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Abstract. In this brief note, which has simply the role of an epistemological survey paper, 

some of the main basic elements of Implicative Statistical Analysis (ISA) pattern are put into a 

possible critical comparison with some of the main aspects of Probability Theory, Inductive 

Inference Theory, Nonparametric and Multivariate Statistics, Optimization Theory and 

Dynamical System Theory which point out the very interesting multidisciplinary nature of the 

ISA pattern and related possible hints. 

1. Introduction 

 

The Implicative Statistical Analysis (ISA) is a new powerful Mathematics Education research tool proposed 

by Regis Gras in 1990s: in this brief note, after a brief exposition of its main points, from which it emerges 

its very rich multidisciplinary nature, we simply wish to point out three possible comparative approaches 

among some of the main aspects of ISA framework and some others of Probability Theory, Inductive 

Inference Theory, Nonparametric and Multivariate Statistics, Game Theory and Dynamical System Theory.  

  In what follows, we simply limit ourselves both to identify this specific nature of the ISA pattern and to 

sketch some possible hints stemming by these possible comparisons.  

2. The Implicative Statistical Analysis: brief outlines 

 

According to (Gras, 2000), the fundamental problem of Implicative Statistical Analysis is the following: 

given two binary variables   and  , what is the measure according to, within a given population   in which 

they are defined, from every occurrence of   it follows the occurrence of  ? Or, is it true that if   then  ? 

  The ISA tries to measure the truth degree of the material implication     where             are two 

arbitrary binary variables. To this purpose, let                  ,                  be the 

truth value sets respectively of the binary variables   and  . Taking into account the fact that an arbitrary 

material implication     is false if and only if   is true and   is false, it follows that the unique 

counterexamples to     are given by     . According to Gras, the probabilistic measure of the 

implication     is given by the following Gras implication index  

 

                                                                                               
 

where       are randomly chosen according to a given probability distribution, independently the one 

from the other and in such a way that               and              .  

  Therefore, we will say that     is acceptable at the significance level                if and only if 

                            .  

3. ISA and Probability Theory 

 

Following (Letta, 1993), in considering an arbitrary random experiment in which it is no possible to know a 

priori its result, the experimenter may however choice a set, say Ω, of possible eventualities, disjoint one 

from another, in which the result of such an experiment might fall, in the sense that it is represented by one 

and only one element of it. If the information is so poor to obstacle the determination of the related 

eventuality in Ω, then the prediction of the result may be probabilistically determined considering a possible 

set of eventualities, say  , in which such a result may fall; in such a case, we say that the result of such a 

random experiment is linked to the event    Ω so that, a priori, every subset of Ω is a possible event for it. 
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Therefore, in general, there will exist a subclass        (  set of all parts of Ω) of events   in which 

may fall the results of a random experiment and that, for various stability, regularity and symmetry reasons 

(see (Letta, 1993)), it is required to be a σ-algebra of sets. Moreover, it will be possible to establish a 

measure of the confidence degree with which the result may fall into a given event    , say          , 
which it is also required to be a measure upon the σ-algebra  . In such a case, we obtain a probability space 

(Ω,  ,  ) associated to the given random experiment, which constitutes its formal model upon which work 

out; for every event    ,      is said to be the probability of the event   within the given probability 

space (Ω,  ,  ). 

  Given two events, say   and  , we say that the (theoretical) hypothesis   is subordinated to the 

(experimental) evidence   when it is defined an event     (saying that the event   is subordinated to the 

event  ) which is true if, being   true,   is true, while it is false if, being   true,   is false; in a certain sense, 

its truth values correspond to those of the material implication     (see (Daboni, 1976, Capitolo 2, § 2.3). 

Hence,        is the measure of the confidence degree which one sets in the eventuality of   when the 

hypothesis   be true. Often,        is also said to be a conditional probability relatively to the event   and 

it is also written in the form      : its meaning is what probability measure we believe to be suitable to 

consider when the event   is realized; as a consequence, the same random experiment will be formalized 

into the new probability space (Ω,  ,   ) in dependence on the new conditioning event  .  

  One of the crucial points of Probability Theory is the so-called Bayes theorem according to which (see 

(Dall’Aglio, 1987, Capitolo II, § II.10)), given an event B and a finite or denumerable set of independent and 

exhaustive events         such that Ω         with       , then  

                                                                              
            

                
 

 

where the events         may be considered as possible causes of the event B or hypotheses which explain 

it; the condition           Ω, then this means that the occurrence of B implies the occurrence of, at 

least, one and only one of the events     (given their mutual incompatibility). The various controversial 

questions which (3) give are due to the possible choices of the prior probabilities      . 
  In the case card J = 1, the subordinate event     may be written as      (where       ) in the form 

thesis|hypothesis, whence 

                                                         
          

    
 

          

        
 

      

    
 

 

which is the Bayes’ theorem for the simple material implication     (see (De Finetti, 1970, Volume I, 

Capitolo IV, § 4.1), providing the probability of the occurrence of   when   occurs. 

 Therefore, further possible comparisons with (1) might turn out to be of a some interest: one of these will 

be, for example, traced in the next section, just in connection to the possible choices of the      . Finally, 

for further considerations on the Bayesian’s aspects involved by ISA, with interesting links with the Boolean 

algebra, see (Bernard & Poitrenaud, 1999). 

4. ISA and Inductive Inference Theory 

 

The two main logical processes to build up the various scientific theories are the deduction and the induction, 

the first one being related to the mathematical logic whereas the second one is related to the logic of natural 

sciences; both are indispensable to the human thought and are irreducible to one another. The induction work 

out by means of various inference rules, whose main lines are exposed in (Dalla Chiara & Toraldo di 

Francia, 1981, Capitolo 1) from a physical viewpoint, and in (Dalla Chiara & Toraldo di Francia, 1999, 

Capitolo V; Toraldo di Francia, 1976, Capitolo IV, § 21; D’Espagnat, 1983, Capitolo 12) from an 

epistemological viewpoint. For our purposes, among the various currents of the theory of induction, we are 

mainly interested to the 1944 Rudolf Carnap program on Inductive Logic (see (Niiniluoto, 1983) for a formal 

survey) because it is strictly correlated with the basic principles of ISA. 

  According to Carnap (see (Niiniluoto, 1983, Section III)), all inductive reasoning, in the wide sense of 

nondeductive reasoning, is reasoning in probabilistic terms; inductive logic, the theory of the principles of 

inductive reasoning, is the same as probability logic; and, the concept of probability on which inductive logic 
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is to be based is a logical relation between two statements or propositions, given by the degree of 

confirmation of a hypothesis (or conclusion) on the basis of some given evidence (or premises). From what 

has been said in the previous section, Carnap starts from the fact that        could be considered as the 

degree of confirmation of the hypothesis   on the basis of the evidence  , or it measures the degree of 

validity of the assertion «  confirms or supports  » or the degree of confirmation of   on  , deducing a his 

own axiomatic theory whose main formal points are well exposed in (Niiniluoto, 1983) of which we want 

above all to stress one of its founding axioms (see (Niiniluoto, 1983, Section V)), namely the axiom of finite 

regularity according to which, for singular sentences   and  , we have          if and only if     , 

this last being the logical implication, and not the simple material one, of the deductive logic. Moreover, 

Carnap argues upon the so-called concepts of firmness and of increase in firmness according to which the 

qualitative notion    is confirmed by    should be defined via the positivity condition             
through to which to define such a degree of confirmation by            . 
  In conclusion, the inductive logic is inclined to give the probability of an assertion or statement through the 

so-called confirmation function        which gives the probability that the hypothesis
1
   be true when it is 

known the occurrence of   for instance from an experimental evidence. 

 

5. ISA and Nonparametric Statistics 
 

5.1 Introduction 

 

One of the central problems in the theory of data elaboration of Experimental Physics is that of determining 

the probability distributions of the various measures obtained from an experimental measurement which, in 

general, belongs to the class formed by the Gauss, Bernoulli and Poisson distributions. The tests for the 

deviation of the observed distribution of experimental data from a presumed theoretical distributions provide 

criteria for deciding with what approximation the former follows the latter. 

  There exist specific tests for each distribution (as, for instance, the β-skewness and the β2-flatness for the 

Gauss distribution), as well as some related to a general theoretical distribution, like the well-known (among 

the non-parametric
2
 statistical tests for goodness fit) χ

2
-test and the Kolmogorov one, which result to be 

independent from the presumed distributions (distribution free).      

  In what follows about subsection 5.2, we recall the main outlines on the χ
2
-test, introduced by K. Pearson at 

the very beginning of the 1900, mainly following the exposition given by (Taylor, 1986). 

 

5.2 The quantitative χ
2
-test: brief outlines 

 

Let X be a random variable defined in [a,b]    and   a partition of it into n subintervals, and let Ok and Ek 

be respectively the observed and the expected values of X which fall into the k-th subinterval. The hypothesis 

(often denoted with H0) according to which the observed values follow a given preassigned theoretical 

probability distribution which predict the given expected values, clearly depends by the various related 

deviations Ok – Ek, so that it results to be natural to consider the following number 

 

                                                                                 
          

 

  

 

   

 

 

said to be chi-squared, which is a good estimate for the accordance between the observed distribution and 

the presumed one. Following (Montanari & Poppi, 1982), this test is significative at least when n   40 and 

allows to decide whether the deviations between the experimental and hypothesized theoretical distributions 

(hypothesis H0) are due to the casualness or not. 

  Since it is expected that each term of this sum be about 1, then we would have approximately χ
2   n if there 

is a good accordance between the observed distribution and the hypothesized one, otherwise we would have 

χ
2   n. A better accordance estimate is carried out if one compares the chi-squared with the statistical 

                                                           
1
 Often, when one speaks of hypothesis in the inductive logic context, not necessarily it has the same meaning of the 

deductive logic. Instead, it should be intended as a theoretical hypothesis   which requires confirmation by some 

experimental evidence  , according to the general program of the theory of induction.  
2
 Even if such a term is quite incorrect: see (Girone & Salvemini, 2000, § 25.2). 
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freedom degrees d = n – c instead of the simple interval number n, where c is the number of parameters 

and/or relations related to the experimental data, which is also called constrained number
3
. Therefore, it is 

possible to prove as the expected value of χ
2
 is just d, so that if χ

2   d then it is very likely that the 

hypothesized distribution does not agree with the experimental one. Often it is considered the so-called 

reduced chi-squared defined as   2 
= χ

2  , so that if one obtains an estimate of the   2 less or equal to 1, then 

the initial hypothesis is valid, whereas if   2 is much greater than 1 it is not. 

  Now, the quantitative χ
2
-test tries to determine how a reduced chi-squared greater than one may be 

considered invalidating of our hypothesis H0. To answer to such a question, one considers the probability
4
 

P(  2     
 ) of obtaining a reduced chi-squared greater or equal to that experimentally computed: if this is 

quite high, then our value
5
    

  is acceptable because is very likely to obtain an higher value of it, so that the 

latter is one of the possible lower values. Hence, it is important at first to determine at what lower value of 

the probability
6
 P(  2     

 ) the given hypothesis H0 is refusable. In general, it is chosen two (but not the only 

ones possible) rejection confidence levels Psign under to which there is disagreement, that is to say when 

P(  2     
 ) < Psign: the Psign = 5% level and the Psign = 1% level.  

  In practice, chosen the confidence level Psign =            
  

  
  once known the value   

  
computed 

through (5), then it is possible to determine a value of χ
2
 such that

7
 P(     

 ) = Psign, the left hand side of 

this equation being computed through proper probability tables in dependence on d and on the χ
2
 probability 

distribution               
 
     

 

 
  

  

    
   
    

  

       . Thus, if it results to be    <   
  then H0 is 

rejected at the given confidence level Psign, whereas if    >    
  then H0 is considered to be valid at the 

confidence level Psign, at least till to more information
8
 (see (Porto, 1987, Capitolo VIII, § 3)); furthermore, 

in this last case, if the related P(     
 ) is also low, then this suggests the presence of systematic errors. 

 

5.3 ISA and   -test 

 

In Section 2, we have put that     is acceptable at the significance level                if and only if 

                            . Therefore, if one considers the counterexample random variable 

defined on           and whose nonnegative values are given by           ), that is to say, by the 

number of counterexamples to the material implication    , then                              

might be interpreted in the context of the statistical hypothesis tests to ascertain what probability distribution 

such counterexamples follow since the relation
9
 

 

                                                         
 

might be interpreted as a measure of the probability to obtain a number of random 

counterexamples             greater than the observed one             according to a given probability 

distribution, following therefore a philosophy analogous to that of statistical hypothesis tests of 

nonparametric statistics, like the χ
2
-test that, among other things, may be also used to ascertain which degree 

of correlation might subsist between two variables, one chosen independent the other dependent.  

                                                           
3
 Roughly speaking, d provides the number of independent random variables. 

4
 Which is computed respect to the same theoretical probability distribution already considered.  

5
 With   

  (or     
   we denote the observed (or experimental) value of the chi-squared computed by means of (5), 

whereas with    
 , or simply with χ

2
, we denote the theoretical one; likewise for   2. 

6
 The value P(  2     

 ) is given by the so-called Helmert-Pearson χ
2
 probability distribution; see, for instance, (Stoka, 

1991, Capitolo VIII, § 8.1). 
7
 This simply means that Psign is the probability with which χ

2
 may overcomes   

    
8
 Indeed, the χ

2
-test is definitive only when it leads to a rejection of the assumed hypotheses, as the muon AMM in 

Standard Model story shows (see (Jegerlehner, 2008), (Melnikov & Vainshtein, 2006)). In this last sense, such a test 

might also be considered as a sort of partial confirmation of the main Karl R. Popper falsificationism theses applied to 

Physics. 
9
 In the probability space (Ω,  ,  ), if     Ω    is the opposite event to the event    , then             . 
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Following (Gras and Kuntz, 2008) and (Gras, 2005), put                                    
        and                  , when       to the counterexample random variable           ) it is 

possible to associate the following standardized random variable 10 
 

           
            

     
 

 
     
 

      

 

further, if we also set 

                
            

     

 

 
     

 

   

 

then this last may be considered as the experimental value observed for            and it measures a 

deviation between the contingency and the expected value when a and b are independent (Gras & Kuntz, 

2008). Thus, the material implication     will be acceptable at the confidence level     or at the 

threshold α, when  

 

                                                                    

 

which seems to resemble the χ
2
-test if we consider            as a kind of χ

2
 parameter, as regards a given, 

prefixed probability distribution (Gaussian, Poissonian or Bernoullian) which we suppose to be followed by 

the counterexamples to    . Thereafter,            is an inductive and informative quality measure. 

Finally, for useful modern application of ISA to educational context, see (Di Fazio et al. 2012). 

 

6. ISA and Optimization Theory 
 

Following (Gras, 2005, § 1.3), in the case of continuous variables, problems arise both of maximization of 

the degree of the given material implication and of minimization of the number of counterexamples which 

may occur: these aims are attainable for instance by extremizing the various implication indices, so 

appealing to the various optimization tools like Operation Research, Graph Theory and Game Theory. In this 

case, it is also used the Edwin Diday dynamical cloud method which lead to interesting relationships with 

factorial statistical analysis (see (Spagnolo, 1997; Spagnolo, 2005). 

  It is clear as the variability of the possible formal nature of the environment space and framework setting in 

which it is possible to formalize the problem of the ISA study of the material implication may be supplied by 

the various suitable methods and tools of Linear and Nonlinear Optimization Theory, including Game 

Theory, Graph Theory, Operation Research, and so on. For instance, the ISA methods include the analyses of 

the so-called implicative and inclusive graph, in which it is necessary to choice a certain purposive winning  

strategy, hence involving the Game Theory context.  

 

7. ISA and Multivariate Statistics 
 

From what said in the previous section, it clearly emerges what important role might play the relationships 

between the ISA and the factorial statistical analysis in the multidimensional setting
11

 and from the 

geometrical perspective: just from this last point of view, the related geometrical tools are widely used in the 

ISA context (see (Spagnolo, 2005)), for instance in formal treating of the dynamical clouds of Diday, also 

using rational mechanics tools and methods from a statistical standpoint, in which, besides, it arise too 

                                                           
10

 Which can be also written as                               , where       is the composite probability of the 

two events   and    assumed to be independent each from the other, whereas               is the probability of  

counterexample occurrence.  
11

 Even if the ISA pattern works out into the inferential statistics context whereas the Factorial Analysis is into the 

realm of descriptive statistics. 



6 

 

further optimization problems, going back again to what said in the previous section. For instance, the 

analogical use of the main concepts and methods of rigid mechanics (like moments of inertia, principal axes 

of inertia, etc) have led both to the so-called principal component analysis (PCA) and to the factorial 

analysis of correspondences (FAC) (see (Spagnolo, 2005)): in both it is used well-precise data matrix 

distances of the related multidimensional data space (see (Fabbris, 1997)), as, for example, the χ
2
-distance. 

  Nevertheless, what does matter of consequences may lead the choice of another distance amongst the 

possible ones?  

 

8. ISA and Dynamical System Theory 

 

Another interesting point of the ISA pattern concerns some Information Theory questions just regarding the 

information content related to the material implication under examination and its counterexamples. To this 

purpose, Regis Gras uses a classical Claude Shannon entropy function (see (Gras, 2005)) for trying to 

measure such a counterexample information and the degree of incompatibility (or reciprocal disorder) 

between the two variables involved in such a material implication, hence, indirectly, their degree of 

cohesion.  

  Therefore, into the ISA pattern also enter basic questions concerning Dynamical System Theory and 

Ergodic Theory. 

 

9. Conclusions 

 

In short, into the ISA pattern are involved many and different powerful tools coherently used in a synergic 

manner to experimentally study a material implication of the type     when does not subsist the inclusion 

    but a partial form  of it, speaking therefore of a partial implication     statistically linked to the 

previous (exact) material one. 

 Thus, it is evident the great interest which may played the ISA pattern, with its wide application range. 
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