one-dimentional discrete case.

From the semi-discrete Carleman we obtain, we give an observability inequality for semi-discrete parabolic problems with potential. As compared to the result in continuous case [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] the observability estimate we state here is weak because of an additional term that describes the obstruction to the null-controllability. This term is exponentially small in agreement with the results obtained in [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF][START_REF] Boyer | Discrete Carleman estimates for the elliptic operators in arbitrary dimension and applications[END_REF] in the smooth coefficient case. A precise statement is given in Section 6.

Finally, the observability inequality allows one to obtain controllability results for semi-discrete parabolic with semi-linear terms. In continuous case, this was achieved in [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF]. Taking advantage of one-dimensional situation, the results we state are uniform with respect to the discretization parameter h (see Section 6).

Discrete settings

We restrict our analysis to one dimension in space. Let us consider the operator formally defined by A = -∂ x (c∂ x ) on the open interval Ω = (0, L) ⊂ R. We let a ′ ∈ Ω and set Ω 1 := (0, a ′ ) and Ω 2 := (a ′ , L). The diffusion coefficient c is assumed to be piecewise regular such that 0 < c min ≤ c ≤ c max (1.2)

c = c 0 in Ω 1 , c 1 in Ω 2 , with c i ∈ C 1 (Ω i ), i = 1, 2.
The domain of A is D(A) = u ∈ H 1 0 (Ω); c∂ x u ∈ H 1 (Ω) . Let T > 0. We shall use the following notation Ω ′ = Ω 1 ∪ Ω 2 , Q = (0, T ) × Ω, Q ′ = (0, T ) × Ω ′ , Q i = (0, T ) × Ω i , i = 1, 2, Γ = {0, L}, and Σ = (0, T ) × Γ. We also set S = {a ′ }. We consider the following parabolic problem

∂ t y + Ay = f in Q ′ , y(0, x) = y 0 (x) in Ω .
(real valued coefficient and solution), for y 0 ∈ L 2 (Ω) and f ∈ L 2 (Q), with the following transmission conditions at a ′ (T C) y(a ′-) = y(a ′+ ), c(a ′-)∂ x y(a ′-) = c(a ′+ )∂ x y(a ′+ ). Now, we introduce finite-difference approximations of the operator A.

Let 0 = x ′ 0 < x ′ 1 < . . . < x ′ n+1 = a ′ < . . . < x ′ n+m+1 < x ′ n+m+2 = L.
We refer to this discretization as to the primal mesh M := (x ′ i ) 1≤i≤n+m+1 . We set |M| := n + m + 1. We set h ′

i+ 1 2 = x ′ i+1 -x ′ i and x ′ i+ 1 2 = (x ′ i+1 + x ′ i )/2, i = 0, . . . , n + m + 1, and h ′ = max 0≤i≤n+m+1 h ′ i+ 1 2
. We call M := (x ′ i+ 1 2 ) 0≤i≤n+m+1 the dual mesh and set

h ′ i = x ′ i+ 1 2 -x ′ i-1 2 = (h ′ i+ 1 2 +h ′ i-1 2
)/2, i = 0, . . . , n + m + 1.

In this paper, we shall address to some families of non uniform meshes, that will be precisely defined in Section 1.2.

We introduce the following notation

[ρ 1 ⋆] a = ρ 1 (a + ) -ρ 1 (a -), (1.3) [⋆ρ 2 ] a = ρ 2 (n + 3 2 ) -ρ 2 (n + 1 2 ), (1.4) [ρ 1 ⋆ ρ 2 ] a = ρ 1 (a + )ρ 2 (n + 3 2 ) -ρ 1 (a -)ρ 2 (n + 1 2 ).
(1.5)

We follow some notation of [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF] for discrete functions in the onedimensional case. We denote by C M and C M the sets of discrete functions defined on M and M respectively. If u ∈ C M (resp. C M ), we denote by u i (resp. u i+ 1 2 ) its value corresponding to x ′ i (resp. x ′ i+ 1 2

). For u ∈ C M we define

u M = n+m+1 i=1 1| [x ′ i-1 2 ,x ′ i+ 1 2 ] u i ∈ L ∞ (Ω).
And for u ∈ C M we define Ω u := Ω u M (x)dx = n+m+1 i=1 h ′ i u i .

For u ∈ C M we define

u M = n+m+1 i=0 1| [x ′ i ,x ′ i+1 ] u i+ 1 2 .
As above, for u ∈ C M , we define

Ω u := Ω u M (x)dx = n+m+1 i=0 h ′ i+ 1 2 u i+ 1 2 .
In particular we define the following

L 2 inner product on C M (resp. C M ) (u, v) L 2 = Ω u M (x)v M (x)dx, resp. (u, v) L 2 = Ω u M (x)v M (x)dx.
For some u ∈ C M , we shall need to associate boundary conditions u ∂M = {u 0 , u n+m+2 }. The set of such extended discrete functions is denoted by C M∪∂M . Homogeneous Dirichlet boundary conditions then consist in the choice u 0 = u n+m+2 = 0, in short u ∂M = 0. We can define translation operators τ ± , a difference operator D and an averaging operator as the map

C M∪∂M → C M given by (τ + u) i+ 1 2 := u i+1 , (τ -u) i+ 1 2 := u i , i = 0, . . . n + m + 1, (Du) i+ 1 2 := 1 h ′ i+ 1 2 (τ + u -τ -u) i+ 1 2 , ũ := 1 2 (τ + + τ -)u.
We also define, on the dual mesh, translation operators τ ± , a difference operator D and an averaging operator as the map C M → C M given by

(τ + u) i := u i+ 1 2 , (τ -u) i := u i-1 2 , i = 1, . . . n + m + 1, ( Du) i := 1 h ′ i (τ + u -τ -u) i , ū := 1 2 (τ + + τ -)u.

Families of non-uniform meshes

In this paper, we address non-uniform meshes that are obtained as the smooth image of an uniform grid.

More precisely, let Ω 0 =]0, 1[ and let ϑ : R → R be an increasing map such that

ϑ(Ω 0 ) = Ω, ϑ ∈ C ∞ , inf ϑ ′ > 0 and ϑ(a) = a ′ (1.6)
with a to be kept fixed in what follows and chosen such that a ∈ (0, 1) ∩ Q, i.e a = p q with p, q ∈ N * . Clearly, we have q > p. We impose the function ϑ to be affine on [a -δ, a + δ] ϑ| [a-δ,a+δ] (for some δ > 0).

Given r ∈ N * and set m = (q -p)r and n = pr. The parameter r is used to refine the mesh when increased. Set a = x n+1 = x pr+1 . The interval Ω 01 = [0, a] is then discretized with n = pr interior grid points (excluding 0 and a). The interval Ω 02 = [a, 1] is discretized with m = (q -p)r exterior grid points (excluding a and 1). Let M 0 = (ih) 1≤i≤n+m+1 with h = 1 n+m+2 be uniform mesh of Ω 0 and M 0 be the associated dual mesh. We define a non-uniform mesh M of Ω as image of M 0 by the map ϑ, settings

x ′ i = ϑ(ih), ∀i ∈ {0, ..., n} ∪ {n + 2, ..., n + m + 2} x ′ n+1 := a ′ = ϑ(a).
(1.7)

The dual mesh M and the general notation are then those of the previous section.

Main results

With the notation we have introduced, a consistent finite-difference approximation of Au with homogeneous boundary condition is

A M u = -D(c d Du) for u ∈ C M∪∂M satisfying u| ∂Ω = u ∂M = 0. We have (A M u) i = - c d (x i+ 1 2 ) u i+1 -u i h i+ 1 2 -c d (x i-1 2 ) u i -u i-1 h i-1 2 h i , i = 1, .., n + m + 1.
For a suitable weight function ϕ (to be defined below), the announced semi-discrete Carleman estimate for the operator P M = -∂ t + A M with a discontinuous diffusion coefficient c, for the non-uniform meshes we consider, is of the form

τ -1 θ -1 2 e τ θϕ ∂ t u 2 L 2 (Q) + τ θ 1 2 e τ θϕ Du 2 L 2 (Q) + τ 3 θ 3 2 e τ θϕ u 2 L 2 (Q) ≤ C λ,K e τ θϕ P M u 2 L 2 (Q) + τ 3 θ 3 2 e τ θϕ u 2 L 2 ((0,T )×ω) +h -2 e τ θϕ u| t=0 2 L 2 (Ω) + h -2 e τ θϕ u| t=T 2 L 2 (Ω)
, (1.8)

for properly chosen functions θ = θ(t) and ϕ = ϕ(x), for all τ ≥ τ 0 (T + T 2 ), 0 < h ≤ h 0 and τ h(αT ) -1 ≤ ǫ 0 , 0 < α < T and for all u ∈ C ∞ (0, T ; C M ) satisfying the discrete transmission conditions, where τ 0 , h 0 , ǫ 0 only depend on the data. We refer to Theorem 4.1 (uniform mesh) and Theorem 5.6 (non uniform mesh) below for a precise result. The proof of this estimate will be first carried out for piecewise uniform meshes, and then adapted to the case of the non-uniform meshes we introduced in Section 1.2.

From the semi-discrete Carleman estimate we obtain allows we deduce following weak observability estimate

|q(0)| L 2 (Ω) ≤ C obs q 2 L 2 ((0,T )×ω) + e -C h |q(T )| 2 L 2 (Ω) ,
for any q solution to the adjoint system

∂ t q + A M q + aq = 0, q| ∂Ω = 0.
A precise statement is given in Section 6. Moreover, from the weak observability estimate given above we obtain a controllability result for the linear operator P M . This result can be extended to classes of semi-linear equations

∂ t + A M y + G(y) = 1 ω v, y ∈ (0, T ) y| ∂Ω = 0, y(0) = y 0 , with G(x) = xg(x), where g ∈ L ∞ (R) and |g(x)| ≤ K ln r (e + |x|), x ∈ R, with 0 ≤ r < 3 2 .
We shall state controllability results with a control that satisfies

v L 2 (Q) ≤ C |y 0 | .
Thanks to one space dimension the size of the control function is uniform with respect to the discretization parameter h.

Sketch of proof of the Carleman estimate

The main idea of the proof lays in the combination of the derivation of a discrete Carleman estimate as in [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF][START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF] and techniques used in [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] to achieve such estimates for operators with discontinuous coefficients in the one-dimensional case.

We set v = e -sϕ u yielding e sϕ P e

-sϕ v = e sϕ f 1 in Q ′ 0 if P u = f 1 We obtain g = Av + Bv in Q ′ 0 , with A and iB 'essentially' selfadjoint. We write g 2 L 2 = Av 2 L 2 + Bv 2 L 2 + 2(Av, Bv) L 2
and the main part of the proof is dedicated to computing the inner product (Av, Bv) L 2 (Q ′ 0 ) , involving (discrete) integration by parts.

We proceed with these computations separately in each domain Ω 01 , Ω 02 . As in [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF] we obtain terms involving boundary points x = 0 and

x = 1 such as v(0),v(1),∂ t v(0),∂ t v(1), (Dv) n+m+ 1 2 , (Dv) n+m+ 3 2
. In our case we obtain additional terms involving the jump point a such as v(a), ∂ t v(a),

ṽn+ 1 2 , ṽn+ 3 2 , (Dv) n+ 1 2 , (Dv) n+ 3 2
. Main difficulties of our work come from dealing with these new terms. To reduce the number of terms to control, we find relations among connecting these various values at jump point allowing to focus our computations on terms only involving v(a), ∂ t v(a) and (Dv) n+ 1 2 . Those relations are stated in Lemma 3.17. In the limit h → 0 they give back the transmission conditions for the function v = e -sϕ u used crucial way in [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF]. The idea of this technique comes from a similar technique shown in continuos case by [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF].

The discrete setting could allow computation on the whole Ω. Yet such computation would yield constant that would depend on discrete derivatives of the diffusions coefficient, yielding non-uniformity with respect to the discretization parameter h. This explains why we resort to working on both Ω 0 and Ω 1 separately and deal with the interface terms that appear. As in [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] the weight function is chosen to obtain positive contributions for these terms.

Sketch of proof Theorem 1. We compute the inner product (Av, Bv) in a series of terms and collect them together in an estimate (see Lemma 4.4-Lemma 4.12). In that estimate, we need to tackle two parts: volume integrals, integrals involving boundary points and the jump point. Volume integrals and boundary terms are dealt with similar to [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF]. Terms at the jump point require special case.

Treatment of terms the jump point

• Terms at jump point involving ∂ t v : when treating the term Y 13 we obtain a positive integral of (∂ t v(a)) 2 in the LHS of the estimate as shown in Lemma 4.15. We keep this term in the LHS of the estimate.

• Other terms: We collect together the terms at the jump point that already exist in the continuous case. As in [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] we obtain a quadratic form because of the choice of the weight function (jump of its slope). This allows us to obtain positive two integrals involving v 2 (a), (Dv) 2 n+ 1 2 in the LHS of our estimate (see Lemma 4.14).

• The remaining terms at the jump point are placed in the RHS of estimate. After that, we apply Young's inequality to them (as shown in Lemma 4.16) and they then can be absorded by the positive integrals involving v 2 (a), (Dv) 2

n+ 1 2 , (∂ t v(a)
) 2 in the LHS of estimate as described above.

Outline

In section 2, we construct the weight functions to be used in the Carleman estimate. In section 3 we have gathered some preliminary discrete calculus results and we present how transmission conditions can be expressed in the discretization scheme. Section 4 is devoted to the proof the semidiscrete parabolic Carleman estimate in the case of a discontinuous diffusion cofficient for piecewise uniform meshes in the one-dimensional case. To ease the reading, a large number of proofs of intermediate estimates have been provided in Appendix A. This result is then extended to non-uniform meshes in Section 5. Finally, in Section 6, as consequences of the Carleman estimate, we present the weak observability estimate and associated some controllability results.

Weight functions

We shall first introduce a particular type of weight functions, which are constructed through the following lemma.

We enlarge the open intervals Ω 

ψ(x) = ψ 1 in Ω 1 , ψ 2 in Ω 2 , with ψ i ∈ C ∞ ( Ωi ), i = 1, 2, ψ > 0 in Ω, ψ = 0 on Γ, ψ ′ 2 = 0 in Ω 2 \ ω, ψ ′ 1 = 0
in Ω 1 and the function ψ satisfies the following trace properties, for some

α 0 > 0, (Au, u) ≥ α 0 |u| 2 u ∈ R 2 ,
with the matrix A defined by

A = a 11 a 12 a 21 a 22 , with a 11 = [ψ ′ ⋆] a ′ , a 22 = [cψ ′ ⋆] 2 a ′ (ψ ′ )(a ′+ ) + [c 2 (ψ ′ ) 3 ⋆] a ′ , a 12 = a 21 = [cψ ′ ⋆] a ′ (ψ ′ )(a ′+ ), (see the notation (1.3) -(1.5) introduced in Section 1.1).
Remark 2.2. Here we choose a weight function that yields an observation in the region ω ⊂ Ω 2 in the Carleman estimate of Section 4. This choice is of course arbitrary.

Proof. We refer to Lemma 1.1 in [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] for a similar proof.

Choosing a function ψ, as in the previous lemma, for λ > 0 and K > ψ ∞ , we define the following weight functions ϕ(x) = e λψ(x) -e λK < 0, φ(x) = e λψ(x) ,

(2.1)

r(t, x) = e s(t)ϕ(x) , ρ(t, x) = (r(t, x)) -1 , with s(t) = τ θ(t), τ > 0, θ(t) = ((t + α)(T + α -t)) -1 , for 0 < α < T .
We have max

[0,T ] θ = θ(0) = θ(T ) = α -1 (T + α) -1 , (2.2)
and min

[0,T ] θ ≥ T -2 . We note that ∂ t θ = (2t -T )θ 2 . (2.3)
For the Carleman estimate and the observation/control results we choose here to treat the case of an distributed-observation in ω ⊂ Ω. The weight function is of the form r = e sϕ with ϕ = e λψ , with ψ fulfilling the following assumption. Construction of such a weight function is classical (see e.g [START_REF] Fursikov | Controllability of evolution equations[END_REF]). 

ψ > 0 in Ω, |▽ψ| ≥ c in Ω\ω 0 , ∂ n ψ(x) ≤ -c < 0, ∂ 2 x ψ(x) ≤ 0 in V ∂Ω .
where V ∂Ω is a sufficiently small neighborhood of ∂Ω in Ω, in which the outward unit normal n to Ω is extended from ∂Ω.

3 Some preliminary discrete calculus results for uniform meshes

Here, to prepare for Section 4, we only consider constant-step discretizations, i.e., h i+ 1 2 = h, i = 0, . . . , n + m + 1. We use here the following notation: Ω 0 = (0, 1), Ω 01 = (0, a),

Ω 02 = (a, 1), Ω ′ 0 = Ω 01 ∪ Ω 02 , Q 0 = (0, T )× Ω 0 , Q ′ 0 = (0, T )× Ω ′ 0 , Q 0i = (0, T ) × Ω 0i with i = 1, 2 and ∂Ω 0 = {0, 1}.
This section aims to provide calculus rules for discrete operators such as D i , Di and also to provide estimates for the successive applications of such operators on the weight functions. To avoid cumbersome notation we introduce the following continuous difference and averaging operators on continuous functions. For a function f defined on Ω 0 we set

τ + f (x) := f (x + h/2), τ -f (x) := f (x -h/2), Df (x) := (τ + -τ -)f (x)/h, f (x) = (τ + + τ -)f (x)/2.
Remark 3.1. To iterate averaging symbols we shall sometimes write Af = f , and thus A 2 f = f.

Discrete calculus formulae

We present calculus results for finite-difference operators that were defined in the introductory section. Proofs can be found in Appendix of [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF] in the one-dimension case.

Lemma 3.2. Let the functions f 1 and f 2 be continuously defined in a neighborhood of Ω. We have:

D(f 1 f 2 ) = D(f 1 ) f2 + f1 D(f 2 ).
Note that the immediate translation of the proposition to discrete functions

f 1 , f 2 ∈ C M and g 1 , g 2 ∈ C M is D(f 1 f 2 ) = D(f 1 ) f2 + f1 D(f 2 ), D(g 1 g 2 ) = D(g 1 ) ḡ2 + ḡ1 D(g 2 ).
Lemma 3.3. Let the functions f 1 and f 2 be continuously defined in a neighborhood of Ω. We have:

f 1 f 2 = f1 f2 + h 2 4 D(f 1 )D(f 2 ).
Note that the immediate translation of the proposition to discrete functions

f 1 , f 2 ∈ C M and g 1 , g 2 ∈ C M is f 1 f 2 = f1 f2 + h 2 4 D(f 1 )D(f 2 ), g 1 g 2 = ḡ1 ḡ2 + h 2 4 D(g 1 ) D(g 2 ).
Some of the following properties can be extended in such a manner to discrete functions. We shall not always write it explicitly.

Averaging a function twice gives the following formula.

Lemma 3.4. Let the function f be continuously defined over R. We then have

A 2 f := f = f + h 2 4 DDf.
The following proposition covers discrete integrations by parts and related formula.

Proposition 3.5. Let f ∈ C M∪∂M and g ∈ C M . We have the following formulae:

Ω 0 f ( Dg) = - Ω 0 (Df )g + f n+m+2 g n+m+ 3 2 -f 0 g 1 2 , Ω 0 f ḡ = Ω 0 f g - h 2 f n+m+2 g n+m+ 3 2 - h 2 f 0 g 1 2 .
Lemma 3.6. Let f be a smooth function defined in a neighborhood of Ω.

We have

τ ± f = f ± h 2 T 0 ∂ x f (. ± σh/2)dσ, A j f = f + C j h 2 1 -1 (1 -|σ|)∂ 2 x f (. + l j σh)dσ, D j f = ∂ j x f + C ′ j h 2 1 -1 (1 -|σ|) j+1 ∂ j+2 x f (. + l j σh)dσ, j = 1, 2, l 1 = 1 2 , l 2 = 1.

Calculus results related to the weight functions

We now present some technical lemmata related to discrete operators performed on the Carleman weight functions that is of the form e sϕ , ϕ = e λψ -e λK , where ψ satisfies the properties listed in Section 2 in the domain Ω 0 . For concision, we set r(t, x) = e s(t)ϕ(x) and ρ = r -1 , with s(t) = τ θ(t). From Section 2, we have

ψ | Ω 01 = ψ 1| Ω 01 , ψ | Ω 01 = ψ 2| Ω 01 where ψ i ∈ C 2 ( Ω0i ).
Then ρ = e -sϕ can be replaced by ρ 1 = e -sϕ 1 with ϕ 1 = e λψ 1 -e λK in domain Ω 01 ρ 1 = e -sϕ 2 with ϕ 2 = e λψ 2 -e λK in domain Ω 02

And r = ρ -1 is also replaced by

r 1 = ρ -1 1 in domain Ω 01 r 2 = ρ -1 2 in domain Ω 02
The positive parameters τ and h will be large and small respectively and we are particularly interested in the dependence on τ, h and λ in the following basic estimates in each domain Ω 01 , Ω 02 . We assume τ ≥ 1 and λ ≥ 1.

Lemma 3.7. Let α, β ∈ N, i=1,2. We have

∂ β x (r i ∂ α x ρ i ) = α β (-sφ i ) α λ α+β (▽ψ i ) α+β + αβ(sφ i ) α λ α+β-1 O λ (1) + s α-1 α(α -1)O λ (1) = O λ (s α ).
Let σ ∈ [-1, 1], we have

∂ β x r i (t, .)(∂ α x ρ i )(t, . + σh) = O λ (s α (1 + (sh) β ))e O λ (sh) . Provided 0 < τ h(max [0,T ] θ) ≤ K we have ∂ β x r i (t, .)(∂ α ρ i )(t, . + σh) = O λ,K (s |α| ).
The same expressions hold with r and ρ interchanged and with s changed into -s.

A proof is given in [BHL10a, proof of Lemma 3.7] in the time independent case. Additionally, we provide a result below to the time-dependent case whose proof is refered to [BL12, proof of Lemma 2.8]. Note that the condition 0

< τ h(max [0,T ] θ) ≤ K implies that s(t)h ≤ K for all t ∈ [0, T ].
Lemma 3.8. Let α ∈ N, i=1,2. We have

∂ t (r i ∂ α x ρ i ) = s α T θO λ (1).
With Leibniz formula we have the following estimates Corollary 3.9. Let α, β, δ ∈ N, i=1,2. We have

∂ δ x (r 2 i (∂ α x ρ i )∂ β x ρ i ) = (α + β) δ (-sφ i ) α+β λ α+β+δ (▽ψ i ) α+β+δ + δ(α + β)(sφ i ) α+β λ α+β+δ-1 O(1) + s α+β-1 (α(α -1) + β(β -1))O λ (1) = O λ (s α+β ).
The proofs of the following properties can be found in Appendix A of [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF].

Proposition 3.10. Let α ∈ N, i=1,2. Provided 0 < τ h(max [0,T ] θ) ≤ K, we have

r i τ ± ∂ α x ρ i = r i ∂ α x ρ i + s α O λ,K (sh) = s α O λ,K (1), r i A k ∂ α x ρ i = r i ∂ α x ρ i + s α O λ,K (sh) 2 = s α O λ,K (1), k = 0, 1, 2, r i A k Dρ i = r i ∂ x ρ i + sO λ,K (sh) 2 = sO λ,K (1), k = 0, 1, r i D 2 ρ i = r i ∂ 2 x ρ i + s 2 O λ,K (sh) 2 = s 2 O λ,K (1) 
.

The same estimates hold with ρ i and r i interchanged.

Lemma 3.11. Let α, β ∈ N and k = 1, 2; j = 1, 2; i = 1, 2. Provided 0 < τ h(max [0,T ] θ) ≤ K, we have

D k (∂ β x (r i ∂ α x ρ i )) = ∂ k+β x (r i ∂ α x ρ i ) + h 2 O λ,K (s α ), A j ∂ β x (r i ∂ α x ρ i ) = ∂ β (r i ∂ α x ρ i ) + h 2 O λ,K (s α ). Let σ ∈ [-1, 1], we have D k ∂ β (r i (t, .)∂ α ρ i (t, . + σh)) = O λ,K (s |α| ).
The same estimates hold with r i and ρ i interchanged.

Lemma 3.12. Let α, β, δ ∈ N and k = 1, 2; j = 1, 2; i = 1, 2. Provided 0 < τ h(max [0,T ] θ) ≤ K, we have

A j ∂ δ x (r 2 i (∂ α x ρ i )∂ β x ρ i ) = ∂ δ x (r 2 i (∂ α x ρ i )∂ β x ρ i ) + h 2 O λ,K (s α+β ) = O λ,K (s α+β ), D k ∂ δ x (r 2 i (∂ α x ρ i )∂ β x ρ i ) = ∂ k+δ x (r 2 i (∂ α+β x ρ i ) + h 2 O λ,K (s α+β ) = O λ,K (s α+β ). Let σ, σ ′ ∈ [-1, 1]. We have A j ∂ δ (r i (t, .) 2 (∂ α ρ i (t, . + σh))∂ β ρ i (y, . + σ ′ h)) = O λ,K (s α+β ), D k ∂ δ (r i (t, .) 2 (∂ α ρ i (t, . + σh))∂ β ρ i (t, . + σ ′ h)) = O λ,K (s α+β ).
The same estimates hold with r i and ρ i interchanged.

Proposition 3.13. Let α ∈ N and k = 0, 1, 2; j = 0, 1, 2; i = 1, 2. Provided 0 < sh ≤ K, we have

D k A j ∂ α x (r i Dρ i ) = ∂ k+α x (r i ∂ x ρ i ) + sO λ,K (sh) 2 = sO λ,K (1), D k (r i D 2 ρ i ) = ∂ k x (r i ∂ 2 ρ i ) + s 2 O λ,K (sh) 2 = s 2 O λ,K (1), r i A 2 ρ i = 1 + O λ,K (sh) 2 , D k (r i A 2 ρ i ) = O λ,K (sh) 2 .
The same estimates hold with r i and ρ i interchanged.

Proposition 3.14. Provided 0 < τ h(max [0,T ] θ) ≤ K and σ is bounded, we have

∂ t (r i (., x)(∂ α ρ i )(., x + σh)) = T s α θ(t)O λ,K (1), ∂ t (r i A 2 ρ i ) = T (sh) 2 θ(t)O λ,K (1), ∂ t (r i D 2 ρ i ) = T s 2 θ(t)O λ,K (1).
The same estimates hold with r i and ρ i interchanged.

Proposition 3.15. Let α, β ∈ N and k = 0, 1, 2; j = 0, 1, 2; i = 1, 2, provided 0 < sh ≤ K, we have

A j D k ∂ β (r 2 i (∂ α ) Dρ i ) = ∂ k+β x (r 2 i (∂ α ρ)∂ρ i ) + s α+1 O λ,K (sh) 2 = s α+1 O λ,K (1) 
,

A j D k ∂ β (r 2 i (∂ α )A 2 ρ i ) = ∂ k+β x (r i (∂ α ρ i )) + s α O λ,K ((sh) 2 ) = s α O λ,K (1) 
,

A j D k ∂ β (r 2 i (∂ α )D 2 ρ i ) = ∂ k+β x (r 2 i (∂ α ρ)∂ 2 ρ i ) + s α+2 O λ,K (sh) 2 = s α+2 O λ,K (1),
and we have

A j D k ∂ α (r 2 i Dρ i D 2 ρ 0i ) = ∂ k+α x (r 2 i (∂ρ i )∂ 2 ρ i ) + s 3 O λ,K (sh) 2 = s 3 O λ,K (1), A j D k ∂ α (r 2 i Dρ i A 2 ρ i ) = ∂ k+α x (r i ∂ρ i ) + sO λ,K (sh) 2 = sO λ,K (1) 
.

Transmission conditions

We consider here discrete version of the transmission conditions (TC) at the point a. For u ∈ C M we set f := D(c d Du) we then have

u(a -) = u(a + ) = u n+1 , (c d Du) n+ 3 2 -(c d Du) n+ 1 2 = hf n+1 .
Remark 3.16. These transmission conditions provide the continuity for u and the discrete flux at the singular point of coefficient up to a consistent factor.

From these conditions, we obtain the following lemma whose proof is given in Appendix A Lemma 3.17. For the parameter λ chosen sufficiently large and sh sufficiently small and with u = ρv we have

[⋆c d Dv] a = (c d Dv) n+ 3 2 -(c d Dv) n+ 1 2 = J 1 v n+1 + J 2 (c d Dv) n+ 1 2 + J 3 h(rf ) n+1 (3.1) where J 1 = 1 + O λ,K (sh) λs[⋆cφψ ′ ] a + sO λ,K (sh), J 2 = O λ,K (sh), J 3 = 1 + O λ,K (sh) 
.

Furthermore, we have

∂ t J 1 = sT θ(t)O λ,K (sh), ∂ t J 2 = T θ(t)O λ,K (sh), ∂ t J 3 = T θ(t)O λ,K (sh).
For simplicity, (3.1) can be written in form

[⋆c d Dv] a = λs[⋆cφψ ′ ] a v n+1 + r 0 , (3.2) 
where

r 0 = λsO λ,K (sh)v n+1 + O λ,K (sh)(c d Dv) n+ 1 2 + h 1 + O λ,K (sh) (rf ) n+1 .

Carleman estimate for uniform meshes

In this section, we prove a Carleman estimate in case of picewise uniform meshes, i.e, constant-step discretizations in each subinterval (0, a) and (a, 1). The case of non-uniform meshes is treated in Section 5.

We let ω 0 ⊂ Ω 02 be a nonempty open subset. We set the operator P M to be

P M = -∂ t + A M = -∂ t -D(c d D)
, continuous in the variable t ∈ (0, T ) with T > 0, and discrete in the variable x ∈ Ω 0 .

The Carleman weight function is of the form r = e sϕ with ϕ = e λψ -e λK where ψ satisfies the properties listed in Section 2 in the domain Ω 0 . Here, to treat the semi-discrete case, we use the enlarged neighborhoods Ω01 , Ω02 of Ω 01 , Ω 02 as introduced in Lemma 2.1. This allows one to apply multiple discrete operators such as D and A on the weight functions. In particular, we take ψ such that ∂ x ψ ≥ 0 in V 0 and ∂ x ψ ≤ 0 in V 1 where V 0 and V 1 are neighborhoods of 0 and 1 respectively. This then yields on ∂Ω 0 (rDρ) 0 ≤ 0, (rDρ) n+m+2 ≥ 0 (4.1)

Theorem 4.1. Let ω 0 ⊂ Ω 02 be a non-empty open set and we set f := D(c d Du). For the parameter λ > 1 sufficiently large, there exists C, τ 0 ≥ 1, h 0 > 0, ǫ 0 > 0, depending on ω 0 so that the following estimate holds

τ -1 θ -1 2 e τ θϕ ∂ t u 2 L 2 (Q 0 ) + τ θ 1 2 e τ θϕ Du 2 L 2 (Q 0 ) + τ 3 θ 3 2 e τ θϕ u 2 L 2 (Q 0 ) ≤ C λ,K e τ θϕ P M u 2 L 2 (Q 0 ) + τ 3 θ 3 2 e τ θϕ u 2 L 2 ((0,T )×ω 0 ) +h -2 e τ θϕ u| t=0 2 L 2 (Ω 0 ) + h -2 e τ θϕ u| t=T 2 L 2 (Ω 0 ) , (4.2) for all τ ≥ τ 0 (T + T 2 ), 0 < h ≤ h 0 and τ h(αT ) -1 ≤ ǫ 0 and for all u ∈ C ∞ (0, T ; C M ) satisfying u| ∂Ω 0 = 0.
Remark 4.2. Observation was chosen in Ω 02 here. This is an arbitrary choice (see Remark 2.2).

Proof. We set

f 1 := -P M = ∂ t u + D(c d Du) and f = D(c d Du).
At first, we shall work with the function v = ru, i.e., u = ρv, that satisfies

r ∂ t (ρv) + D c d D(ρv) = rf 1 in Q ′ 0 . (4.3) We have r∂ t (ρv) = ∂ t v + r(∂ t ρ)v = ∂ t v -τ (∂ t θ)ϕv.
We write:

g = Av + Bv, where Av = A 1 v + A 2 v + A 3 v, Bv = B 1 v + B 2 v + B 3 v with A 1 v = r ρ D(c d Dv), A 2 v = cr( DDρ)ṽ, A 3 v = -τ (∂ t θ)ϕv, B 1 v = 2crDρ Dv, B 2 v = -2scφ ′′ v, B 3 v = ∂ t v, g = rf 1 - h 4 rDρ( Dc d )(τ + Dv -τ -Dv) - h 2 4 ( Dc d )r( DDρ)Dv -hO(1)rDρ Dv -r( Dc d ) Dρ + hO(1)r( DDρ) ṽ -2sc(φ ′′ )v,
as derived in [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF]. Equation (4.3) now reads Av + Bv = g and we write

Av 2 L 2 (Q ′ 0 ) + Bv 2 L 2 (Q ′ 0 ) + 2(Av, Bv) L 2 (Q ′ 0 ) = g 2 L 2 (Q ′ 0 ) . (4.4)
First we need an estimation of g 2

L 2 (Q ′ 0 )
. The proof can be adapted from [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF].

Lemma 4.3. For τ h(max [0,T ] θ) ≤ K we have g 2 L 2 (Q ′ 0 ) ≤ C λ,K ( rf 1 2 L 2 (Q ′ 0 ) ) + sv 2 L 2 (Q ′ 0 ) + h 2 sDv 2 L 2 (Q ′ 0 ) . (4.5)
Most of the remaining of the proof will be dedicated to computing the inner product (Av, Bv)

L 2 (Q ′ 0 ) . Developing the inner-product (Av, Bv) L 2 (Q ′ 0 ) , we set I ij = (A i v, B j v) L 2 (Q ′ 0 )
. The proofs of the following lemmata are provided in Appendix A.

Lemma 4.4 (Estimate of I 11 ). For τ h(max [0,T ] θ) ≤ K we have

I 11 ≥ - Q ′ sλ 2 (c 2 φ(ψ ′ ) 2 ) d (Dv) 2 -X 11 + Y 11 , where X 11 = Q ′ 0 ν 11 (Dv) 2 with ν 11 of the form sλφO(1) + sO λ,K (sh) and Y 11 = Y (1) 11 + Y (2,1) 11 + Y (2,2) 11 , Y (1) 11 = T 0 1 + O λ,K (sh) (cc d )(1)(rDρ)(1)(Dv) 2 n+m+ 3 2 - T 0 1 + O λ,K (sh) (cc d )(0)(rDρ)(0)(Dv) 2 1 2 , Y (2,1) 11 = T 0 sλφ(a)c d (a) (cψ ′ )(a + )(Dv) 2 n+ 3 2 -(cψ ′ )(a -)(Dv) 2 n+ 1 2 , Y (2,2) 11 = T 0 sO λ,K (sh) 2 (Dv) 2 n+ 1 2 - T 0 sO λ,K (sh) 2 (Dv) 2 n+ 3 2 .
Lemma 4.5 (Estimate of I 12 ). For τ h(max [0,T ] θ) ≤ K, the term I 12 is of the following form

I 12 = 2 Q ′ 0 sλ 2 (c 2 φ(ψ ′ ) 2 ) d (Dv) 2 -X 12 + Y 12 , with Y 12 = T 0 sλ 2 φ(a)v(a)[c(ψ ′ ) 2 ⋆ c d Dv] a + T 0 δ 12 v(a)(cDv) n+ 3 2 + T 0 δ12 v(a)(cDv) n+ 1 2 ,
where δ 12 , δ12 are of the form s λφ(a)O(1) + O λ,K (sh) 2 and

X 12 = Q ′ 0 ν 12 (Dv) 2 + Q ′ 0 sO λ,K (1)ṽDv,
where

ν 12 = sλφO(1) + sO λ,K (h + (sh) 2 ).
Lemma 4.6 (Estimate of I 13 ). There exists ǫ 1 (λ) > 0 such that, for 0 < τ h(max [0,T ] θ) ≤ ǫ 1 (λ), the term I 13 can be estimated from below in following way:

I 13 ≥ - Ω ′ 0 C λ,K (1)(Dv(T )) 2 -X 13 + Y 13 .
with

X 13 = Q ′ 0 s(sh) + T (sh) 2 θ O λ,K (1)(Dv) 2 + Q 0 s -1 O λ,K (sh)(∂ t v) 2 , Y 13 = - T 0 r ρ(a + )∂ t v(a)(c d Dv) n+ 3 2 + T 0 r ρ(a -)∂ t v(a)(c d Dv) n+ 1 2 .
Lemma 4.7 (Estimate of I 21 ). For τ h(max [0,T ] θ) ≤ K, the term I 21 can be estimated as

I 21 ≥ 3 Q ′ 0 λ 4 s 3 φ 3 c 2 (ψ ′ ) 4 v 2 -X 21 + Y 21 , with X 21 = Q ′ 0 µ 21 v 2 + Q ′ 0 ν 21 (Dv) 2 ,
where

µ 21 = (sλφ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh) 2 , ν 21 = sO λ,K (sh) 2 ,
and

Y 21 = Y (1,1) 21 + Y (1,21) 21 + Y (1,22) 21 + Y (2) 21 , Y (1,1) 21 = T 0 O λ,K (sh) 2 (rDρ)(1)(Dv) 2 n+m+ 3 2 + T 0 O λ,K (sh) 2 (rDρ)(0)(Dv) , Y (1,21) 21 = T 0 s 3 λ 3 φ 3 (a)[c 2 (ψ ′ ) 3 ⋆ (ṽ) 2 ] a , Y (1,22) 21 = T 0 s 2 O λ (1) + s 3 O λ,K (sh) 2 (ṽ) 2 n+ 1 2 + (ṽ) 2 n+ 3 2 , Y (2) 
21 = T 0 s 2 O λ,K (sh)v 2 (a).
Lemma 4.8 (Estimate of I 22 ). For sh ≤ K, we have

I 22 = -2 Q ′ 0 c 2 s 3 λ 4 φ 3 (ψ ′ ) 4 v 2 -X 22 + Y 22 ,
with

Y 22 = Y (1) 22 + Y (2) 22 , Y (1) 22 
= T 0 s 3 O λ,K (1)v(a) h 2 2 (Dv) n+ 1 2 + s 3 O λ,K (1)v(a) h 2 2 (Dv) n+ 3 2 , Y (2) 22 = T 0 sO λ,K (sh) 2 v 2 (a),
and

X 22 = Q ′ 0 µ 22 v 2 + Q ′ 0 ν 22 (Dv) 2 ,
where

µ 22 = (sλφ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh) 2 , ν 22 = sO λ,K (sh) 2 .
Lemma 4.9 (Estimate of I 23 ). For τ h(max [0,T ] θ) ≤ K, the term I 23 can be estimated from below in the following way

I 23 ≥ Ω ′ 0 s 2 O λ,K (1)v 2 | t=0 + O λ,K (1)v 2 | t=T -X 23 + Y 23 , with X 23 = Q 0 T s 2 θO λ,K (1)v 2 + Q 0 s -1 O λ,K (sh) 2 (∂ t v) 2 + Q ′ 0 (sh) 2 sO λ,K (1)(Dv) 2 ,
and

Y 23 = Y (1) 23 + Y (2) 23 + Y (3) 23 , Y (1) 23 
= T 0 s 2 O λ,K (1)∂ t v(a) h 2 (ṽ n+ 1 2 ) + s 2 O λ,K (1)∂ t v(a) h 2 (ṽ n+ 3 2 ), Y (2) 23 = T 0 sT θO λ,K (sh)v 2 (a), Y (3) 23 = O λ,K (sh) 2 v 2 (a)| t=T t=0 .
Lemma 4.10 (Estimate of I 31 ). For τ h(max [0,T ] θ) ≤ K, we have

I 31 = -X 31 + Y 31 , with X 31 = Q ′ 0 T θs 2 O λ,K (1)v 2 + Q ′ 0 T θO λ,K (sh) 2 (Dv) 2 ,
and

Y 31 = Y (1) 31 + Y (2) 31 , Y (1) 31 
= T 0 T θs 2 O λ,K (1)v(a) h 2 (Dv) n+ 1 2 + T 0 T θs 2 O λ,K (1)v(a) h 2 (Dv) n+ 3 2 , Y (2) 
31 = T 0 T θs 2 O λ,K (1)v 2 (a).
Lemma 4.11 (Estimate of I 32 ).

[BL12] For τ h(max [0,T ] θ) ≤ K, the term I 32 can be estimated from below in the following way

I 32 = -X 32 = Q ′ 0 T s 2 θO λ,K (1)v 2 .
Lemma 4.12 (Estimate of I 33 ). [BL12, proof of Lemma 3.9] For τ h(max [0,T ] θ) ≤ K, the term I 33 can be estimated from below in the following way

I 33 ≥ -X 33 = 1 2 τ Q ′ 0 c ′ ϕ(∂ 2 t θ)v 2 .
Continuation of the proof of Theorem 4.1. Collecting the terms we have obtained in the previous lemmata, from (4.4) and (4.5) for 0

< τ h(max [0,T ] θ) ≤ ǫ 1 (λ) we find Av 2 L 2 (Q ′ 0 ) + Bv 2 L 2 (Q ′ 0 ) + 2 Q ′ 0 sλ 2 (c 2 φ(ψ ′ ) 2 ) d (Dv) 2 + 2 Q ′ 0 c 2 s 3 λ 4 φ 3 (ψ ′ ) 4 v 2 +2 Y (1) 11 + Y (1,1) 21 + 2 Y (2,1) 11 + Y (1,21) 21 + 2Y 13 ≤ C λ,K rf 1 2 L 2 (Q ′ 0 ) + Ω ′ 0 s 2 v 2 |t=0 + v 2 |t=T + Ω ′ 0 (Dv(T )) 2 + 2X + 2Y , with Y = -Y (2,2) 11 + Y 12 + Y (1,22) 21 + Y (2) 21 + Y 22 + Y 23 + Y 31 , X = X 11 + X 12 + X 13 + X 21 + X 22 + X 23 + X 31 + X 32 + X 33 +C λ,K sv 2 L 2 (Q ′ 0 ) + h 2 sDv 2 L 2 (Q ′ 0 ) .
With the following lemma, we may in fact ignore the term Y

(1)

11 + Y (1,1) 21
in the previous inequality. Lemma 4.13. For all λ there exists 0

< ǫ 2 (λ) < ǫ 1 (λ) such that for 0 < τ h(max [0,T ] θ) ≤ ǫ 2 (λ) we have Y (1) 11 + Y (1,1) 21 ≥ 0.
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Recalling that ▽ψ ≥ C > 0 in Ω\ω 0 we may thus write 

Av 2 L 2 (Q ′ 0 ) + Bv 2 L 2 (Q ′ 0 ) + Q ′ 0 s(Dv) 2 + Q ′ 0 s 3 v 2 +2 Y (2,1) 11 + Y (1,21) 21 + 2Y 13 ≤ C λ,K rf 1 2 L 2 (Q ′ 0 ) + 2 T 0 ω0 s(Dv) 2 + 2 T 0 ω0 s 3 v 2 + Ω ′ 0 s 2 (v 2 |t=0 + v 2 |t=T ) + Ω ′ 0 (Dv(T )) 2 + 2X + 2Y . ( 4 
≥ Cα 0 T 0 sλφ(a)(c d Dv) 2 n+ 1 2 + Cα 0 T 0 s 3 λ 3 φ 3 (a)v 2 n+1 + µ 1 + µ r ,
with α 0 as given in Lemma 2.1 and where

µ r = T 0 sO λ (1)r 2 0 + T 0 s 2 O λ (1)r 0 v n+1 + T 0 sO λ (1)r 0 (c d Dv) n+ 1 2 + T 0 s 2 O λ,K (sh)v 2 n+1 + T 0 sO λ,K (sh)v n+1 (c d Dv) n+ 1 2 + T 0 sO λ,K (sh)r 0 v n+1 ,
with r 0 as given in Lemma 3.17 and

µ 1 = µ (1) 1 + µ (2) 1 ,
where

µ (1) 1 = T 0 sO λ,K (sh)(c d Dv) 2 n+ 3 2 + T 0 sO λ,K (sh)(c d Dv) 2 n+ 1 2 , µ (2) 
1 = T 0 s 2 O λ,K (sh)(c d Dv) n+ 3 2 v n+1 + T 0 s 2 O λ,K (sh)(c d Dv) n+ 1 2 v n+1 .
For a proof see Appendix A.

Lemma 4.15. With 0 < ǫ 3 (λ) < ǫ 2 (λ) sufficiently small we obtain

Y 13 ≥ T 0 C λ,K h(∂ t v(a)) 2 + T 0 sT θO λ,K (sh) + T 2 θ 2 O λ,K (sh) v 2 (a) + sO λ,K (1)v 2 (a)| t=T t=0 + T 0 O λ,K (sh)∂ t v(a)(c d Dv) n+ 1 2 + T 0 O λ,K (1)∂ t v(a)h(rf 1 ) n+1 .
where C λ,K is positive constant whose value depends on λ and sh.

For a proof see Appendix A.

If we choose λ 2 ≥ λ 1 sufficiently large, then for λ = λ 2 (fixed for the rest of the proof) and 0 < τ h(max [0,T ] θ) ≤ ǫ 3 , from (4.6) and Lemma 4.14 and Lemma 4.15, we can thus achieve the following inequality

Av 2 L 2 (Q ′ 0 ) + Bv 2 L 2 (Q ′ 0 ) + Q ′ 0 s |Dv| 2 dt + Q ′ 0 s 3 v 2 dt + Cα 0 T 0 s(c d Dv) 2 n+ 1 2 + Cα 0 T 0 s 3 v 2 (a) + T 0 C λ,K h(∂ t v(a)) 2 ≤ C λ,K rf 1 2 L 2 (Q ′ 0 ) + 2 T 0 ω0 s(Dv) 2 + 2 T 0 ω0 s 3 v 2 + Ω ′ 0 s 2 (v 2 |t=0 + v 2 |t=T ) + Ω ′ 0 (Dv(T )) 2 + sv 2 (a)| t=T t=0 + T 0 sT θO λ,K (sh) + T 2 θ 2 O λ,K (sh) v 2 (a) + T 0 O λ,K (sh)∂ t v(a)(c d Dv) n+ 1 2 + T 0 O λ,K (1)∂ t v(a)h(rf 1 ) n+1 + 2X + 2Y + 2Z , (4.7) 
where Z = µ r + µ 1 with µ r and µ 1 are given as in Lemma 4.14 and where

X = Q ′ 0 μv 2 + Q ′ 0 ν(Dv) 2 + X 12 + X 13 + X 23 + X 31 + X 32 + X 33 , with μ = s 2 O λ,K (1) + s 3 O λ,K ( 
sh) and ν of the form sO λ,K (sh). By using the Young's inequality, we estimate in turn all the terms of Y , Z and the two terms at the RHS of (4.7) through the following Lemma whose proof can be found in Appendix A Lemma 4.16. For sh ≤ K, we have

T 0 O λ,K (1)∂ t v(a)h(rf 1 ) n+1 ≤ ǫ T 0 O λ,K (1)h(∂ t v(a)) 2 + C ǫ T 0 O λ,K (1)h(rf 1 ) 2 n+1 , T 0 O λ,K (sh)∂ t v(a)(c d Dv) n+ 1 2 ≤ ǫ T 0 O λ,K (1)h(∂ t v(a)) 2 +C ǫ T 0 sO λ,K (sh)(c d Dv) 2 n+ 1 2 . Y (2,2) 11 ≤ T 0 α 11 v 2 n+1 + T 0 β 11 h(∂ t v) 2 n+1 + T 0 γ 11 (c d Dv) 2 n+ 1 2 + T 0 η 11 h(rf 1 ) 2 n+1 , α 11 = s 3 O λ,K (sh) 2 + sT 2 θ 2 O λ,K (sh) 4 β 11 = O λ,K (sh) 3 , γ 11 = sO λ,K (sh) 2 η 11 = O λ,K (sh) 3 . |Y 12 | ≤ T 0 α 12 v 2 n+1 + T 0 β 12 h(∂ t v) 2 n+1 + T 0 γ 12 (c d Dv) 2 n+ 1 2 + T 0 η 12 h(rf 1 ) 2 n+1 , α 12 = s 2 O λ,K (1) + sT 2 θ 2 O λ,K (sh) 2 β 12 = O λ,K (sh), γ 12 = O λ,K (1) η 12 = O λ,K (sh). Y (1,22) 21 ≤ T 0 α 21 v 2 n+1 + T 0 β 21 h(∂ t v) 2 n+1 + T 0 γ 21 (c d Dv) 2 n+ 1 2 + T 0 η 21 h(rf 1 ) 2 n+1 , α 21 = s 3 O λ,K (1) + sT 2 θ 2 O λ,K (sh) 4 β 21 = O λ,K (sh) 3 , γ 21 = sO λ,K (sh) 3 η 21 = O λ,K (sh) 3 . Y (1) 22 ≤ T 0 α 22 v 2 n+1 + T 0 β 22 h(∂ t v) 2 n+1 + T 0 γ 22 (c d Dv) 2 n+ 1 2 + T 0 η 22 h(rf 1 ) 2 n+1 , α 22 = s 2 O λ,K (sh) 2 + sT 2 θ 2 O λ,K (sh) 4 β 22 = O λ,K (sh) 3 , γ 22 = O λ,K (sh) 3 η 22 = O λ,K (sh) 3 . Y (1) 23 ≤ T 0 α 23 v 2 n+1 + T 0 β 23 h(∂ t v(a)) 2 + T 0 γ 23 (c d Dv) 2 n+ 1 2 + T 0 η 22 h(rf 1 ) 2 n+1 , α 23 = s 3 O λ,K (1) + sT 2 θ 2 O λ,K (sh) 3 β 23 = O λ,K (sh), γ 23 = sO λ,K (sh) 2 η 22 = O λ,K (sh) 2 . Y (1) 31 ≤ T 0 α 31 v 2 n+1 + T 0 β 23 h(∂ t v) 2 n+1 + T 0 γ 23 (c d Dv) 2 n+ 1 2 + T 0 η 22 h(rf 1 ) 2 n+1 , α 31 = s 2 T θO λ,K (sh) + sT 2 θ 2 O λ,K (sh) β 23 = O λ,K (sh), γ 23 = sO λ,K (sh) η 22 = O λ,K (sh). µ 1 ≤ T 0 α 1 v 2 n+1 + T 0 β 1 h(∂ t v) 2 n+1 + T 0 γ 1 (c d Dv) 2 n+ 1 2 + T 0 η 1 h(rf 1 ) 2 n+1 , α 1 = s 3 O λ,K (sh) + sT 2 θ 2 O λ,K (sh) 3 β 1 = O λ,K (sh) 2 , γ 1 = sO λ,K (sh) η 1 = O λ,K (sh) 2 . µ r ≤ T 0 α r v 2 n+1 + T 0 β r h(∂ t v) 2 n+1 + T 0 γ r (c d Dv) 2 n+ 1 2 + T 0 η r h(rf 1 ) 2 n+1 , α r = s 3 O λ,K (sh) + sT 2 θ 2 O ǫ,λ,K (sh) 2 + ǫs 3 O λ,K (1) 
β r = O ǫ,λ,K (sh), γ r = sO λ,K (sh) + ǫsO λ,K (1) η r = O ǫ,λ,K (sh).
Futhermore, we can estimate the term in X 12 as follows

Q ′ 0 sO λ,K (1)ṽDv ≤ Q ′ 0 sO λ,K (1)(ṽ) 2 + Q ′ 0 sO λ,K (1)(Dv) 2 ≤ Q ′ 0 sO λ,K (1) |v| 2 + Q ′ 0 sO λ,K (1)(Dv) 2 = Q0 sO λ,K (1)v 2 + Q ′ 0 sO λ,K (1)(Dv) 2 ,
by Lemma 3.3 and as

Ω ′ 0 O λ,K (1) |v| 2 = Ω0 O λ,K (1)v 2 . Observe that 1 ≤ T 2 θ and ∂ 2 t θ ≤ CT 2 θ 3 .
We can now choose ǫ 4 and h 0 sufficiently small, with 0 < ǫ 4 ≤ ǫ 3 (λ 2 ), 0 < h 0 ≤ h 1 (λ 2 ), and τ 2 ≥ 1 sufficiently large, such that for τ ≥ τ 2 (T + T 2 ), 0 < h ≤ h 0 , and τ h(max [0,T ] θ) ≤ ǫ 4 , from (4.7) and Lemma 4.16 we get

Av 2 L 2 (Q ′ 0 ) + Bv 2 L 2 (Q ′ 0 ) + Q ′ 0 s |Dv| 2 + Q ′ 0 s 3 v 2 + Cα 0 T 0 s(c d Dv) 2 n+ 1 2 + Cα 0 T 0 s 3 v 2 n+1 + C λ,K T 0 h(∂ t v(a)) 2 ≤ C λ,K rf 1 2 L 2 (Q ′ 0 ) + T 0 ω0 s(Dv) 2 + T 0 ω0 s 3 v 2 +h -2 Ω ′ 0 v 2 |t=0 + Ω ′ 0 v 2 |t=T + sv 2 (a)| t=T t=0 + T 0 O λ,K (1)h(rf 1 ) 2 n+1 + Q0 sO λ,K (1)v 2 + Q0 s -1 O λ,K (sh)(∂ t v) 2 + Q0 s 2 T θO λ,K (1)v 2 . (4.8)
where we used that (Dv)

2 ≤ Ch -2 ((τ + v) 2 +(τ -v) 2
) and the last three terms whose integral taken on domain Q 0 come from the term in X 12 , X 13 and X 23 respectively. As τ ≥ τ 2 (T + T 2 ) then s ≥ τ 2 > 0 and furthermore we observe that

s -1 2 ∂ t v 2 L 2 (Q ′ 0 ) ≤ C λ,K s -1 2 Bv 2 L 2 (Q ′ 0 ) + s 1 2 v 2 L 2 (Q ′ 0 ) + s 1 2 Dv 2 L 2 (Q ′ 0 ) ≤ C λ,τ,K Bv 2 L 2 (Q ′ 0 ) + s 3 2 v 2 L 2 (Q ′ 0 ) + s 1 2 Dv 2 L 2 (Q ′ 0 )
.

We then add the following terms T 0 hs 3 v 2 n+1 and T 0 hs -1 (∂ t v(a)) 2 on both the right hand side and the left hand side of (4.8). This allows us to change the domain of integration from Q ′ 0 to Q 0 for the discrete integrals on the primal mesh.

No additional term is required for discrete integrals on the dual mesh. For sh sufficiently small and s ≥ 1 sufficiently large, these terms at the right hand side are then absorbed by the terms at the left hand side. More precisely, with 0 < ǫ 0 ≤ ǫ 4 sufficiently small and for τ ≥ τ 2 (T + T 2 ), 0 < h ≤ h 0 , and 0 < τ h(max [0,T ] θ) ≤ ǫ 0 we thus obtain

s -1 2 ∂ t v 2 L 2 (Q0) + Q0 s(Dv) 2 + Q0 s 3 v 2 ≤ C λ,K rf 1 2 L 2 (Q0) + T 0 ω0 s(Dv) 2 + T 0 ω0 s 3 v 2 +h -2 Ω0 v 2 |t=0 + Ω0 v 2 |t=T + sO λ,K (1)v 2 (a)| t=T t=0 .
(4.9)

Now we shall estimate the term sO λ,K (1)v 2 (a) |t=T . We have

v |t=T 2 L 2 (Ω0) = n+m+1 j=1 hv 2 j|t=T ≥ h v |t=T 2 L ∞ (Ω0) .
It follows that, as sh is bounded

sO λ,K (1)v 2 (a) |t=T ≤ C λ,K s v |t=T 2 L ∞ (Ω0) ≤ C λ,K sh -1 v |t=T 2 L 2 (Ω0) ≤ C λ,K h -2 v |t=T 2 L 2 (Ω0) .
Similarly, we treat the term sO λ,K (1)v 2 (a) |t=0 as

sO λ,K (1)v 2 (a) |t=0 ≤ C λ,K h -2 v |t=0 2 L 2 (Ω0) .
Therefore, (4.9) can be written as

s -1 2 ∂ t v 2 L 2 (Q0) + s 1 2 Dv 2 L 2 (Q0) + s 3 2 v 2 L 2 (Q0) ≤ C λ,K rf 1 2 L 2 (Q0) + s 1 2 Dv 2 L 2 (0,T )×ω0 + s 3 2 v 2 L 2 (0,T )×ω0 +h -2 Ω0 v 2 |t=0 + Ω0 v 2 |t=T .
We next remove the volume norm s

1 2 Dv 2 L 2 ((0,T )×ω0)
by proceeding as in the proof of Theorem 4.1 in [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF] we thus write

τ -1 θ -1 2 e τ θϕ ∂ t u 2 L 2 (Q0) + τ θ 1 2 e τ θϕ Du 2 L 2 (Q0) + τ 3 θ 3 2 e τ θϕ u 2 L 2 (Q0) ≤ C λ,K e τ θϕ P M u 2 L 2 (Q0) + τ 3 θ 3 2 e τ θϕ u 2 L 2 ((0,T )×ω0) +h -2 e τ θϕ u| t=0 2 L 2 (Ω0) + h -2 e τ θϕ u| t=T 2 L 2 (Ω0) , (4.10)
As we have max

[0,T ]
θ ≤ 1 T α , we see that a sufficient condition for τ h max

[0,T ]
θ ≤ ǫ 0 then becomes τ h(T α) -1 ≤ ǫ 0 . To finish the proof, we need to express all the terms in the estimate above in terms of the original function u. We can proceed exactly as in the end of proof of Theorem 4.1 in [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF].

Carleman estimates for regular non uniform meshes

In this section we focus on extending the above result to the class of non piecewise uniform meshes introduced in Section 1.2. We choose a function ϑ satisfying (1.6) and further ϑ| [a-δ,a+δ] is chosen affine (for some δ > 0 to remain fixed in the sequel). The way we proceed here is similar to what is done in [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF]. In this framework, we shall prove a non-uniform Carleman estimate for the parabolic operator P M = -∂ t + A M on the mesh M by using the result on uniform meshes of Section 4.

By using first-order Taylor formulae we obtain the following result.

Lemma 5.1. Let us define ζ ∈ R M and ζ ∈ R M as follows

ζ i+ 1 2 = h ′ i+ 1 2 h , i ∈ {0, . . . , n + m + 1} ζ i = h ′ i h , i ∈ {1, . . . , n + m + 1}
These two discrete functions are connected to the geometry of the primal and dual meshes M and M and we have

0 < inf ϑ ′ Ω0 ≤ ζ i+ 1 2 ≤ sup ϑ ′ Ω0 , ∀i ∈ 0, . . . , n + m + 1 0 < inf ϑ ′ Ω0 ≤ ζ i ≤ sup ϑ ′ Ω0 , ∀i ∈ 1, . . . , n + m + 1 Dζ L∞(Ω) ≤ ϑ ′′ L∞ inf Ω0 ϑ ′ , D ζ L∞(Ω) ≤ ϑ ′′ L∞ inf Ω0 ϑ ′ .
We introduce some notation. To any u ∈ C M∪∂M , we associate the discrete function denoted by Q M0 M u ∈ C M0∪∂M0 defined on the uniform mesh M 0 which takes the same values as u at the corresponding nodes. More precisely, if u = n+m+1 i=1

1 [x ′ i-1 2 ,x ′ i+ 1 2
] u i , we let

Q M0 M u = n+m+1 i=1 1 [(i-1 2 )h,(i+ 1 2 )h] u i and (Q M0 M u) 0 = u 0 , (Q M0 M u) n+m+2 = u n+m+2 . Similarly, for u ∈ C M , u = n+m+1 i=1 1 [x ′ i ,x ′ i+1 ] u i+ 1 2 , we set Q M0 M u = n+m+1 i=0 1 [ih,(i+1)h] u i+ 1 2 .
The operators Q M0 M and Q M0 M are invertible and we denote by Q M M0 and Q M M0 their respective inverses. We give commutation properties between these operators and discrete-difference operators through the following Lemmata whose proofs can be found in [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF].

Lemma 5.2. [BHL10a, see the proof of Lemma 5.2] 1. For any u ∈ C M∪∂M and any v ∈ C M , we have

D(Q M0 M u) = Q M0 M (ζDu), DQ M0 M v = Q M0 M (ζ Dv)
2. For any u ∈ C M∪∂M we have

D(c d Du) = (ζ) -1 Q M M0 D (Q M0 M c d ζ )D(Q M0 M u) .
Lemma 5.3. [BHL10a, see proof of Lemma 5.3] For any u ∈ C M and any v ∈ C M , we have

(sup ϑ ′ Ω0 ) -1 |u| 2 L 2 (Ω) ≤ Q M0 M u 2 L 2 (Ω0) ≤ (inf ϑ ′ Ω0 ) -1 |u| 2 L 2 (Ω) (sup ϑ ′ Ω0 ) -1 |v| 2 L 2 (Ω) ≤ Q M0 M u 2 L 2 (Ω0) ≤ (inf ϑ ′ Ω0 ) -1 |v| 2 L 2 (Ω)
Futhermore, the same inequalities hold by replacing Ω by ω and Ω 0 by ω 0 , respectively.

For any continuous function f defined on Ω (resp. on Ω 0 ) we denote by Let f be a continuous function defined on Ω

Π M f = (f (x ′ i )) 0≤i≤n+m+2 ∈ C M∪∂M the sampling of f on M (resp. Π M0 f = (f (ih)) 0≤i≤n+m+2 ∈ C M0∪∂M0 the sampling of f on M 0 ).
Q M0 M Π M f = Π M0 (f • ϑ).
In particular, for u ∈ C M∪∂M we have

Q M0 M (Π M f )u = Π M0 (f • ϑ)(Q M0 M u).
Moreover, by making use of Taylor formulae we get the following result Lemma 5.5. With ζ defined as in Lemma 5.1 we have

DDν ∞ < ∞, Dν ∞ < ∞, 0 < ν ∞ , ν ∞ < ∞ where ν := 1 Q M 0 M ζ . Proof. From the definition of ζ, Q M0 M and D acting on C M0 , D acting on C M0 we have DD( 1 Q M0 M ζ ) i := ( DDν) i = ν i+1 -2ν i + ν i-1 h 2 = 1 h (h ′ i -h ′ i+1 )h ′ i-1 -(h ′ i-1 -h ′ i )h ′ i+1 h ′ i-1 h ′ i h ′ i+1 .
(5.1)

We find

h ′ i = x ′ i+ 1 2 -x ′ i-1 2 = x ′ i+1 -x ′ i-1 2 = ϑ (i + 1)h -ϑ (i -1)h 2 = ϑ i+1 -ϑ i-1 2 , h ′ i+1 = ϑ (i + 2)h -ϑ ih 2 = ϑ i+2 -ϑ i 2 , h ′ i-1 = ϑ(ih) -ϑ (i -2)h 2 = ϑ i -ϑ i-2 2 .
By using Taylor formulae we write

ϑ i+2 = ϑ i + (2h)ϑ ′ i + (2h) 2 2 ϑ ′′ i + (2h) 3 6 ϑ ′′′ i + (2h) 4 24 ϑ (4) i + O(h 5 ), ϑ i-2 = ϑ i -(2h)ϑ ′ i + (2h) 2 2 ϑ ′′ i - (2h) 3 6 ϑ ′′′ i + (2h) 4 24 ϑ (4) i + O(h 5 ),
ϑ i+1 = ϑ i + hϑ ′ i + h 2 2 ϑ ′′ i + h 3 6 ϑ ′′′ i + (h) 4 24 ϑ (4) i + O(h 5 ), ϑ i-1 = ϑ i -hϑ ′ i + h 2 2 ϑ ′′ i - h 3 6 ϑ ′′′ i + (h) 4 24 ϑ (4) i + O(h 5 ).
Thus we have

h ′ i = 2hϑ ′ i + 2h 3 6 ϑ ′′′ i + O(h 5 ), h ′ i+1 = 2hϑ ′ i + (2h) 2 2 ϑ ′′ i + (2h) 3 6 ϑ ′′′ + (2h) 4 24 ϑ (4) + O(h 5 ), h ′ i-1 = 2hϑ ′ i - (2h) 2 2 ϑ ′′ i + (2h) 3 6 ϑ ′′′ - (2h) 4 24 ϑ (4) + O(h 5 ).
From (5.1) we obtain DD( 1

Q M0 M ζ ) i = N D ,
where

N = (h ′ i -h ′ i+1 )h ′ i-1 -(h ′ i-1 -h ′ i )h ′ i+1 = - (2h) 2 2 ϑ ′′ i -h 3 ϑ ′′′ i - (2h) 4 24 ϑ (4) i + O(h 5 ) (2h)ϑ ′ i - (2h) 2 2 ϑ ′′ i + O(h 3 ) - - (2h) 2 2 ϑ ′′ i -h 3 ϑ ′′′ i - (2h) 4 24 ϑ (4) i + O(h 5 ) (2h)ϑ ′ i + (2h) 2 2 ϑ ′′ i + O(h 3 ) = (2h) 4 2 (ϑ ′′ i ) 2 + O(h 5 ),
and

D = h × h ′ i-1 × h ′ i × h ′ i+1 = (2h) 4 (ϑ ′ i ) 3 + O(h 5
). Thus, we have DD( 1

Q M0 M ζ ) i (inf ϑ ′ ) -3 < ∞,
which proves the first result. Next, we proceed with the second result in the same manner as above. We have

( Dν) i = νi+ 1 2 -νi+ 1 2 h = ν i+1 -ν i-1 2h = 1 2h h h ′ i+1 - h h ′ i-1 = h ′ i-1 -h ′ i+1 h ′ i+1 h ′ i-1
.

By using the computations of h

′ i-1 , h ′ i+1 above we find ( Dν) i = -(2h) 2 ϑ ′′ + O(h 4 ) (2h) 2 ϑ ′ 2 + O(h 3 ) ϑ ′′ ∞ (inf ϑ ′ ) 2 < ∞,
which yields the second result. Moreover, with the properties of ζ shown as in Lemma 5.1 we can assert

0 < ν ∞ , ν ∞ < ∞.
From Lemmata 5.2 -5.4 we thus obtain the following discrete Carleman estimate for the operator P M = -∂ t -D(c d D.) on the mesh M.

Theorem 5.6. Let ω ⊂ Ω 2 be a non-empty open set and we set f := D(c d Du). For the parameter λ > 1 sufficiently large, there exists C, τ 0 ≥ 1, h 0 > 0, ǫ 0 > 0, depending on ω such that for any mesh M obtained from ϑ by (1.6) -(1.7), we have

τ -1 θ -1 2 e τ θϕ ∂ t u 2 L 2 (Q) + τ θ 1 2 e τ θϕ Du 2 L 2 (Q) + τ 3 θ 3 2 e τ θϕ u 2 L 2 (Q) ≤ C λ,K e τ θϕ P M u 2 L 2 (Q) + τ 3 θ 3 2 e τ θϕ u 2 L 2 ((0,T )×ω) +h -2 e τ θϕ u| t=0 2 L 2 (Ω) + h -2 e τ θϕ u| t=T 2 L 2 (Ω) , (5.2) 
for all τ ≥ τ 0 (T +T 2 ), 0 < h ≤ h 0 and τ h(αT ) -1 ≤ ǫ 0 and for all u ∈ C ∞ (0, T ; C M ) satisfying u| ∂Ω = 0.

Proof. We set w = Q M0 M u defined on the uniform mesh M 0 . By using Lemma 5.2 we have

Q M0 M ( ζP M u) = -(Q M0 M ζ)∂ t w -D Q M0 M c d ζ Dw .
(5.3)

We observe that the right-hand side of (5.3) is a semi-discrete parabolic operator of the form

P M0 = ξ ′ (-∂ t -1 ξ ′ D(ξ d D.
)) applied to w, where

ξ ′ = Q M0 M ζ, ξ d = Q M0 M c d ζ .
(5.4)

We set ν := 1 ξ ′ = 1 Q M 0 M ζ and we find ν = ν + h 2 DDν = ν + h 2 O(1),
by using Lemma 3.3 and Lemma 5.5. Thus, the operator P M0 can be written in form as

P M0 w = ξ ′ -∂ t w -ν D(ξ d Dw) + h 2 O(1) D(ξ d Dw) .
Moreover, using Lemma 3. First, we shall obtain a Carleman estimate for P M0 0 . Then we shall deduce a Carleman estimate for the operator

P M0 w = ξ ′ P M0 0 w + D(ν)ξ d Dw + h 2 O(1) D(ξ d Dw) (5.5)
Now, we consider the function ψ • ϑ : (t, x) → ψ t, ϑ(x) . By using the properties listed in Lemma 2.1 and (1.6), we shall see that ψ • ϑ is a suitable weight function associated to the control domain ω 0 = ϑ -1 (w) in Ω 0 , i.e., that ψ•ϑ satisfies Lemma 2.1 for the domaims Ω 0 and ω 0 .

The important property to checking is the trace property. The remaining properties are left to the reader. We set 

B = b 11 b 12 b 21 b 22 , with b 11 = [(ψ • ϑ) ′ ⋆] a b 22 = [b(ψ • ϑ) ′ ⋆] 2 a (ψ • ϑ) ′ (a + ) + [b 2 (ψ • ϑ) ′3 ⋆] a b 12 = b 21 = [b(ψ • ϑ) ′ ⋆] a (ψ • ϑ) ′ (a + ) where b = 1 Q M 0 M ζ Q M0 M c ζ = c•ϑ ζ2 . Morever, we have ϑ ′ + (a) = ϑ ′ - (a 
b 11 = [ψ ′ (ϑ)⋆] a ϑ ′ (a) = [ψ ′ ⋆] a ′ ϑ ′ (a), b 22 = [ c • ϑ ζ2 ψ ′ (ϑ)ϑ ′ ⋆] 2 a ψ ′ (ϑ)(a + )ϑ ′ (a + ) + [( c • ϑ ζ2 ) 2 ψ ′ (ϑ)ϑ ′ 3 ⋆] a = [cψ ′ ⋆] a ′ ψ ′ (a + ) 1 ϑ ′ (a) + [c 2 (ψ ′ ) 3 ⋆] a ′ 1 ϑ ′ (a) , b 12 = b 21 = [ c • ϑ ζ2 ψ ′ (ϑ)ϑ ′ ⋆] a ψ ′ (ϑ(a + ))ϑ ′ (a + ) = [cψ ′ ⋆] a ′ ψ ′ (a ′+ ).
We can see that (Bw, w) = (Aw, w) ≥ α 0 w 2 . This means that ψ • ϑ satisfies the trace property.

Through Theorem 4.1, we obtained a discrete uniform Carleman estimate for P M0 0 and the Carleman weight function is of the form r 0 = e sϕ0 , with ϕ 0 = ϕ • ϑ = e λψ0 -e λK where ψ 0 = ψ • ϑ on the uniform mesh M 0 . We can deduce the same result on the non-uniform mesh M. Namely, through (4.2) we see that the following estimate holds

τ -1 θ -1 2 e τ θϕ0 ∂ t w 2 L 2 (Q0) + τ θ 1 2 e τ θϕ0 Dw 2 L 2 (Q0) + τ 3 θ 3 2 e τ θϕ0 w 2 L 2 (Q0) ≤ C e τ θϕ0 P M0 0 w 2 L 2 (Q0) + τ 3 θ 3 2 e τ θϕ0 w 2 L 2 ((0,T )×ω0) +h -2 e τ θϕ0 w| t=0 2 L 2 (Ω0) + h -2 e τ θϕ0 w| t=T 2 L 2 (Ω0) , (5.6) 
and the constant C is uniform in h for τ sufficiently large and with τ h(αT ) -1 ≤ ǫ 0 , for ǫ 0 sufficiently small. Note that, setting ǫ0 = (inf Ω0 ϑ ′ )ǫ 0 , we see that the condition τ h ′ (αT ) -1 ≤ ǫ0 on the size of the non-uniform mesh M implies the condition τ h(αT ) -1 ≤ ǫ 0 for the uniform mesh M 0 . From (5.5) -(5.6) we deduce the following Carleman estimate for

P M0 τ -1 θ -1 2 e τ θϕ0 ∂ t w 2 L 2 (Q0) + τ θ 1 2 e τ θϕ0 Dw 2 L 2 (Q0) + τ 3 θ 3 2 e τ θϕ0 w 2 L 2 (Q0) ≤ C e τ θϕ0 P M0 w 2 L 2 (Q0) + e τ θϕ0 D(ν)ξ d Dw 2 L 2 (Q0) + h 4 e τ θϕ0 D(ξ d Dw) 2 L 2 (Q0) +τ 3 θ 3 2 e τ θϕ0 w 2 L 2 ((0,T )×ω0) + h -2 e τ θϕ0 w| t=0 2 L 2 (Ω0) + h -2 e τ θϕ0 w| t=T 2 L 2 (Ω0) .
(5.7) Now, by using Lemma 5.5 we estimate e τ θϕ0 D(ν)ξ d Dw 2 L 2 (Q0) in the RHS of (5.7) as

e τ θϕ0 D(ν)ξ d Dw 2 L 2 (Q0) ≤ C e sϕ0 ξ d Dw 2 L 2 (Q0) . We see that ξ d Dw = 1 2 τ+ (ξ d Dw) + τ-(ξ d Dw) .
Hence we find

e sϕ0 ξ d Dw 2 L 2 (Q0) ≤ C e sϕ0 τ+ (ξ d Dw) 2 L 2 (Q0) + e sϕ0 τ-(ξ d Dw) 2 L 2 (Q0) ≤ C e sϕ0 τ+ ξ d D(Q M0 M u) 2 L 2 (Q0) + e sϕ0 τ-ξ d D(Q M0 M u) 2 L 2 (Q0) ≤ C e sϕ0 τ+ ξ d Q M0 M (ζDu) 2 L 2 (Q0) + e sϕ0 τ-ξ d Q M0 M (ζDu) 2 L 2 (Q0) ≤ C e sϕ0 τ+ Q M0 M c d Du 2 L 2 (Q0) + e sϕ0 τ-Q M0 M c d Du 2 L 2 (Q0) ≤ C Q M0 M e sϕ τ+ (c d Du) 2 L 2 (Q0) + Q M0 M e sϕ τ-(c d Du) 2 L 2 (Q0) ≤ C(inf ϑ ′ ) -1 e sϕ τ+ (c d Du) 2 L 2 (Q) + e sϕ τ-(c d Du) 2 L 2 (Q) ,
by using (5.4) and Lemmata 5.2 -5.4.

We treat e sϕ τ+ (c d Du) L 2 (Q) (the term e sϕ τ-(c d Du) L 2 (Q) can be treated similarly). We find

e sϕ τ+ (c d Du) L 2 (Q) = rτ + (c d Du) L 2 (Q) ≤ (τ -r)(c d Du) L 2 (Q) ≤ C (τ -r)Du L 2 (Q) .
(5.8) We have τ -r = r(ρτ -r) = r 1 + O λ,K (sh) (due to Proposition 3.10). From that we can write

e τ θϕ0 D(ν)ξ d Dw 2 L 2 (Q0) ≤ C(inf ϑ ′ ) -1 e sϕ Du L 2 (Q) ,
which allows one to absorb by the term at the LHS of the Carleman estimate by choosing τ sufficiently large.

The Carleman estimate proved in the previous Section allows to give observability estimate that yields results of controllability to the trajectories for classes of semi-linear heat equations.

The linear case

We consider the following semi-discrete parabolic problem with potential ∂ t y + A M y + ay = 1 ω v, t ∈ (0, T ) y| ∂Ω = 0 (6.1)

The adjoint system associated with the controlled system with potential (6.1) is given by -∂ t q + A M y + ay = 0, t ∈ (0, T ) q| ∂Ω = 0 (6.2)

We assume that a piecewise C 1 diffusion coefficient c satisfies (1.2) and Ω = (0, 1). From Carleman estimate (4.2) we obtain a following observability estimate.

Proposition 6.1. There exists positive constants C 0 , C 1 and C 2 such that for all T > 0 and all potential fucntion a, under the condition h ≤ min(h 0 , h 1 ) with

h 1 = C 0 1 + 1 T + a 2 3 ∞ -1
any solution of (6.2) satisfies

|q(0)| L 2 (Ω) ≤ C obs q 2 L 2 ((0,T )×ω) + e -C 1 h +T a ∞ |q(T )| 2 L 2 (Ω) , (6.3) with C obs = e C2 1+ 1 T +T a ∞ + a 2 3 ∞ .
Remark 6.2. In comparision the observability inequality in continuous case which performed in [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF], we find that the observability inequality obtained here is weak since there is an additional term depending upon h at right-hand-side of inequality (6.3).

From the result of Proposition 6.1 we deduce the following controllability result for system (6.1). Proposition 6.3. There exists positive constants C 1 , C 2 , C 3 and for T > 0 a map L T,a : R M → L 2 (0, T ; R M ) such that if h ≤ min(h 0 , h 2 ) with

h 1 = C 0 1 + 1 T + T a ∞ + a 2 3 ∞ -1
for all initial data y 0 ∈ R M , there exists a semi-discrete control function v given by v = L a (y 0 ) such that the solution to (6.1) satisfies

|y(T )| L 2 (Ω) ≤ C 0 e -C2/h |y 0 | L 2 (Ω) and v L 2 (Q) ≤ C 0 |y 0 | L 2 (Ω)
, with

C 0 = e C3 1+ 1 T +T a ∞ + a 2 3 ∞ .
Note that the final state is of size e -C/h |y 0 | L 2 (Ω) . The proof of these proposition are given in [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF].

The semilinear case

We consider the following semilinear semi-discrete control problem

∂ t + A M y + G(y) = 1 ω v, y ∈ (0, T )
y| ∂Ω = 0, y(0) = y 0 (6.4)

where ω ⊂ Ω. The function G : R → R is assumed of the form

G(x) = xg(x), x ∈ R, (6.5) 
with g Lipschitz continuous. Here, we consider the function g in two cases: g ∈ L ∞ (R) and the more general case as

|g(x)| ≤ K ln r (e + |x|), x ∈ R, with 0 ≤ r < 3 2 (6.6)
The results of semi-discrete parabolic with potential above allows one to obtain controllability results for parabolic equation with semi-linear terms whose proofs are given in [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF] Theorem 6.4. We assume that g ∈ L ∞ (R) and c satisfies (1.2). There exists positive constants C 0 , C 1 such that for all T > 0 and h chosen sufficiently small, for all initial data y 0 ∈ R M , there exists a semi-discrete control function v with

v L 2 (Q) ≤ C |y 0 | L 2 (Ω)
such that the solution to the semi-linear parabolic equation (6.4) satisfies

|y(T )| L 2 (Ω) ≤ Ce -C0/h |y 0 | L 2 (Ω) with C 0 = e C1 1+ 1 T +T g ∞ + g 2 3 ∞ .
Theorem 6.5. Let Ω = (0, 1), c satisfy (1.2) and G satisfy (6.5) -(6.6). There exists C 0 such that, for T > 0 and M > 0, there exists positive constants C, h 0 such that for 0 < h ≤ h 0 and for all initial data y 0 ∈ R M satisfying |y 0 | L 2 (Ω) ≤ M there exists a semi-discrete control function v such that the solution to the semi-linear parabolic equation

∂ t -DcD y + G(y) = 1 ω v, y ∈ (0, T ) y| ∂Ω = 0, y(0) = y 0 (6.7) satisfies |y(T )| L 2 (Ω) ≤ Ce -C0/h |y 0 | L 2 (Ω)
where C = C(T, M ).

Observe that the constants are uniform with respect to discretization parameter h.

A Proofs of Lemma 3.17 and intermediate results in Section 4

A.1 Proof of Lemma 3.17

We have

(c d Du) n+ 3 2 -(c d Du) n+ 1 2 = hf n+1 . As Du = ρDv + Dρṽ we obtain r n+1 ρn+ 3 2 (cDv) n+ 3 2 -ρn+ 1 2 (cDv) n+ 1 2 + (Dρ) n+ 3 2 (cṽ) n+ 3 2 -(Dρ) n+ 1 2 (cṽ) n+ 1 2 = h(rf ) n+1 . (A.1)
We write

r n+1 ρn+ 3 2 = r n+1 ρ n+1 + r n+1 ρ n+2 2 = 1 + (((τ + ) 2 ρ)r) n+1 2 := K 11 , r n+1 (c d Dρ) n+ 3 2 = (rτ + ρ) n+1 (c d rDρ) n+ 3 2 = (rτ + ρ) n+1 (c d r∂ρ) n+ 3 2 + (c d rDρ) n+ 3 2 -(c d r∂ρ) n+ 3 2 = K 21 (c d r∂ρ) n+ 3 2 + K 22 , where K 21 = (rτ + ρ) n+1 and K 22 = (c d rDρ) n+ 3 2 -(c d r∂ρ) n+ 3 2 . Similarly, r n+1 ρn+ 1 2 = r n+1 ρ n+1 + r n+1 ρ n 2 = 1 + (((τ -) 2 ρ)r) n+1 2 := K 31 , r n+1 (c d Dρ) n+ 1 2 = (rτ -ρ) n+1 (c d rDρ) n+ 1 2 = (rτ -ρ) n+1 (c d r∂ρ) n+ 1 2 + (c d rDρ) n+ 1 2 -(c d r∂ρ) n+ 1 2 := K 41 (c d r∂ρ) n+ 1 2 + K 42 ,
where K 41 = (rτ -ρ) n+1 and (c d rDρ)

n+ 1 2 -(c d r∂ρ) n+ 1 2 . Additionally, (ṽ) n+ 1 2 = v n+1 + v n -v n+1 2 = v n+1 + O(h)(Dv) n+ 1 2 , (ṽ) n+ 3 2 = v n+1 + v n+2 -v n+1 2 = v n+1 + O(h)(Dv) n+ 3 2 .
From (A.1) we thus write

K 11 (c d Dv) n+ 3 2 -K 31 (c d Dv) n+ 1 2 + K 21 (cr∂ρ) n+ 3 2 + K 22 v n+1 + O(h)(Dv) n+ 3 2 -K 41 (cr∂ρ) n+ 1 2 + K 42 v n+1 + O(h)(Dv) n+ 1 2 = h(rf ) n+1 .
Then

K 11 (c d Dv) n+ 3 2 -(c d Dv) n+ 1 2 + (K 11 -K 31 )(c d Dv) n+ 1 2 + K 21 [⋆cr∂ρ] a v n+1 + (K 21 -K 41 )(cr∂ρ) n+ 1 2 v n+1 + (K 21 K 22 -K 41 K 42 )v n+1 + K 21 (cr∂ρ) n+ 3 2 + K 22 O(h)(Dv) n+ 3 2 + K 41 (cr∂ρ) n+ 1 2 + K 42 O(h)(Dv) n+ 1 2 = h(rf ) n+1 .
Moreover, as r∂ρ = -λsφ∂ψ = sO λ (1) we have

K 11 (c d Dv) n+ 3 2 -(c d Dv) n+ 1 2 + (K 11 -K 31 )(c d Dv) n+ 1 2 = K 21 λs[⋆cφ∂ψ] a v n+1 -Kv n+1 + K 21 O λ (sh) + K 21 K 22 O(h) (c d Dv) n+ 3 2 -(c d Dv) n+ 1 2 + K 21 O λ (sh) + K 21 K 22 O(h) + K 41 O λ (sh) + K 41 K 42 O(h) (c d Dv) n+ 1 2 + h(rf ) n+1 ,
where

K = (K 21 -K 41 )(cr∂ρ) n+ 1 2 + K 21 K 22 -K 41 K 42 = (K 21 -K 41 )sO λ (1) + K 21 K 22 -K 41 K 42 .
From that, we can write

L (c d Dv) n+ 3 2 -(c d Dv) n+ 1 2 = K 21 λs[⋆cφ∂ψ] a v n+1 -Kv n+1 + H(c d Dv) n+ 1 2 + h(rf ) n+1
, where

L = K 11 -K 21 O λ (sh) -K 21 K 22 O(h), K = (K 21 -K 41 )sO λ (1) + K 21 K 22 -K 41 K 42 , H = K 21 O λ (sh) + K 21 K 22 O(h) + K 41 O λ (sh) + K 41 K 42 O(h) -K 11 + K 31 . As L = 1 + O λ,K (sh) = 0 (see below) then we read (c d Dv) n+ 3 2 -(c d Dv) n+ 1 2 = L -1 K 21 λs[⋆cφ∂ψ] a -L -1 K v n+1 + L -1 H(c d Dv) n+ 1 2 + L -1 h(rf ) n+1 . We set J 1 = L -1 K 21 λs[⋆cφ∂ψ] a -L -1 K, J 2 = L -1 H, J 3 = L -1 .
We thus have

(c d Dv) n+ 3 2 -(c d Dv) n+ 1 2 = J 1 v n+1 + J 2 (c d Dv) n+ 1 2 + J 3 h(rf ) n+1 (A.2)
By using Proposition 3.10 we find

K 11 = 1 + (((τ + ) 2 ρ)r) n+1 2 = 1 + O λ,K (sh), K 31 = 1 + (((τ -) 2 ρ)r) n+1 2 = 1 + O λ,K (sh), K 21 = (rτ + ρ) n+1 = 1 + O λ,K (sh), K 41 = (rτ -ρ) n+1 = 1 + O λ,K (sh), K 22 = (c d rDρ) n+ 3 2 -(c d r∂ρ) n+ 3 2 = sO λ,K (sh) 2 , K 42 = (c d rDρ) n+ 1 2 -(c d r∂ρ) n+ 1 2 = sO λ,K (sh) 2 . From that we estimate K = (K 21 -K 41 )sO λ (1) + K 21 K 22 -K 41 K 42 = sO λ,K (sh), H = K 21 O λ (sh) + K 21 K 22 O(h) + K 41 O λ (sh) + K 41 K 42 O(h) -K 11 + K 31 = O λ,K (sh), L = K 11 -K 21 O λ (sh) + K 21 K 22 O(h) = 1 + O λ,K (sh).
For sh sufficiently small we have L -1 = 1 + O λ,K (sh) and then we obtain

J 1 = L -1 K 21 λs[⋆cφ∂ψ] a -L -1 K = 1 + O λ,K (sh) λs[⋆cφ∂ψ] a + sO λ,K (sh), J 2 = L -1 H = O λ,K (sh), J 3 = L -1 = 1 + O λ,K (sh).
By using Proposition 3.14, Lemma 3.8 and Lemma 3.6 yield

∂ t K 11 = ∂ t (((τ + ) 2 ρ)r) n+1 = T θ(t)O λ,K (sh), ∂ t K 31 = ∂ t (((τ -) 2 ρ)r) n+1 = T θ(t)O λ,K (sh), ∂ t K 21 = ∂ t (rτ + ρ) n+1 = T θ(t)O λ,K (sh), ∂ t K 41 = ∂ t (rτ -ρ) n+1 = T θ(t)O λ,K (sh), ∂ t K 22 = ∂ t (c d rDρ) n+ 3 2 -(c d r∂ρ) n+ 3 2 = sT θ(t)O λ,K (sh) 2 , ∂ t K 42 = ∂ t (c d rDρ) n+ 1 2 -(c d r∂ρ) n+ 1
which give

∂ t L -1 = - ∂ t L L 2 = 1 + O λ,K (sh) (∂ t K 11 + ∂ t K 21 O λ (sh) + K 21 (∂ t s)O λ (h) +∂ t K 21 K 22 O(h) + ∂ t K 22 K 21 O(h)) = T θ(t)O λ,K (sh),
where sh sufficiently small and

∂ t H = ∂ t K 21 O λ (sh) + K 21 (∂ t s)O λ (h) + ∂ t K 21 K 22 O(h) + K 21 ∂ t K 22 O(h) + ∂ t K 41 O λ (sh) + K 41 (∂ t s)O λ (h) + ∂ t K 41 K 42 O(h) + K 41 ∂ t K 42 O(h) -∂ t K 11 + ∂ t K 31 = T θ(t)O λ,K (sh).
It follows that we have

∂ t J 1 = sT θ(t)O λ,K (sh), ∂ t J 2 = T θ(t)O λ,K (sh), ∂ t J 3 = T θ(t)O λ,K (sh).
Furthermore, we can write (A.2) in the simple form

(c d Dv) n+ 3 2 -(c d Dv) n+ 1 2 = λs[⋆cφ∂ψ] a v n+1 + λsO λ,K (sh)v n+1 + O λ,K (sh)(c d Dv) n+ 1 2 + 1 + O λ,K (sh) h(rf ) n+1 ,
which yields the conclusion.

A.2 Proof of Lemma 4.4

By using Lemma 3.2 in each domain Ω 01 , Ω 02 , we have

I 11 = 2 Q ′ 0 cr 2 ρ Dρ D(c d Dv)Dv = 2 Q01 cr 2 ρ Dρ D(c d Dv)Dv + 2 Q02 cr 2 ρ Dρ D(c d Dv)Dv = 2 Q01 cr 2 ρ Dρc d D(Dv)Dv + 2 Q01 cr 2 ρ Dρ( Dc d )(Dv) 2 + 2 Q02 cr 2 ρ Dρc d D(Dv)Dv + 2 Q02 cr 2 ρ Dρ( Dc d )(Dv) 2 = 2 i=1 Q0i cr 2 ρ Dρc d D(Dv) 2 + 2 2 i=1 Q0i cr 2 ρ Dρ( Dc d )(Dv) 2 .
We then apply a discrete integration by parts (Proposition 3.5) in each domain Ω 01 , Ω 02 with ∂Ω 01 = {0, a} and ∂Ω 02 = {a, 1} for the first two terms and we obtain

I 11 = - 2 i=1 Q0i D(c cd r 2 ρ Dρ)(Dv) 2 + 2 2 i=1 Q0i cr 2 ρ Dρ( Dc d )(Dv) 2 + T 0 (cc d r 2 ρ Dρ)(1)(Dv) 2 n+m+ 3 2 - T 0 (cc d r 2 ρ Dρ)(a + )(Dv) 2 n+ 3 2 + T 0 (cc d r 2 ρ Dρ)(a -)(Dv) 2 n+ 1 2 - T 0 (cc d r 2 ρ Dρ)(0)(Dv) 2 1 2 = - 2 i=1 Q0i D(cc d r 2 ρ Dρ)(Dv) 2 + 2 2 i=1 Q0i cr 2 ρ Dρ( Dc d )(Dv) 2 + Y 11 .
where

Y 11 = Y (1) 11 + Y (2) 11 Y (1) 11 = T 0 (cc d r 2 ρ Dρ)(1)(Dv) 2 n+m+ 3 2 - T 0 (cc d r 2 ρ Dρ)(a + )(Dv) 2 n+ 3 2 Y (2) 11 = T 0 (cc d r 2 ρ Dρ)(a -)(Dv) 2 n+ 1 2 - T 0 (cc d r 2 ρ Dρ)(0)(Dv) 2 1 2 Lemma A.1. (see Lemma B.3 in [BHL10a]) Provided sh ≤ K we have D(c i cdi r 2 i ρi Dρ i ) = -sλ 2 (c 2 i φ i (ψ ′ i ) 2 ) d + sλφ di O(1) + sO λ,K (sh), c i r 2 i ρi Dρ i ( Dc di ) = sλφ i O(1) + sO λ,K ((sh) 2 ), r 2 i ρi Dρ i = r i ∂ρ i + sO λ,K ((sh) 2 ) = -sλφ i ψ ′ i + sO λ,K ((sh) 2 ), r 2 i ρi Dρ i = r i ρi r i Dρ i = (1 + O λ,K (sh))r i Dρ i .
Moreover, by Lemma 3.3 and Proposition 3.5 in each domain Ω 01 , Ω 02 we obtain

Ω ′ 0 sλφ(Dv) 2 ≤ Ω ′ 0 sλφ(Dv) 2 = Ω ′ 0 sλ φ(Dv) 2 - h 2 2 i=1 BT i ≤ Ω ′ 0 sλ φ(Dv) 2 since BT 1 = sλφ(a)(Dv) 2 n+ 1 2 + sλφ(a)(Dv) 2 1 2 ≥ 0 BT 2 = sλφ(1)(Dv) 2 n+m+ 3 2 + sλφ(a)(Dv) 2 n+ 3 2 ≥ 0 and φ = φ + h 2 O λ (1) then we can write Ω0i sλφ(Dv) 2 ≤ Ω0i sλφ(Dv) 2 + Ω0i sλh 2 O λ (1)(Dv) 2
Similarly, we have

Ω0i sO λ,K (sh) 2 (Dv) 2 ≤ Ω ′ s O λ,K (sh) 2 (Dv) 2 ≤ Ω ′ s O λ,K (sh) 2 (Dv) 2 . Thus I 11 ≥ - Q ′ sλ 2 (c 2 φ(ψ ′ ) 2 ) d (Dv) 2 -X 11 + Y 11 ,
where X 11 = Q ′ 0 ν 11 (Dv) 2 with ν 11 of the form sλφO(1) + sO λ,K (sh) and

Y 11 = Y (1) 11 + Y (2,1) 11 + Y (2,2) 11 , Y (1) 
11 = T 0 1 + O λ,K (sh) (cc d )(1)(rDρ)(1)(Dv) 2 n+m+ 3 2 - T 0 1 + O λ,K (sh) (cc d )(0)(rDρ)(0)(Dv) 2 1 2 , Y (2,1) 11 = 
T 0 sλφ(a)c d (a) -(cψ ′ )(a -)(Dv) 2 n+ 1 2 + (cψ ′ )(a + )(Dv) 2 n+ 3 2 , Y (2,2) 11 = 
T 0 sO λ,K (sh) 2 (Dv) 2 n+ 1 2 - T 0 sO λ,K (sh) 2 (Dv) 2 n+ 3 2 .
A.3 Proof of Lemma 4.5

We set q = r ρcφ ′′ . By using a discrete integrations by parts (Proposition 3.5) and Lemma 3.2 in each domain Ω 01 , Ω 02 we have

I 12 = -2 2 i=1 Q0i sqv D(c d Dv) = 2 2 i=1 Q0i sqc d (Dv) 2 + 2 2 i=1 Q0i sDqc d ṽDv - T 0 sq(a -)v(a)(c d Dv) n+ 1 2 + T 0 sq(a + )v(a)(c d Dv) n+ 3 2 = 2 2 i=1 Q0i sqc d (Dv) 2 + 2 2 i=1 Q0i sDqc d ṽDvdt + Y 12 ,
since v| ∂Ω0 = 0 and with ∂Ω 01 = {0, a}, ∂Ω 02 = {a, 1}.

Lemma A.2. (see the proof as given in Lemma 4.4 of [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF]) Let i = 1, 2. Provided sh ≤ K we have

φ ′′ i = λ 2 φ i (ψ ′ i ) 2 + λφ i O(1), q i = r i ρi cφ ′′ i = λ 2 cφ i (ψ ′ i ) 2 + λφ i O(1) + O λ,K (sh) 2 , qi = λ 2 (cφ i (ψ ′ i ) 2 ) d + λφ i O(1) + O λ,K ((sh) 2 + h), Dq i = D(r i ρi ) cφ ′′ i + (r i ρi ) D(cφ ′′ i ) = O λ,K (1). 
Note that the proof and the use of Lemma A.2 are carried out in each domain Ω 01 , Ω 02 independently.

It follows that

I 12 = 2 2 i=1 Q0i sλ 2 (c 2 φ(ψ ′ ) 2 ) d (Dv) 2 + 2 i=1 Q0i ν 12 (Dv) 2 + 2 i=1 Q0i sO λ,K (1)ṽDv+Y 12 , 40 
Then

I 12 = 2 Q ′ 0 sλ 2 (c 2 φ(ψ ′ ) 2 ) d (Dv) 2 -X 12 + Y 12 , with Y 12 = T 0 sλ 2 φ(a)v(a)[c(ψ ′ ) 2 ⋆ c d Dv] a + T 0 δ 12 v(a)(cDv) n+ 3 2 + δ12 v(a)(cDv) n+ 1 2 ,
where δ 12 , δ12 are of form s λφ(a)O(1) + O λ,K (sh) 2 and

X 12 = Q ′ 0 ν 12 (Dv) 2 + Q ′ 0 sO λ,K (1)ṽDv, 
where

ν 12 = sλφO(1) + sO λ,K (h + (sh) 2 ).
A.4 Proof of Lemma 4.6

We carry out a discrete integration by parts (Proposition 3.5) in each domain Ω 01 , Ω 02 with ∂Ω 01 = {0, a} and ∂Ω 02 = {a, 1} as follows

I 13 = Q01 r ρ D(c d Dv)∂ t v + Q02 r ρ D(c d Dv)∂ t v = - Q01 D(r ρ∂ t v)c d Dv - Q02 D(r ρ∂ t v)c d Dv + T 0 (r ρ)(a -)∂ t v(a)(c d Dv) n+ 1 2 - T 0 (r ρ)(0)∂ t v(0)(c d Dv) 1 2 + T 0 (r ρ)(1)∂ t v(1)(c d Dv) n+m+ 3 2 - T 0 (r ρ)(a + )∂ t v(a)(c d Dv) n+ 3 2 = - Q01 D(r ρ∂ t v)c d Dv - Q02 D(r ρ∂ t v)c d Dv + T 0 (r ρ)(a -)∂ t v(a)(c d Dv) n+ 1 2 - T 0 (r ρ)(a + )∂ t v(a)(c d Dv) n+ 3 2 = - 2 i=1 Q0i D(r ρ)∂ t ṽc d Dv Q1 - 2 i=1 Q0i r ρ (∂ t Dv)c d Dv Q2 +Y 13 ,
by Lemma 3.2 and with

Y 13 = T 0 (r ρ)(a -)∂ t v(a)(c d Dv) n+ 1 2 - T 0 (r ρ)(a + )∂ t v(a)(c d Dv) n+ 3 2 ,
as v| ∂Ω0 = 0.

By applying Proposition 3.13 in each domain Ω 01 , Ω 02 we find

D(r i ρi ) = O λ,K (sh), r i ρi = 1 + O λ,K (sh) 2 = O λ,K (1). 
On the one hand, we have

Q1 ≤ 2 i=1 Q0i s -1 O λ,K (sh)(∂ t ṽ) 2 + 2 i=1 Q0i sO λ,K (sh)(Dv) 2 ≤ 2 i=1 Q0i s -1 O λ,K (sh) (∂ t v) 2 + 2 i=1 Q0i sO λ,K (sh)(Dv) 2 = Q0 s -1 O λ,K (sh)(∂ t v) 2 + Q ′ 0 sO λ,K (sh)(Dv) 2 , by (∂ t ṽ) 2 ≤(∂ t ṽ) 2 in each domain Ω 01 , Ω 02 and 2 i=1 Ω0i O λ,K (1) (∂ t ṽ) 2 = Ω0 O λ,K (1) 
(∂ t ṽ) 2 . On the other hand, by an integrations by parts w.r.t t we write as

Q2 = - 1 2 2 i=1 Q0i r ρ c d .∂ t (Dv) 2 = 1 2 2 i=1 Q0i ∂ t (r ρ)c d (Dv) 2 - 1 2 2 i=1 Ω0i r ρ c d .(Dv) 2 | t=T t=0 .
We observe that for sh ≤ ǫ 1 (λ) with ǫ 1 (λ) sufficiently small we have r ρ > 0 by Proposition 3.13. The sign of the term at t = T and t = 0 are thus prescribed. Furthermore, Proposition 3.14 leads to ∂ t (r i ρi ) = T (sh) 2 θO λ,K (1), so that, for sh ≤ K we obtain

Q2 ≥ 2 i=1 Q0i T (sh) 2 θO λ,K (1)(Dv) 2 -C λ,K (1) 2 i=1 Ω0i (Dv(T )) 2 .
Thus,

I 13 ≥ - Ω ′ 0 C λ,K (1)(Dv(T )) 2 -X 13 + Y 13 . with X 13 = Q ′ 0 s(sh) + T (sh) 2 θ O λ,K (1)(Dv) 2 + Q0 s -1 O λ,K (sh)(∂ t v) 2 . Y 13 = T 0 (r ρ)(a -)∂ t v(a)(c d Dv) n+ 1 2 - T 0 (r ρ)(a + )∂ t v(a)(c d Dv) n+ 3 2
A.5 Proof of Lemma 4.7

We set q = c 2 r 2 ( DDρ)Dρ. Observing that Dv = Dṽ we get

I 21 = 2 Q01 c 2 r 2 ( DDρ)Dρ q v Dv + 2 Q02 c 2 r 2 ( DDρ)Dρ q v Dv = Q01 q D(ṽ) 2 + Q02 q D(ṽ) 2 = - Q01 Dq(ṽ) 2 - Q02 Dq(ṽ) 2 + T 0 q(a -)(ṽ) 2 n+ 1 2 - T 0 q(0)(ṽ) 2 1 2 + T 0 q(1)(ṽ) 2 n+m+ 3 2 - T 0 q(a + )(ṽ) 2 n+ 3 2 = - 2 i=1 Q0i Dq v 2 + 2 i=1 h 2 4 Q0i (Dq)(Dv) 2 + Y (1) 21 = - 2 i=1 Q0i Dq(v) 2 + 2 i=1 h 2 4 Q0i (Dq)(Dv) 2 + Y (1) 21 + Y (2) 21 , 
by means of Proposition 3.5, Lemma 3.2, Lemma 3.3 in each domain Ω 01 , Ω 02 independently and where

Y 21 = Y (1) 21 + Y (2) 21 = Y (1,1) 21 + Y (1,2) 21 + Y (2) 21 , Y 
(1,1) 21

= T 0 q(1)(ṽ) 2 n+m+ 3 2 - T 0 q(0)(ṽ) 2 1 2 , Y (1,2) 21 = 
T 0 q(a -)(ṽ) 2 n+ 1 2 - T 0 q(a + )(ṽ) 2 n+ 3 2 , Y (2) 
21 = - h 2 T 0 v 2 (a)(Dq) n+ 1 2 - h 2 T 0 v 2 (0)(Dq) 1 2 - h 2 T 0 v 2 (1)(Dq) n+m+ 3 2 - h 2 T 0 v 2 (a)(Dq) n+ 3 2 = - h 2 T 0 v 2 (a)(Dq) n+ 1 2 - h 2 T 0 v 2 (a)(Dq) n+ 3 2 ,
as v| ∂Ω0 = 0. We note that ṽ

1 2 = h 2 (Dv) 1 2 , ṽn+m+ 3 2 = -h 2 (Dv) n+m+ 3 2 .
On the one hand, by Proposition 3.10 we have q = s 2 O λ,K (1)rDρ in each domain Ω 01 , Ω 02 . It follows that

Y (1,1) 21 = T 0 s 2 O λ,K (1)(rDρ)(1)(ṽ) 2 n+m+ 3 2 + T 0 s 2 O λ,K (1)(rDρ)(0)(ṽ) = T 0 O λ,K (sh) 2 (rDρ)(1)(Dv) 2 n+m+ 3 2 + T 0 O λ,K (sh) 2 (rDρ)(0)(Dv) 2 1 2 .
On the other hand, by Proposition 3.15, Corollary 3.9 we have q = -c 2 (sφλ) 3 (ψ ′ ) 3 + s 2 O λ (1) + s 3 O λ,K (sh) 2 in each domain Ω 01 , Ω 02 . We thus obtain

Y (1,2) 21 = T 0 sλφ(a) 3 -(c 2 ψ ′ 3 )(a -)(ṽ) 2 n+ 1 2 + (c 2 ψ ′ 3 )(a + )(ṽ) 2 n+ 3 2 + T 0 s 2 O λ (1) + s 3 O λ,K (sh) 2 (ṽ) 2 n+ 1 2 -(ṽ) 2 n+ 3 2 = Y (1,21) 21 + Y (1,22) 21
, where

Y (1,21) 21 = T 0 s 3 λ 3 φ 3 (a)[c 2 (ψ ′ ) 3 ⋆ ṽ2 ] a .
Lemma A.3. (see Lemma B.8 in [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF]) Provided sh ≤ K we have

Dq i = s 3 O λ,K (1) 
,

Dq i = -3s 3 λ 4 φ 3 i c 2 (ψ ′ i ) 4 + (sλφ i ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh) 2 .
Note that the proof and the use of Lemma A.3 are done in each domain Ω 01 , Ω 02 separately.

We then obtain

Y (2) 21 = - h 2 T 0 v 2 (a)(Dq) n+ 1 2 - h 2 T 0 v 2 (a)(Dq) n+ 3 2 = T 0 s 2 O λ,K (sh)v 2 (a).
We thus write I 21

I 21 ≥ 3 Q ′ 0 λ 4 s 3 φ 3 c 2 (ψ ′ ) 4 (v) 2 - Q ′ 0 µ 21 (v) 2 - Q ′ 0 ν 21 (Dv) 2 + Y 21 ,
where

µ 21 = (sλφ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh) 2 , ν 21 = sO λ,K (sh) 2 , Y 21 = Y (1,1) 21 + Y (1,21) 21 + Y (1,22) 21 + Y (2) 21 . 
A.6 Proof of Lemma 4.8

We set q = c 2 r( DDρ)φ ′′ and by Lemma 3.4 we have ṽ = v + h 2 DDv/4 in each domain Ω 01 , Ω 02 . It follows that

I 22 = -2 Q01 sq vv -2 Q02 sq vv = -2 Q01 sqv 2 - Q01 sh 2 2 q( DDv)v -2 Q02 sqv 2 - Q02 sh 2 2 q( DDv)v.
Applying a discrete integration by parts (Proposition 3.5) and Lemma 3.2 in each domain Ω 01 , Ω 02 yield

I 22 = -2 2 i=1 Q0i sqv 2 + 2 i=1 Q0i sh 2 2 D(qv)Dv + Y (1) 22 = -2 2 i=1 Q0i sqv 2 + 2 i=1 Q0i sh 2 2 q(Dv) 2 + 2 i=1 Q0i sh 2 2 D(q)ṽDv + Y (1) 22 = -2 2 i=1 Q0i sqv 2 + 2 i=1 Q0i sh 2 2 q(Dv) 2 + 2 i=1 Q0i sh 2 4 D(q)D(v 2 ) + Y (1) 22 = -2 2 i=1 Q0i sqv 2 + 2 i=1 Q0i sh 2 2 q(Dv) 2 - 2 i=1 Q0i sh 2 4 DDqv 2 + Y (1) 22 + Y (2) 22 ,
where

Y (1) 22 = - T 0 sh 2 2 q(a -)v(a)(Dv) n+ 1 2 + T 0 sh 2 2 q(a + )v(a)(Dv) n+ 3 2 , Y (2) 22 = 
T 0 sh 2 4 v 2 (a)(Dq) n+ 1 2 - T 0 sh 2 4 v 2 (a)(Dq) n+ 3 2 ,
as v| ∂Ω0 = 0.

In each domain Ω 01 , Ω 02 , we have φ ′′ = O λ (1) and from Proposition 3.13 we have q = s 2 O λ,K (1) and Dq = s 2 O λ,K (1). We thus obtain

Y (1) 22 = T 0 s 3 O λ,K (1)v(a) h 2 2 (Dv) n+ 1 2 + s 3 O λ,K (1)v(a) h 2 2 (Dv) n+ 3 2 , Y (2) 22 = 
T 0 sO λ,K (sh) 2 v 2 (a).

Lemma A.4. (see Lemma B.9 and Lemma B.10 in [START_REF] Boyer | Discrete Carleman estimates for the elliptic operators and uniform controllability of semi discretized parabolic equations[END_REF]) Provided sh ≤ K we have

c 2 r i DDρ i = c 2 (r i ∂ 2 ρ i + s 2 O λ,K (sh) 2 ) = c 2 (sλφ i ) 2 (ψ ′ i ) 2 + sO λ (1) + s 2 O λ,K (sh) 2 , h 2 DDq i = s(sh)O λ,K (1).
Note that the proof and use of above Lemma A.4 are done in each domain Ω 01 , Ω 02 separately.

Futhermore, we have φ ′′ = λ 2 (ψ ′ ) 2 φ + λφO(1) in each domain Ω 01 , Ω 02 . It follows that

sq i = s c 2 (sλφ i ) 2 (ψ ′ i ) 2 + sO λ (1) + s 2 O λ,K (sh) 2 λ 2 (ψ ′ i ) 2 φ i + λφ i O(1) = c 2 s 3 λ 4 (ψ ′ i ) 4 φ 3 i + s 3 λ 3 φ 3 i O(1) + s 2 O λ (1) + s 3 O λ,K (sh) 2 ,
in each domain Ω 01 , Ω 02 . We thus write I 22 as

I 22 = -2 Q ′ 0 c 2 s 3 λ 4 φ 3 (ψ ′ ) 4 v 2 + Q ′ 0 µ 22 v 2 + Q ′ 0 ν 22 (Dv) 2 + Y 22 ,
where

µ 22 = (sλφ) 3 O(1) + s 2 O λ,K (1) + s 3 O λ,K (sh) 2 , ν 22 = sO λ,K (sh) 2 , Y 22 = Y (1) 22 + Y (2) 22 .
A.7 Proof of Lemma 4.9

By means of a discrete integration by parts (Proposition 3.5) in each domain Ω 01 , Ω 02 , we obtain 

I 23 = 2 i=1 Q0i cr( DDρ) v∂ t v = 2 i=1 Q0i cr( DDρ)∂ t v ṽ - h 2 T 0 (cr( DDρ))(0)∂ t v(0)ṽ 1 2 - h 2 T 0 (cr( DDρ))(a -)∂ t v(a)ṽ n+ 1 2 - h 2 T 0 (cr( DDρ))(a + )∂ t v(a)ṽ n+ 3 2 - h 2 T 0 (cr( DDρ))(1)∂ t v(1)ṽ n+m+ 3 2 = Q1 + Q2 + Y (1 
= - h 2 T 0 (cr( DDρ))(a -)∂ t v(a)ṽ n+ 1 2 - h 2 T 0 (cr( DDρ))(a + )∂ t v(a)ṽ n+ 3 2 as ∂ t v| ∂Ω0 = 0. (1) 23 
With an integrations by parts w.r.t t we have

Q1 = -1 2 2 i=1 Q0i ∂ t (cr DDρ)(ṽ) 2 + 1 2 2 i=1 Ω0i (cr( DDρ)) (ṽ) 2 | t=T t=0 .
By means of Proposition 3.13 and Lemma 3.7 in each domain Ω 01 , Ω 02 we get

cr i ( DDρ i )= s 2 O λ,K (1) 
, 

r i DDρ i = s 2 O λ,K (1) 
∂ t (cr i DDρ i ) = T s 2 θO λ,K (1) 
.

Note that the proof and use of Lemma A.5 are done in each domain Ω 01 , Ω 02 separately.

It follows that

Q1 = 2 i=1 Q0i T s 2 θO λ,K (1) v 2 + 2 i=1 Ω0i s 2 O λ,K (1) v 2 |t=0 +O λ,K (1) v 2 |t=T as |ṽ| 2 ≤|v| 2 in each domain Ω 01 , Ω 02 .
Moreover, we observe that

2 i=1 Ω0i O λ,K (1) v 2 = Ω0 O λ,K (1)v 2 . Then, Q1 = Q0 T s 2 θO λ,K (1)v 2 + Ω0 s 2 O λ,K (1) v 2 |t=0 +O λ,K (1) v 2 |t=T . (A.3)
We have

Y (1) 23 = T 0 s 2 O λ,K (1)∂ t v(a) h 2 (ṽ n+ 1 2 ) + s 2 O λ,K (1)∂ t v(a)
h 2 (ṽ n+ 3 2 ). By an integration by parts w.r.t t and Lemma 3.2 in each domain Ω 01 , Ω 02 we find

Q2 = - 2 i=1 h 2 4 Q0i ∂ t (D(cr DDρ)ṽ)Dv Q1 2 + 2 i=1 h 2 8 Ω0i D(cr DDρ)D(v) 2 | t=T t=0 Q2 2 .
By means of Lemma 3.2 and a discrete intergration by parts in space (Proposition 3.5) in each domain Ω 01 , Ω 02 we see that

Q1 2 = 2 i=1 h 2 8 Q0i ∂ t ( DD(cr DDρ))v 2 - 2 i=1 h 2 4 Q0i D(cr DDρ)(∂ t ṽ)Dv - h 2 8 T 0 v 2 (a)∂ t (D(cr DDρ)) n+ 1 2 + h 2 8 T 0 v 2 (a)∂ t (D(cr DDρ)) n+ 3 2 = 2 i=1 h 2 8 Q0i ∂ t ( DD(cr DDρ))v 2 - 2 i=1 h 2 4 Q0i D(cr DDρ)(∂ t ṽ)Dv + Y (2) 23
as v| ∂Ω0 = 0.

Lemma A.6. (Lemma A.2 in [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF]) Provided sh ≤ K we have

h 2 DD(c i r i ( DDρ i )) = s(sh)O λ,K (1), h 2 ∂ t ( DD(c i r i DDρ i )) = T s 2 θO λ,K (1), h∂ t (D(c i r i DDρ i )) = T s 2 θO λ,K (1), D(c i r i DDρ i ) = s 2 O λ,K (1). 
Note that all above terms are done in each domain Ω 01 , Ω 02 separately.

We thus obtain

Y (2) 23 = T 0 sT θO λ,K (sh)v 2 (a).
Applying the Young's inequality and using that |∂ t ṽ| 2 ≤|∂ t v| 2 in each domain Ω 01 , Ω 02 , we have

Q1 2 ≥ Q ′ 0 T s 2 θO λ,K (1)v 2 + Q ′ 0 s -1 O λ,K (sh) 2 |∂ t v| 2 + Q ′ 0 sO λ,K (sh) 2 (Dv) 2 + Y (2) 23 ≥ Q ′ 0 T s 2 θO λ,K (1)v 2 + Q0 s -1 O λ,K (sh) 2 |∂ t v| 2 + Q ′ 0 sO λ,K (sh) 2 (Dv) 2 + Y (2) 23 (A.4) as 2 i=1 Ω0i O λ,K (1) |∂ t v| 2 = Ω O λ,K ( 
1) |∂ t v| 2 . By using Proposition 3.5, Lemma A.6 in each domain Ω 01 , Ω 02 separately yield

Q2 2 = - 2 i=1 h 2 8 Ω0i DD(cr DDρ)(v) 2 | t=T t=0 + h 2 8 v 2 (a) D(cr DDρ) n+ 1 2 | t=T t=0 - h 2 8 v 2 (a) D(cr DDρ) n+ 3 2 | t=T t=0 = Ω ′ 0 sO λ,K (sh)(v) 2 | t=T + Ω ′ 0 sO λ,K (sh)(v) 2 | t=0 + O λ,K (sh) 2 v 2 (a)| t=T t=0 = Ω ′ 0 sO λ,K (sh)(v) 2 | t=T + Ω ′ 0 sO λ,K (sh)(v) 2 | t=0 + Y (3) 23 , (A.5) 
as v| ∂Ω0 = 0 where Y

(3) 23 = O λ,K (sh) 2 v 2 (a)| t=T t=0 . Collecting (A.3), (A.4) and (A.5) we obtain

I 23 ≥ Ω0 s 2 O λ,K (1)v 2 |t=0 + O λ,K (1)v 2 |t=T -X 23 + Y 23 ,
where X 23 and Y 23 are as given in the statement of Lemma 4.9.

A.8 Proof of Lemma 4.10

By means of a discrete integration by parts (Proposition 3.5) in each domain Ω 01 , Ω 02 separately, we get

I 31 = -2τ Q01 (∂ t θ)ϕcrDρvDv -2τ Q02 (∂ t θ)ϕcrDρvDv = -2τ Q01 (∂ t θ) ϕcrDρv Dv -2τ Q02 (∂ t θ) ϕcrDρv Dv + Y (1) 31 , with Y (1) 31 = τ h 2 T 0 (∂ t θ)(crDρϕv)(a -)(Dv) n+ 1 2 + τ h 2 T 0 (∂ t θ)(crDρϕv)(a + )(Dv) n+ 3 2 as v| ∂Ω0 = 0.
We have ϕcrDρv=ϕcrDρ ṽ + h 2

I 31 = -τ 2 i=1 Q0i (∂ t θ) (crDρϕ) D(v) 2 - 2 i=1 τ h 2 2 Q0i (∂ t θ)D(crDρϕ)(Dv) 2 + Y (1) 31 = τ 2 i=1 Q0i (∂ t θ)(D(crDρϕ))v 2 - 2 i=1 τ h 2 2 Q0i (∂ t θ)D(crDρϕ)(Dv) 2 + Y (1) 31 -τ T 0 (∂ t θ)v 2 (a) (crDρϕ) n+ 1 2 + τ T 0 (∂ t θ)v 2 (a) (crDρϕ) n+ 3 2 = τ 2 i=1 Q0i (∂ t θ)(D(crDρϕ))v 2 - 2 i=1 τ h 2 2 Q0i (∂ t θ)D(crDρϕ)(Dv) 2 + Y (1)
31 + Y

(2) 31 by using a discrete integration by parts in each domain Ω 01 , Ω 02 separately and

Y (2) 31 = -τ T 0 (∂ t θ)v 2 (a) (crDρϕ) n+ 1 2 + τ T 0 (∂ t θ)v 2 (a) (crDρϕ) n+ 3 2
as v| ∂Ω = 0. By using the Lipschitz continuity and Proposition 3.13 we get

D(cr i Dρ i ϕ i ) = sO λ,K (1) 
,

D(cr i Dρ i ϕ i ) = sO λ,K (1) 
,

cr i Dρ i ϕ i = sO λ,K (1) 
,

cr i Dρ i = c(r i ∂ρ i + s 2 O λ,K (sh) 2 ) = c(-sλφ i ψ ′ i + sO λ,K (sh) 2 ) = sO λ,K (1). 
The proof is done in each domain Ω 01 , Ω 02 separately. Note that max t ∂ t θ = T θ 2 . It thus follows that

I 31 = Q ′ 0 T θs 2 O λ,K (1)v 2 + Q ′ 0 T θO λ,K (sh) 2 (Dv) 2 + Y 31 ,
where

Y 31 = Y (1) 31 + Y (2) 31 , Y (1) 31 = T 0 T θs 2 O λ,K (1)v(a) h 2 (Dv) n+ 1 2 + T 0 T θs 2 O λ,K (1)v(a) h 2 (Dv) n+ 3 2 , Y (2) 
31 = T 0 T θs 2 O λ,K (1)v 2 (a).
A.9 Proof of Lemma 4.13

We see that

Y (1)
11 + Y

(1,1) 21

= T 0 1 + O λ,K (sh) (cc d )(1)(rDρ) 1 (Dv) 2 n+m+ 3 2 - T 0 1 + O λ,K (sh) (cc d )(0)(rDρ) 0 (Dv) 2 1 2 + T 0 O λ,K (sh) 2 (rDρ) 0 (Dv) 2 1 2 + T 0 O λ,K (sh) 2 (rDρ) 1 (Dv) 2 n+m+ 3 2 .
Moreover, by (4.1) we have Y

(1) 11 + Y

(1,1) 21

≥ 0 for sh sufficiently small.

We next focus our attention on the trace term at ′ a ′ on Y

(2,1) 11

+ Y

(1,21) 21 as follows A.10 Proof of Lemma 4.14

(ṽ) 2 n+ 3 2 = v n+1 + v n+2 2 2 = v n+1 + h 2 (Dv) n+ 3 2 2 = v 2 n+1 + h 2 4 (Dv) 2 n+ 3 2 + hv n+1 (Dv) n+ 3 2 = v 2 n+1 + h 2 4(c d ) 2 n+ 3 2 (c d Dv) 2 n+ 3 2 + v n+1 h (c d ) n+ 3 2 (c d Dv) n+ 3 2 .
(A.6)

Similarly, we have (ṽ) 2

n+ 1 2 = v 2 n+1 + h 2 4(c d ) 2 n+ 1 2 (c d Dv) 2 n+ 1 2 -v n+1 h (c d ) n+ 1 2 (c d Dv) n+ 1 2 . (A.7) 50
We thus write Y

(1,21) 21

as follows: 

Y (1,21) 21 = T 0 (sλφ(a)) 3 [c 2 (ψ ′ ) 3 ⋆ |ṽ| 2 ] a = T 0 (sλφ(a)) 3 (c 2 ψ ′ 3 )(a + ) v 2 n+1 + h 2 4(c d ) 2 n+ 3 2 (c d Dv) 2 n+ 3 2 + v n+1 h 2(c d ) n+ 3 2 (c d Dv) n+ - T 0 (sλφ(a)) 3 (c 2 ψ ′ 3 )(a -) v 2 n+1 + h 2 4(c d ) 2 n+ 1 2 (cDv) 2 N + 1 2 -v n+1 h 2(c d ) n+ 1 2 (c d Dv) n+ = T 0 (sλφ(a)) 3 [c 2 ψ ′ 3 ⋆] a v 2 n+1 + T 0 (sλφ(a)) 3 (c 2 ψ ′3 )(a + ) h 2 4(c d ) 2 n+ 3 2 (c d Dv) 2 n+ 3 2 -(c 2 ψ ′3 )(a -) h 2 4(c d ) 2 n+ 1 2 (c d Dv) 2 n+ + T 0 (sλφ(a)) 3 (c 2 ψ ′3 )(a + ) h 2(c d ) n+ 3 2 (c d Dv) n+ 3 2 -(c 2 ψ ′3 )(a -) h 2(c d ) n+ 1 2 (c d Dv) n+ v(a).
= T 0 sλφ(a) -ψ ′ (a -)c(a -)c d (a)(Dv) 2 n+ 1 2 + ψ ′ (a + )c(a + )c d (a)(Dv) 2 n+ 3 2 = T 0 sλφ(a) -ψ ′ (a -) c(a -)c d (a) (c d ) 2 n+ 1 2 (c d Dv) 2 n+ 1 2 + ψ ′ (a + ) c(a + )c d (a) (c d ) 2 n+ 3 2 (c d Dv) 2 n+ 3 2 .
We estimate as

c(a -)c d (a) (c d ) 2 n+ 1 2 = (c d ) n+ 1 2 + O(h) (c d ) n+ 1 2 + (c d ) n+ 3 2 2(c d ) 2 n+ 1 2 = (c d ) n+ 1 2 + O(h) 2(c d ) n+ 1 2 + O(h) 2(c d ) 2 n+ 1 2 = 1 + hO(1). Similarly, c(a + )c d (a) (c d ) 2 n+ 3 2 = 1 + hO(1).
We thus obtain Y

(2,1) 11

Y

(2,1) 11 

= T 0 sλφ(a) -ψ ′ (a -) 1 + hO(1) (c d Dv) 2 n+ 1 2 + ψ ′ (a + ) 1 + hO(1) (c d Dv) 2 n+ 3 2 = T 0 sλφ(a)[ψ ′ ⋆ (c d Dv) 2 ] a + T 0 sλφ(a)ψ ′ (a + )O(h)(c d Dv) 2 n+ 3 2 + T 0 sλφ(a)ψ ′ (a -)O(h)(c d Dv)
= T 0 sλφ(a)[ψ ′ ⋆ (c d Dv) 2 ] a + T 0 s 3 λ 3 φ 3 (a)[(ψ ′ ) 3 c 2 ⋆] a v 2 n+1 + T 0 sλφ(a)ψ ′ (a + )O(h)(c d Dv) 2 n+ 3 2 + T 0 sλφ(a)ψ ′ (a -)O(h)(c d Dv) 2 n+ 1 2 + T 0 (sλφ(a)) 3 (c 2 ψ ′3 )(a + ) h 2 4(c d ) 2 n+ 3 2 (c d Dv) 2 n+ 3 2 -(c 2 ψ ′3 )(a -) h 2 4(c d ) 2 n+ 1 2 (c d Dv) 2 n+ + T 0 (sλφ(a)) 3 (c 2 ψ ′3 )(a + ) h 2(c d ) n+ 3 2 (c d Dv) n+ 3 2 -(c 2 ψ ′3 )(a -) h 2(c d ) n+ 1 2 (c d Dv) n+ v(a) = µ + µ 1 , where µ = T 0 sλφ(a)[ψ ′ ⋆ (c d Dv) 2 ] a + T 0 s 3 λ 3 φ 3 (a)[c 2 (ψ ′ ) 3 ⋆] a v 2 n+1 .
and µ 1 can be written as

µ 1 = T 0 sO λ,K (sh)(c d Dv) 2 n+ 3 2 + T 0 sO λ,K (sh)(c d Dv) 2 n+ 1 2 + T 0 s 2 O λ,K (sh)(c d Dv) n+ 3 2 v n+1 + T 0 s 2 O λ,K (sh)(c d Dv) n+ 1 2 v n+1 .
We can write

[(ψ ′ ) ⋆ (c d Dv) 2 ] a = [(ψ ′ )⋆] a (c d Dv) 2 n+ 1 2 + [⋆(c d Dv)] 2 a ψ ′ (a + ) + 2[⋆(c d Dv)] a ψ ′ (a + )(c d Dv) n+ 1 2 . Indeed, we have [(ψ ′ ) ⋆ (c d Dv) 2 ] a = (c d Dv) 2 n+ 3 2 ψ ′ (a + ) -(c d Dv) 2 n+ 1 2 ψ ′ (a -), and [(ψ ′ )⋆] a (c d Dv) 2 n+ 1 2 + [⋆(c d Dv)] 2 a ψ ′ (a + ) + 2[⋆(c d Dv)] a ψ ′ (a + )(c d Dv) n+ 1 2 = (c d Dv) 2 n+ 1 2 ψ ′ (a + ) -(c d Dv) 2 n+ 1 2 ψ ′ (a -) + (c d Dv) 2 n+ 3 2 ψ ′ (a + ) + (c d Dv) 2 n+ 1 2 ψ ′ (a + ) -2(c d Dv) n+ 3 2 (c d Dv) n+ 1 2 ψ ′ (a + ) + 2(c d Dv) n+ 3 2 (c d Dv) n+ 1 2 ψ ′ (a + ) -2(c d Dv) 2 n+ 1 2 ψ ′ (a + ) = (c d Dv) 2 n+ 3 2 ψ ′ (a + ) -(c d Dv) 2 n+ 1 2 ψ ′ (a -).
Moreover, by using Lemma 3.17, we obtain

[(ψ ′ ) ⋆ (c d Dv) 2 ] a = [(ψ ′ )⋆] a (c d Dv) 2 n+ 1 2 + [⋆(c d Dv)] 2 a ψ ′ (a + ) + 2[⋆(c d Dv)] a ψ ′ (a + )(c d Dv) n+ 1 2 = [(ψ ′ )⋆] a (c d Dv) 2 n+ 1 2 + λ 2 s 2 [⋆(cφψ ′ )] 2 a v 2 n+1 + r 2 0 + 2λsr 0 [⋆cφψ ′ ] a v n+1 ψ ′ (a + ) +2 sλ[⋆cφψ ′ ] a v n+1 + r 0 ψ ′ (a + )(c d Dv) n+ 1 2 , which gives µ = T 0 sλφ(a)[ψ ′ ⋆] a (c d Dv) 2 n+ 1 2 + T 0 2s 2 λ 2 φ(a)[⋆cφψ ′ ] a ψ ′ (a + )v N +1 (c d Dv) n+ 1 2 + T 0 s 3 λ 3 φ(a) [⋆cφψ ′ ] 2 a ψ ′ (a + ) + [c 2 (ψ ′ ) 3 ⋆] a φ 2 (a) v 2 n+1 + T 0 sλφ(a)ψ ′ (a + )r 2 0 + 2 T 0 s 2 λ 2 φ(a)[⋆cφψ ′ ] a ψ ′ (a + )r 0 v n+1 + 2 T 0 sλφ(a)ψ ′ (a + )r 0 (c d Dv) n+ 1 2 .
Moreover, we have:

[⋆cφψ ′ ] a = cφψ ′ | n+ 3 2 -cφψ ′ | n+ 1 2 = cφψ ′ | a + -cφψ ′ | a -+ hO λ (1) = φ(a)[cψ ′ ⋆] a + hO λ (1), [⋆cφψ ′ ] 2 a = [cφψ ′ ⋆] 2 a + 2[cφψ ′ ⋆] a hO λ (1) + h 2 O λ (1) = φ 2 (a)[cψ ′ ⋆] 2 a + hO λ (1).
We thus write µ as

µ = T 0 sλφ(a)[ψ ′ ⋆] a (c d Dv) 2 n+ 1 2 + T 0 2s 2 λ 2 φ 2 (a)[cψ ′ ⋆] a ψ ′ (a + )v n+1 (c d Dv) n+ 1 2 + T 0 s 3 λ 3 φ 3 (a) [cψ ′ ⋆] 2 a ψ ′ (a + ) + [c 2 (ψ ′ ) 3 ⋆] a v 2 n+1 + T 0 sλφ(a)ψ ′ (a + )r 2 0 + 2 T 0 s 2 λ 2 φ 2 (a)[cψ ′ ⋆] a ψ ′ (a + )r 0 v n+1 + 2 T 0 sλφ(a)ψ ′ (a + )r 0 (c d Dv) n+ 1 2 + T 0 s 2 O λ,K (sh)v 2 n+1 + T 0 sO λ,K (sh)v n+1 (c d Dv) n+ 1 2 + T 0 sO λ,K (sh)r 0 v n+1 = T 0 sλφ(a)[ψ ′ ⋆] a (c d Dv) 2 n+ 1 2 + T 0 2s 2 λ 2 φ 2 (a)[cψ ′ ⋆] a ψ ′ (a + )v n+1 (c d Dv) n+ 1 2 + T 0 s 3 λ 3 φ 3 (a) [cψ ′ ⋆] 2 a ψ ′ (a + ) + [c 2 (ψ ′ ) 3 ⋆] a v 2 n+1 + µ r
where µ r can be written as

µ r = T 0 sO λ (1)r 2 0 + T 0 s 2 O λ (1)r 0 v n+1 + T 0 sO λ (1)r 0 (c d Dv) n+ 1 2 + T 0 s 2 O λ,K (sh)v 2 n+1 + T 0 sO λ,K (sh)v n+1 (c d Dv) n+ 1 2 + T 0 sO λ,K (sh)r 0 v n+1 .
We have thus achieved From the choice made for the weight function β in Lemma 2.1 we find that:

µ ≥ Cα 0 T 0 sλφ(a)(c d Dv) 2 n+ 1 2 + Cα 0 T 0 s 3 λ 3 φ 3 (a)v 2 n+1 + µ r , with α 0 > 0.
A.11 Proof of Lemma 4.15

By using Lemma 3.17 we have

Y 13 = - T 0 r ρ(a + )∂ t v(a)(c d Dv) n+ 3 2 + T 0 r ρ(a -)∂ t v(a)(c d Dv) n+ 1 2 = - T 0 r ρ(a + )∂ t v(a) (c d Dv) n+ 1 2 + J 1 v n+1 + J 2 (c d Dv) n+ 1 2 + J 3 h(rf ) n+1 + T 0 r ρ(a -)∂ t v(a)(c d Dv) n+ 1 2 ,
where J 1 , J 2 and J 3 are given as in Lemma 3.17. Since J 2 = O λ,K (sh) and r ρ = 1 + O λ,K (sh) we can write

Y 13 = T 0 O λ,K (sh)∂ t v(a)(c d Dv) n+ 1 2 - T 0 r ρ(a + )J 1 v(a)∂ t v(a) - T 0 r ρ(a + )J 3 ∂ t v(a)h(rf ) n+1 .
Futhermore, as f = f 1 -∂ t (ρv) we thus find

Y 13 = T 0 O λ,K (sh)∂ t v(a)(c d Dv) n+ 1 2 - T 0 r ρ(a + )J 1 v(a)∂ t v(a) - T 0 r ρ(a + )J 3 ∂ t v(a)h rf 1 -r∂ t (ρv) n+1 .
With an integration by parts w.r.t t for the second term above we obtain

Y 13 = T 0 O λ,K (sh)∂ t v(a)(c d Dv) n+ 1 2 + 1 2 T 0 ∂ t r ρ(a + )J 1 v 2 (a) - 1 2 r ρ(a + )J 1 v 2 (a)| t=T t=0 - T 0 r ρ(a + )J 3 ∂ t v(a)h(rf 1 ) n+1 + T 0 r ρ(a + )J 3 ∂ t v(a)hr n+1 ρ∂ t v + ∂ t ρv n+1 = T 0 O λ,K (sh)∂ t v(a)(c d Dv) n+ 1 2 + 1 2 T 0 ∂ t r ρ(a + )J 1 v 2 (a) + sO λ,K (1)v 2 (a)| t=T t=0 + T 0 O λ,K (1)∂ t v(a)h(rf 1 ) n+1 + T 0 1 + O λ,K (sh) h ∂ t v(a) 2 + 1 2 T 0 r ρ(a + )J 3 h(r∂ t ρ) n+1 ∂ t v 2 (a) ,
where r ρ, J 3 are of the form 1 + O λ,K (sh) and J 1 of the form sO λ,K (1).

We apply an integration by parts in time for the last term

Y 13 = T 0 O λ,K (sh)∂ t v(a)(c d Dv) n+ 1 2 + 1 2 T 0 ∂ t r ρ(a + )J 1 v 2 (a) + sO λ,K (1)v 2 (a)| t=T t=0 + T 0 O λ,K (1)∂ t v(a)h(rf 1 ) n+1 + T 0 1 + O λ,K (sh) h ∂ t v(a) 2 - 1 2 T 0 ∂ t r ρ(a + )J 3 (r∂ t ρ) n+1 hv 2 (a) + 1 2 r ρ(a + )J 3 (r∂ t ρ) n+1 hv 2 (a, .)| t=T t=0 .
Moreover, we have

∂ t s = s(2t -T )θ = sT θO(1), ∂ t ρ = -ϕ(x)(∂ t s)ρ = -ϕ(x)s(2t -T )θρ, r∂ t ρ = -ϕ(x)s(2t -T )θ (A.10) ∂ t (r∂ t ρ) = sT 2 θ 2 O(1),
by using (2.2)-(2.3). Now we estimate the terms ∂ t r ρ(a + )J 1 and ∂ t r ρ(a + )J 3 (r∂ t ρ) n+1 . By recalling ∂ t J 1 = sT θO λ,K (sh), ∂ t J 3 = T θO λ,K (sh) as well as using Proposition 3.14 and (A.10) we obtain

∂ t r ρ(a + )J 1 = ∂ t r ρ(a + ) J 1 + r ρ(a + )∂ t J 1 = sT θO λ,K (sh), and 
∂ t r ρ(a + )J 3 (r∂ t ρ) n+1 = ∂ t r ρ(a + ) J 3 (r∂ t ρ) n+1 + r ρ(a + )∂ t J 3 (r∂ t ρ) n+1 + r ρ(a + )J 3 ∂ t (r∂ t ρ) n+1 = sT 2 θ 2 O λ,K (1). 
We then have

(c d Dv) 2 n+ 3 2 = (c d Dv) 2 n+ 1 2 + [⋆c d Dv] 2 a + 2[⋆c d Dv] a (c d Dv) n+ 1 2 = (c d Dv) 2 n+ 1 2 + λ 2 s 2 [⋆cφψ ′ ] 2 a v 2 n+1 + r 2 0 + 2λs[⋆cφψ ′ ] a r 0 v n+1 +2λs[⋆cφψ ′ ] a v n+1 (c d Dv) n+ 1 2 + 2r 0 (c d Dv) n+ 1 2 . (A.13)
and we compute

r 2 0 = s 2 O λ,K (sh) 2 v 2 n+1 + O λ,K (sh) 2 (c d Dv) 2 n+ 1 2 + h 2 O λ,K (1)(rf ) 2 n+1 +sO λ,K (sh) 2 (c d Dv) n+ 1 2 v n+1 + sO λ,K (sh)h(rf ) n+1 v n+1 +O λ,K (sh)(c d Dv) n+ 1 2 h(rf ) n+1
. By applying Cauchy-Schwartz inequality we have

(c d Dv) 2 n+ 3 2 ≤ O(1)(c d Dv) 2 n+ 1 2 + s 2 O λ (1)v 2 n+1 + O(1)r 2 0 (A.14) r 2 0 ≤ s 2 O λ,K (sh) 2 v 2 n+1 + O λ,K (sh) 2 (c d Dv) 2 n+ 1 2 + h 2 O λ,K (1)(rf ) 2 n+1 , (A.15) sr 0 v n+1 ≤ s 2 O λ,K (sh)+sO λ,K (1) v 2 n+1 +O λ,K (sh)(c d Dv) 2 n+ 1 2 +hO λ,K (sh)(rf ) 2 n+1 , (A.16) s 2 r 0 v n+1 ≤ s 3 O λ,K (sh)+ǫs 3 O λ,K (1) v 2 n+1 +sO λ,K (sh)(c d Dv) 2 n+ 1 2 +C ǫ hO λ,K (sh)(rf ) 2 n+1 , (A.17) sT θr 0 v n+1 ≤ s 2 T θO λ,K (sh) + sT 2 θ 2 O λ,K (sh) v 2 n+1 + sO λ,K (sh)(c d Dv) 2 n+ 1 2 + hO λ,K (sh)(rf ) 2 n+1 , (A.18) sr 0 (cDv) n+ 1 2 ≤ s 3 O λ,K (sh)v 2 n+1 + sO λ,K (sh)+ǫsO λ,K (1) (c d Dv) 2 n+ 1 2 +C ǫ O λ,K (sh)h(rf ) 2 n+1 , (A.19) (∂ t v(a))r 0 ≤ O λ,K (1)h(∂ t v(a)) 2 +sO λ,K (sh)(c d Dv) 2 n+ 1 2 +s 3 O λ,K (sh)v 2 n+1 +O λ,K (1)h(rf ) 2 n+1 . (A.20)

We estimate following terms

The first term, by using (A.14) we have For the next term, using (A.12) and Lemma 3.17 For the term Y 

Y (2,2) 11 = T 0 sO λ,K (sh) 2 (c d Dv) 2 n+ 1 2 + sO λ,K (sh) 2 (c d Dv) 2 n+ 3 2 ≤ T 0 sO λ,K (sh) 2 (c d Dv) 2 n+ 1 2 + T 0 s 3 O λ,K (sh) 2 v 2 n+1 + T 0 sO λ,K ( 

n+ 3 2 -

 2 (c d Dy) n+ 1 2 = h D(c d Dy) n+1 ,

Assumption 2. 3 .

 3 Let ω ⊂ Ω be an open set. Let Ω be a smooth open and connected neighborhood of Ω in R. The function ψ = ψ(x) is in C p Ω, R , p sufficiently large, and satisfies, for some c > 0,

  Lemma 5.4. [BHL10a, see the proof of Lemma 5.4]

  2 we have ν D(ξ d Dw) = D(νξ d Dw) -D(ν)ξ d Dw.29 We set P M0 0 w := -∂ t w -D(νξ d Dw) = -∂ t w -D(b d Dw) with b d = νξ d . From the properties of ν and ξ d it follows that 0 < b min ≤ b ≤ b max and D(b d ) ∞ < ∞.

  ) and ζn+1 = ϑ ′ n+1 (recall that ϑ| [a-δ,a+δ] is an affine function). It follows that

  DDρ)(D∂ t v)ṽ, Y

  , and we further haveLemma A.5. (see Lemma A.1 in [BL12])

  Au(t, a), u(t, a) + µ r , with u(t, a) = (c d Dv) n+ 1 2 , sλφ(a)v n+1 t and the symmetric matrix A defined in Lemma 2.1.

  sh) 2 r 2 0 . λ,K (sh) 2 + sT 2 θ 2 O λ,K (sh) 4 v 2 n+1 + T 0 O λ,K (sh) 3 h(∂ t v) 2 n+1 + T 0 sO λ,K (sh) 2 (c d Dv) K (sh) 3 (rf 1 ) 2 n+1 .

0 s 2 0 s 2 T 0 Os 3 T 0 O

 0202030 we obtainY 12 = T 0 sO λ (1)v(a)[cψ ′ 2 ⋆ (c d Dv)] a + T 0 sO λ,K (1)v(a)(cDv) n+ 1 2 + sO λ,K (1)v(a)(cDv) K (1)v(a)(c d Dv) n+ 1 2 + sO λ,K (1)v(a) (c d Dv) n+ 1 2 + sO λ (1)v(a) + r 0 = T 0 sO λ,K (1)v(a)(c d Dv) n+ 1 2 + s 2 O λ,K (1)v 2 (a) + sO λ,K (1)v(a)r 0 .Using (A.16) yieldsT 0 sO λ,K (1)v(a)r 0 ≤ T O λ,K (sh) + sO λ,K (1) v 2 n+1 + T 0 O λ,K (sh)(c d Dv) K (sh)(rf ) 2 n+1 .By using (A.11) we obtain|Y 12 | ≤ T O λ,K (1) + sT 2 θ 2 O λ,K (sh) 2 v 2 n+1 + λ,K (sh)h(∂ t v) Dv) n+ 1 2 = v n+1 + O(h)(c d Dv) n+ 1 2 , ṽn+ 3 2 = v n+1 + O(h)(c d Dv) n+ 3 2 . (A.21)By using (A.21), (A.14) we obtain(1) + O(sh) 2 v 2 n+1 + O(h 2 )(cDv) (1) + s 3 O λ,K (sh) 2 (ṽ) λ,K (1)v 2 n+1 + T 0 sO λ,K (sh) 2 (c d Dv) O λ,K(1) + sT 2 θ 2 O λ,K (sh) 4 v 2 n+1 + λ,K (sh) 3 h(∂ t v) K (sh) 3 (rf 1 ) 2 n+1 .

s 3 + T 0 s 2 0 s 2 s 2 T 0 OT 0 Os 2 + T 0 O 0 O 2 + T 0 O

 3020220020020 O λ,K (1)v(a) h 2 2 (Dv) n+ 1 2 + s 3 O λ,K (1)v(a) K (sh) 2 (c d Dv) n+ 1 2 + sO λ,K (sh) 2 (c d Dv) K (sh) 2 (c d Dv) n+ 1 2 + s 2 O λ,K (sh) 2 v(a) + sO λ,K (sh) 2 r 0 v(a) = T 0 sO λ,K (sh) 2 v(a)(c d Dv) n+ 1 2 O λ,K (sh) 2 v 2 (a) + T 0 sO λ,K (sh) 2 v(a)r 0 .Using (A.16) we achieveT 0 sO λ,K (sh) 2 v(a)r 0 ≤ T O λ,K (sh) 2 v 2 n+1 + T 0 O λ,K (sh) 3 (c d Dv) λ,K (sh) 3 (rf ) 2 n+1 . O λ,K (sh) 2 + sT 2 θ 2 O λ,K (sh) 4 v 2 n+1 + λ,K (sh) 3 h(∂ t v) 2 n+1 + λ,K (sh) 3 (c d Dv) K (sh) 3 (rf 1 ) 2 n+1 .And, using (A.21) and Lemma 3.17 we obtainY O λ,K (1)(∂ t v(a)) h 2 v n+1 + O(h)(c d Dv) n+ 1 2 + T 0 s 2 O λ,K (1)(∂ t v(a)) h 2 v n+1 + O(h)(c d Dv) n+ 3 2 = T 0 sO λ,K (sh)(∂ t v(a))v(a) + T 0 O λ,K (sh) 2 (∂ t v(a))(c d Dv) n+ 1 2 λ,K (sh) 2 (∂ t v(a))(c d Dv) K (sh)(∂ t v(a))v(a) + T λ,K (sh) 2 (∂ t v(a))(c d Dv) n+ 1 λ,K (sh) 2 (∂ t v(a)) (c d Dv) n+ 1 2 + λs[⋆cφψ ′ ] a v n+1 + r 0 .In addition, with s, λ enough large, sh enough small and with applying Young's inequality and (A.20) yield T 0 sO λ,K (sh)(∂ t v(a))v(a) ≤ T 0 O λ,K (sh)h(∂ t v(a)) 2 + T 0 s 3 O λ,K (1)v 2 (a).

T 0 O 0 O 0 OT 0 O 2 + T 0 OOs 2 T 0 O 0 OT 0 O 2 + T 0 Os 2 T 0 s 2 2 = T 0 s 2 s 2 0 s 2 Os 3 T 0 Os 3 0 O 0 O 0 s 3 s 3 0 O

 000020200020202202202303000330 λ,K (sh) 2 (∂ t v(a))(c d Dv) n+ 1 2 ≤ T 0 O λ,K (sh)h(∂ t v(a)) 2 + T 0 sO λ,K (sh) 2 (c d Dv) λ,K (sh) 2 (∂ t v(a))r 0 ≤ T λ,K (sh) 2 h(∂ t v(a)) 2 + T 0 sO λ,K (sh) 3 (c d Dv) λ,K (1) + sT 2 θ 2 O λ,K (sh) 3 v 2 n+1 + λ,K (sh)h(∂ t v(a)) 2 + T 0 sO λ,K (sh) 2 (c d Dv) 2 n+ 1 λ,K (sh) 2 h(rf 1 ) 2 n+1 . λ,K (sh)v(a)(c d Dv) λ,K (sh)v(a) sO λ,K (1)v(a) + r 0By using (A.18) we obtainT 0 sT θO λ,K (sh)v n+1 r 0 ≤ T 0 s 2 T θO λ,K (sh) 2 + sT 2 θ 2 O λ,K (sh) 2 v 2 n+1 + T 0 sO λ,K (sh) 2 (c d Dv) λ,K (sh) 2 h(rf ) 2 n+1 .We haveT 0 sT θO λ,K (sh)(c d Dv) n+ 1 2 v n+1 ≤ T 0 sT 2 θ 2 O λ,K (sh)v 2 n+1 + T 0 sO λ,K (sh)(c d Dv) T θO λ,K (sh) + sT 2 θ 2 O λ,K (sh) v 2 n+1 + λ,K (sh)h(∂ t v) λ,K (sh)h(rf 1 ) 2 n+1 .Next, by using (A.14) we estimate µ λ,K (sh) + sT 2 θ 2 O λ,K (sh) 3 v 2 n+1 + λ,K (sh) 2 h(∂ t v) 2 n+1 + T 0 sO λ,K (sh)(c d Dv) 2 n+ 1 λ,K (sh) 2 h(rf 1 ) 2 n+1 . O λ,K (sh)v n+1 (c d Dv) n+ 3 2 + O λ,K (sh)v n+1 (c d Dv) n+ 1 O λ,K (sh)v n+1 (c d Dv) O λ,K (sh)r 0 v n+1 .Applying Young's inequality and using (A.17) yieldT O λ,K (sh)v n+1 (c d Dv) λ,K (sh)r 0 v n+1 ≤ T 0 s 3 O λ,K (sh) 2 v 2 n+1 + T 0 sO λ,K (sh) 2 (c d Dv) λ,K (sh) 2 h(rf ) 2 n+1 . O λ,K (sh) + sT 2 θ 2 O λ,K (sh) 3 v 2 n+1 + λ,K (sh) 2 h(∂ t v) O λ,K (sh) + sT 2 θ 2 O λ,K (sh) 3 v 2 n+1 + T λ,K (sh) 2 h(∂ t v) 2 n+1 + T 0 sO λ,K (sh)(c d Dv) λ,K (sh) 2 h(rf 1 ) 2 n+1 .Now, we estimate some terms of µ r . By using (A.15)-(A.19) we have λ(1)r 0 v n+1 ≤ T O λ,K (sh) + ǫs 3 O λ,K (1) K (sh) + ǫsO λ,K (1) (c d Dv) K (sh)v n+1 (c d Dv) O λ,K (sh) + sT 2 θ 2 O ǫ,λ,K (sh) 2 + ǫs 3 O λ,K(1) v 2 n+1 + T ǫ,λ,K (sh)h(∂ t v) 2 n+1 + T 0 O ǫ,λ,K (sh)h(rf 1 ) 2 n+1 + T 0 sO λ,K (sh) + ǫsO λ,K (1) (c d Dv) 2 n+ 1 2 .

  1 , Ω 2 to large open sets Ω1 , Ω2 .

	Lemma 2.1. Let Ω1 , Ω2 be a smooth open and connected neighborhoods of
	intervals Ω 1 , Ω 2 of R and let ω ⊂ Ω 2 be a non-empty open set. Then, there exists a function ψ ∈ C( Ω) such that

= sT θ(t)O λ,K (sh) 2 ,

D(ϕcrDρ)Dv in each domain Ω 01 , Ω 02 . It follows that
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Thus Y 13 can be written

We observe that for 0 < sh < ǫ 3 (λ) with ǫ 3 (λ) sufficiently small we have

Additionally, ϕ(x) < 0 then the last term of Y 13 are non-negative. From that, we estimate Y 13 as follows

A.12 Proof of Lemma 4.16

On the one hands, as f = f 1 -∂ t (ρv) we write

We thus obtain

On the other hands,

and we recall

, where r 0 is given in Lemma 3.17 as r 0 = sO λ,K (sh)v n+1 + O λ,K (sh)(c d Dv) n+ 1 2 + hO λ,K (1)(rf ) n+1 ,