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Abstract 

The simulation of a wave propagation caused by seismic stimulation allows to study the 

behaviour of the environment and to evaluate the consequences. The model involves the wave 

equation with a hysteresis loop in the stress-strain relationship. This induces non-linearities and, at 

the vertices of the loop, non-differentiable mathematical operators. This paper offers a numerical 

process which works out this simulation. 

Introduction 

Protection against earthquakes is an increasingly important objective for civil engineering, 

especially for those buildings in areas of high seismic risk [1][2]. Of course, the problem is to know 

how a structure is going to respond under earthquake loading. But, before seismic motion reaches 

the structure, it must pass through the various soil layers underlying the site. Depending on the 

behaviour of the soils, the structure may be quite safe, or doomed to collapse. For this reason, the 

engineers look with interest upon the problem of soil response under dynamic loading. 

The soil characterisation needs an in situ experimental device. The elaboration of the device 

requires a theoretical study before it is manufactured, and some parameters seem hard to evaluate 

directly from the measures. This is especially the case when considering the thermal dissipation. A 

link between experimental results and simulation results should allow us to identify the values of 

soil parameters. Furthermore, an experimentation with a single well for both stimulation and 

response may be designed [3], much cheaper than the usual cross holes system. 

The simulation is based on the propagation of cylindrical shear waves. This configuration 

corresponds to the experimental system project. Several simulations have been performed through 

linear models which consider the soil as elastic. A linear model requires the determination of the 

shear modulus G0 as well as the soil density  to compute the propagation of the shear wave. In the 

real case of important seismic stress, elastic behaviours can no longer be assumed. 
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The first improvement is to consider a non-linear phenomenon, introducing an internal 

damping parameter  (saturation effect of the stress for the high level of strain) added to the 

geometrical damping (dispersal of the energy density when the distance from the source is 

increased; obviously due to the volume augmentation in correspondence with the distance from the 

source). This is described by a pure non-linear model. 

Moreover, when the strain is important, a part of mechanical energy is converted into thermal 

energy. This induces a delay on the propagation signals. In one space dimension, this can be 

modelled by a hysteresis cycle between the stress and the strain (Figure 1). 

Simple non-linear modelling enables to adjust parameters, used with dissipative models. The 

difficulty is to obtain the computation stability and convergence in spite of acceleration 

discontinuities. These discontinuities follow the non-differentiable mathematical operators due to 

the elasto-plastic nature of the non-linear dissipative model [4]. 
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Figure 1 : stress-strain diagrams 
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Figure 2 : Test configuration 

Configuration, Assumptions and Models 

Figure 2 shows, schematically, the experimental device (designed for Electricité de 

France [3]). One expects this device will allow the measures of the displacement and force at the 

well edge (A). The experimental system might also give the soil accelerations in the well vicinity (B 

and C). 

The soil is assumed to be homogenous and isotropic. The probe is assumed to have an infinite 

length. Therefore, the wave propagation can be considered as radial and the displacement purely 

vertical, enabling the use of one-dimensional model. 

The macroscopic soil models are based on the momentum balance relationship. In one radial 

dimension, it is described by the equation (1) where (r,t) is the vertical shear stress in the soil, 

w(r,t) is the vertical material displacement of the soil, r is the horizontal distance from the axis, t is 

the time and  is the specific mass of the soil. To complete the models, behaviour laws are added to 

this equation. The simplest is the elastic behaviour (2) where (r,t) is the vertical shear strain of the 

soil and G0 is the shear wave modulus at low strain. This behaviour is, in general, valid for a strain 

less than 10-5 and allows the computation with the well-know analytic solutions [5]. 
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For a higher strain, and before irreversible effects (which occur when the strain is 

approximately greater than 10-4), the damping phenomenon must be taken into account. The non-

linear behaviour law of Hardin and Drewich [6, 7] (3) (drawn with thin lines in Figure 1), where  

is the damping parameter, has this particularity. Moreover, to introduce the dissipative effect, a non-

linear and hysteresis cycle behaviour law (4) [2] (drawn with thick lines in Figure 1) can be used. 

The loop surface is proportional to the thermal energy dispersed in soil. The law (4) depends on two 

soil parameters: the linear parameter G0 and the dissipative parameter . A  coefficient makes 

possible the loading when  = 1 and unloading when  = - 1. 0 and 0 are the values of the vertex 

of the hysteresis loop (seen in Figure 1). For the determination of the last three parameters , 0 and 

0 we use a pre-computation with the law (3). The law (4) induces discontinuities at the times when 

the stress reaches the vertices of the hysteresis loop [4]. 

Method of Integration, Stability and Convergence 

To achieve the computation, conditions must be found on the space domain boundary. The 

displacement w at the well edge is the system input. Far away from the well, an absorbing boundary 

condition (5) [8] is used, where rb is the distance from the well axis and cs is the shear wave 

celerity. The boundary must be in the elastic behaviour area, in this study the boundary was taken at 

10 m. 
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The non-linearity and the dissipative effect are major near the well. The space steps must be 

small in this zone, but the computation must be made far from the well to be allowed to use the 

absorbing boundary equation (5). Therefore, the finite difference method with variable steps is used 

for space. With this method, space steps can be thin in the well vicinity, whereas, far from the well, 

the space steps can be larger. Here the space steps are equal to 0.1 mm at the well edge with a 5% 

progression at every step. 

The time evolution is insured by a Newmark-Wilson method [9] [10]. This method allows the 

stabilisation of the computation when the Wilson parameter is greater than one. The simplest 

methods tested are unstable with this non-linear dissipative model. The instabilities are caused by 

the discontinuities of the acceleration. 

At each time step, the convergence of the non-linear equations is achieved with the help of the 

classic Newton-Raphson process. The Newton-Raphson iteration itself requires successive solutions 

of linear tri-diagonal systems. 

The Newmark parameters a and b are taken such as a = b = 1. Although this condition is more 

restrictive than the stability criterion in the linear case, we didn't note the overall stability in the 
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cases we tried. The Wilson parameter  behaves as a low pass frequency filter. Therefore, when the 

space steps are small enough, this parameter ensures the stability in the well vicinity in spite of the 

acceleration discontinuities. The display of the acceleration close to the well allows the checking of 

the stability. 

When the non-linear parameter  is equal to zero, the comparison with the linear analytic 

computation makes errors less than 1%. The pure non-linear model is computed in the first half of 

the periods, the non-linear dissipative model is used in the last half of the periods. 

Results and Discussion 

We chose the soil values  = 2000 kg/m3, Go = 7.2 107 Pa and  = 2000 - unless otherwise 

marked -, the experimental values rwell = 0.1 m, T = 0.1 s, |wwell| = 0.1 mm and the computation 

parameters t = 1.6 ms, r = 0.1 m at the well edge with a 5% progression, rb = 10.1 m. The 

Newmark-Wilson parameters are a = b = 1 and  = 1.1. 
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Figure 3 : Acceleration vs. distance 
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Figure 4 : Harmonic modules vs. distance 
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Figure 5 : Hysteretic loop vs. various distances 
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Figure 6 : Hysteretic loop for various  

Figure 3 shows the acceleration at the well edge (r = 0.1 m) and in the well vicinity at 

r = 0.2 m, r = 0.3 m and r = 0.5 m from the axis. The discontinuities can be seen in the last three 

distances. The harmonic modules versus the distance from the well edge are shown in figure 4. The 

even harmonics are negligible. One sees that the harmonics are generated in the first 20 cm. The 

figures 5 and 6 show hysteretic cycles respectively at different distances from the well axis when 
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 = 2000 and for some other values of . This shows the decrease of the loop’s surface with respect 

to the distance from the source and with respect to the  decrease. 

To have a fine knowledge of the mechanic properties of soils, civil engineers need to identify 

the parameters G0 and . The elasticity parameter G0 has a well-known influence on the measurable 

variables. As soon as the stress is strong enough and before the soil ruptures, previous works [1] 

and this paper show that the plasticity parameter  also influences these variables. It can be checked 

by the generation of the odd harmonics on accelerations within the non-linear area close to the well 

versus . Thus, two kinds of methods could be applied for this parameter identification with in situ 

measures. On the one hand, both parameters can be found by a disconsolation process such as the 

non-linear chi-squared minimisation. On the other hand, the G0 parameter can be worked out with 

low stress measures where the influence of  is negligible. When G0 is known,  can be identified 

with the help of the computed odd harmonic accelerations. 

Conclusions 

The computer code based on pure non-linear elastic and non-linear dissipative models using 

adapted algorithms, time integration of Newmark-Wilson, spatial mesh with variable steps and a 

Newton-Raphson process for the non-linear computation, overcomes the stability difficulties related 

to acceleration discontinuities present in the case of high seismic stress. The influence of the 

dissipative model has been shown on the acceleration spectrum and on the hysteresis loop. These 

simulations would allow the identification of soil parameters by comparison with in situ measures. 
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