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This paper provides a probabilistic and statistical comparison of the log-GARCH and EGARCH models, which both rely on multiplicative volatility dynamics without positivity constraints. We compare the main probabilistic properties (strict stationarity, existence of moments, tails) of the EGARCH model, which are already known, with those of an asymmetric version of the log-GARCH. The quasi-maximum likelihood estimation of the log-GARCH parameters is shown to be strongly consistent and asymptotically normal. Similar estimation results are only available for the EGARCH(1,1) model, and under much stronger assumptions. The comparison is pursued via simulation experiments and estimation on real data.

Preliminaries

Since their introduction by [START_REF] Engle | Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation[END_REF] and [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF], GARCH models have attracted much attention and have been widely investigated in the literature. Many extensions have been suggested and, among them, the EGARCH (Exponential GARCH) introduced and studied by [START_REF] Nelson | Conditional heteroskedasticity in asset returns : a new approach[END_REF] is very popular. In this model, the log-volatility is expressed as a linear combination of its past values and past values of the positive and negative parts of the innovations. Two main reasons for the success of this formulation are that (i) it allows for asymmetries in volatility (the so-called leverage effect: negative shocks tend to have more impact on volatility than positive shocks of the same magnitude), and (ii) it does not impose any positivity restrictions on the volatility coefficients.

Another class of GARCH-type models, which received less attention, seems to share the same characteristics. The log-GARCH(p,q) model has been introduced, in slightly different forms, by [START_REF] Geweke | Modeling the persistence of conditional variances: a comment[END_REF], [START_REF] Pantula | Modeling the persistence of conditional variances: a comment[END_REF] and [START_REF] Milhøj | A multiplicative parameterization of ARCH Models[END_REF]. For more recent works on this class of models, the reader is referred to [START_REF] Sucarrat | The Power Log-GARCH Model[END_REF] and the references therein. The (asymmetric) log-GARCH(p, q) model takes the form

         t = σ t η t , log σ 2 t = ω + q i=1 α i+ 1 { t-i >0} + α i-1 { t-i <0} log 2 t-i + p j=1 β j log σ 2 t-j (1.1)
where σ t > 0 and (η t ) is a sequence of independent and identically distributed (iid) variables such that Eη 0 = 0 and Eη 2 0 = 1. The usual symmetric log-GARCH corresponds to the case α + = α -, with α + = (α 1+ , . . . , α q+ ) and α -= (α 1-, . . . , α q-).

Interesting features of the log-GARCH specification are the following.

(a) Absence of positivity constraints. An advantage of modeling the log-volatility rather than the volatility is that the vector θ = (ω, α + , α -, β) with β = (β 1 , . . . , β p ) is not a priori subject to positivity constraints1 . This property seems particularly appealing when exogenous variables are included in the volatility specification (see [START_REF] Sucarrat | Automated model selection in finance: general-tospecific modelling of the mean and volatility specifications[END_REF].

(b) Asymmetries. Except when α i+ = α i-for all i, positive and negative past values of t have different impact on the current log-volatility, hence on the current volatility. However, given that log 2 t-i can be positive or negative, the usual leverage effect does not have a simple characterization, like α i+ < α i-say. Other asymmetries could be introduced, for instance by replacing ω by q i=1 ω i+ 1 { t-i >0} + ω i-1 { t-i <0} . The model would thus be stable by scaling, which is not the case of Model (1.1) except in the symmetric case.

(c) The volatility is not bounded below. Contrary to standard GARCH models and most of their extensions, there is no minimum value for the volatility. The existence of such a bound can be problematic because, for instance in a GARCH(1,1), the minimum value is determined by the intercept ω. On the other hand, the unconditional variance is proportional to ω. Logvolatility models allow to disentangle these two properties (minimum value and expected value of the volatility).

(d) Small values can have persistent effects on volatility. In usual GARCH models, a large value (in modulus) of the volatility will be followed by other large values (through the coefficient β in the GARCH(1,1), with standard notation). A sudden rise of returns (in module) will also be followed by large volatility values if the coefficient α is not too small. We thus have persistence of large returns and volatility. But small returns (in module) and small volatilities are not persistent. In a period of large volatility, a sudden drop of the return due to a small innovation, will not much alter the subsequent volatilities (because β is close to 1 in general). By contrast, as will be illustrated in the sequel, the log-GARCH provides persistence of large and small values.

(e) Power-invariance of the volatility specification. An interesting potential property of time series models is their stability with respect to certain transformations of the observations. Contemporaneous aggregation and temporal aggregation of GARCH models have, in particular, been studied by several authors (see [START_REF] Drost | Temporal aggregation of GARCH processes[END_REF]). On the other hand, the choice of a power-transformation is an issue for the volatility specification. For instance, the volatility can be expressed in terms of past squared values (as in the usual GARCH) or in terms of past absolute values (as in the symmetric TGARCH) but such specifications are incompatible. On the contrary, any power transformation |σ t | s (for s = 0) of a log-GARCH volatility has a log-GARCH form (with the same coefficients in θ, except the intercept ω which is multiplied by s/2).

The log-GARCH model has apparent similarities with the EGARCH(p, ) model defined by

   t = σ t η t , log σ 2 t = ω + p j=1 β j log σ 2 t-j + k=1 γ k η t-k + δ k |η t-k |, (1.2)
under the same assumptions on the sequence (η t ) as in Model (1.1). These models have in common the above properties (a), (b), (c) and (e). Concerning the property in (d), and more generally the impact of shocks on the volatility dynamics, Figure 1 illustrates the differences between the two models (and also with the standard GARCH). The coefficients of the GARCH(1,1) and the symmetric EGARCH(1,1) and log-GARCH(1,1) models have been chosen to ensure the same longterm variances when the squared innovations are equal to 1. Starting from the same initial value σ 2 0 , we analyze the effect of successive shocks η t , t ≥ 1. The top-left graph shows that a sudden large shock, in the middle of the sample, has a (relatively) small impact on the log-GARCH, a large but transitory effect on the EGARCH, and a large and very persistent effect on the classical GARCH volatility. The top-right graph shows the effect of a sequence of tiny innovations, η t ≈ 0 for t ≤ 200: for the log-GARCH, contrary to the GARCH and EGARCH, the effect is persistent.

The bottom graph shows that even one tiny innovation causes this persistence of small volatilities for the log-GARCH, contrary to the EGARCH and GARCH volatilities.

This article provides a probability and statistical study of the log-GARCH, together with a comparison with the EGARCH. While the stationarity properties of the EGARCH are well-known, those of the asymmetric log-GARCH(p, q) model (1.1) have not yet been established, to our knowledge. As for the quasi-maximum likelihood estimator (QMLE), the consistency and asymptotic normality have only been proved in particular cases and under cumbersome assumptions for the EGARCH, but, except in the log-ARCH case by [START_REF] Kristensen | Asymptotics of the QMLE for non-linear ARCH models[END_REF], have not yet been established for the log-GARCH. Finally, it seems important to compare the two classes of models on typical financial series. The distinctive features of the two models may render one or the other formulation more adequate for certain types of series.

The remainder of the paper is organized as follows. Section 2 studies the existence of a solution to Model (1.1). Conditions for the existence of log-moments are derived, and we characterize the leverage effect. Section 3 is devoted to the tail properties of the solution. In Section 4, the strong consistency and the asymptotic normality of the QMLE are established under mild conditions. Section 6 presents some numerical applications on simulated and real data. Proofs are collected in Section 7. Section 8 concludes.

Stationarity, moments and asymmetries of the log-GARCH

We start by studying the existence of solutions to Model (1.1).

Strict stationarity

Let 0 k denote a k-dimensional vector of zeroes, and let I k denote the k-dimensional identity matrix.

Introducing the vectors

+ t,q = (1 { t>0} log 2 t , . . . , 1 { t-q+1 >0} log 2 t-q+1 ) ∈ R q , - t,q = (1 { t<0} log 2 t , . . . , 1 { t-q+1 <0} log 2 t-q+1 ) ∈ R q , z t = ( + t,q , - t,q , log σ 2 t , . . . , log σ 2 t-p+1 ) ∈ R 2q+p , b t = (ω + log η 2 t )1 {ηt>0} , 0 q-1 , (ω + log η 2 t )1 {ηt<0} , 0 q-1 , ω, 0 p-1 ∈ R 2q+p ,
and the matrix

C t =                1 {ηt>0} α + 1 {ηt>0} α - 1 {ηt>0} β I q-1 0 q-1 0 (q-1)×q 0 (q-1)×p 1 {ηt<0} α + 1 {ηt<0} α - 1 {ηt<0} β 0 (q-1)×q I q-1 0 q-1 0 (q-1)×p α + α - β 0 (p-1)×q 0 (p-1)×q I p-1 0 p-1                , (2.1)
we rewrite Model (1.1) in matrix form as

z t = C t z t-1 + b t . (2.2)
We have implicitly assumed p > 1 and q > 1 to write C t and b t , but obvious changes of notation can be employed when p ≤ 1 or q ≤ 1. Let γ(C) be the top Lyapunov exponent of the sequence

C = {C t , t ∈ Z}, γ(C) = lim t→∞ 1 t E (log C t C t-1 . . . C 1 ) = inf t≥1 1 t E(log C t C t-1 . . . C 1 ).
The choice of the norm is obviously unimportant for the value of the top Lyapunov exponent.

However, in the sequel, the matrix norm will be assumed to be multiplicative. Bougerol and Picard (1992a) showed that if an equation of the form (2.2) with iid coefficients

(C t , b t ) is irreducible 2
and if E log + C 0 and E log + b 0 are finite, γ(C) < 0 is the necessary and sufficient condition for the existence of a stationary solution to (2.2). Bougerol and Picard (1992b) showed that, for the univariate GARCH(p, q) model, there exists a representation of the form (2.2) with positive coefficients, and for which the necessary and sufficient condition for the existence of a stationary GARCH model is γ(C) < 0. The result can be extended to more general classes of GARCH models (see e.g. Francq and Zakoïan, 2010a). The problem is more delicate with the log-GARCH because the coefficients of (2.2) are not constrained to be positive. The following result and Remark 2.1 below show that γ(C) < 0 is only sufficient. The condition is however necessary under the mild additional assumption that (2.2) is irreducible.

Theorem 2.1. Assume that E log + | log η 2 0 | < ∞. A sufficient condition for the existence of a strictly stationary solution to the log-GARCH model (1.1) is γ(C) < 0. When γ(C) < 0 there exists only one stationary solution, which is non anticipative and ergodic.

Example 2.1 (The log-GARCH(1,1) case). In the case p = q = 1, omitting subscripts, we have

C t C t-1 . . . C 1 =      1 {ηt>0} 1 {ηt<0} 1      α + α -β t-1 i=1 α + 1 {η i >0} + α -1 {η i <0} + β . Assume that E log + | log η 2 0 | < ∞, which entails P (η 0 = 0) = 0. Thus, γ(C) = E log α + 1 {η 0 >0} + α -1 {η 0 <0} + β = log |β + α + | a |β + α -| 1-a ,
where a = P (η 0 > 0). The condition |α + + β| a |α -+ β| 1-a < 1 thus guarantees the existence of a stationary solution to the log-GARCH(1,1) model.

Example 2.2 (The symmetric case). In the case α + = α -= α, one can see directly from (1.1) that log σ 2 t satisfies an ARMA-type equation of the form

1 - r i=1 (α i + β i ) B i log σ 2 t = c + q i=1 α i B i v t
where B denotes the backshift operator, v t = log η 2 t , r = max {p, q}, α i = 0 for i > q and β i = 0 for i > p. This equation is a standard ARMA(r, q) equation under the moment condition E(log η 2 t ) 2 < ∞, but this assumption is not needed. It is well known that this equation admits a non degenerated and non anticipative stationary solution if and only if the roots of the AR polynomial lie outside the unit circle.

We now show that this condition is equivalent to the condition γ(C) < 0 in the case q = 1.

Let P be the permutation matrix obtained by permuting the first and second rows of I 2+p . Note

that C t = C + 1 {ηt>0} + C -1 {ηt<0} with C -= P C + . Since α + = α -, we have C + P = C + . Thus C + C -= C + P C + = C + C + and C t • • • C 1 = (C + ) t . It follows that γ(C) = log ρ(C + ).
In view of the companion form of C + , it can be seen that the condition ρ(

C + ) < 1 is equivalent to the condition z -r i=1 (α i + β i )z i = 0 ⇒ |z| > 1.
Remark 2.1 (The condition γ(C) < 0 is not necessary). Assume for instance that p = q = 1 and α + = α -= α. In that case γ(C) < 0 is equivalent to |α + β| < 1. In addition, assume that η 2 0 = 1 a.s. Then, when α + β = 1, there exists a stationary solution to (1.1) defined by

t = exp(c/2)η t , with c = ω/(1 -α -β).

Existence of log-moments

It is well known that for GARCH-type models, the strict stationarity condition entails the existence of a moment of order s > 0 for | t |. The following Lemma shows that this is also the case for | log 2 t | in the log-GARCH model, when the condition

E log + | log η 2 0 | < ∞ of Theorem 2.1 is slightly reinforced.
Proposition 2.1 (Existence of a fractional log-moment). Assume that γ(C) < 0 and that E| log η 2 0 | s 0 < ∞ for some s 0 > 0. Let t be the strict stationary solution of (1.1). There exists

s > 0 such that E| log 2 t | s < ∞ and E| log σ 2 t | s < ∞.
In order to give conditions for the existence of higher-order moments, we introduce some additional notation. Let e i be the i-th column of I r , let σ t,r = (log σ 2 t , . . . , log σ 2 t-r+1 ) , r = max {p, q}, and let the companion matrix

A t =   µ 1 (η t-1 ) . . . µ r-1 (η t-r+1 ) µ r (η t-r ) I r-1 0 r-1   , (2.3) 
where µ i (η t ) = α i+ 1 {ηt>0} + α i-1 {ηt<0} + β i with the convention α i+ = α i-= 0 for i > p and β i = 0

for i > q. We have the Markovian representation

σ t,r = A t σ t-1,r + u t , (2.4) 
where u t = u t e 1 , with

u t = ω + q i=1 α i+ 1 {η t-i >0} + α i-1 {η t-i <0} log η 2 t-i .
The sequence of matrices (A t ) is dependent, which makes (2.4) more difficult to handle than (2.2).

On the other hand, the size of the matrices A t is smaller than that of C t (r instead of 2q + p) and, as we will see, the log-moment conditions obtained with (2.4) can be sharper than with (2.2).

Before deriving such log-moment conditions, we need some additional notation. The Kronecker matrix product is denoted by ⊗, and the spectral radius of a square matrix M is denoted by ρ(M ).

Let M ⊗m = M ⊗ . . . ⊗ M . For any (random) vector or matrix M , let Abs(M ) be the matrix, of same size as M , whose elements are the absolute values of the corresponding elements of M . For any sequence of identically distributed random matrices matrices (M t ) and for any integer m, let

M (m) = E[{Abs(M 1 )} ⊗m ].
Proposition 2.2 (Existence of m-order log-moments). Let m be a positive integer. Assume that γ(C) < 0 and that E| log

η 2 0 | m < ∞. • If m = 1 or r = 1, then ρ(A (m) ) < 1 implies that the strict stationary solution of (1.1) is such that E| log 2 t | m < ∞ and E| log σ 2 t | m < ∞. • If ρ(C (m) ) < 1, then E| log 2 t | m < ∞ and E| log σ 2 t | m < ∞.
Note that the conditions ρ(A (m) ) < 1 and ρ(C (m) ) < 1 are similar to those obtained by [START_REF] Ling | Necessary and sufficient moment conditions for the GARCH(r, s) and asymmetric GARCH(r, s) models[END_REF] for the existence of moments of standard GARCH models.

Example 2.3 (Log-GARCH(1,1) continued). In the case p = q = 1, we have

A t = α + 1 {η t-1 >0} + α -1 {η t-1 <0} + β and A (m) = E (|A 1 |) m .
The conditions E| log η 2 0 | m < ∞ and, with a = P (η 0 > 0),

a |α + + β| m + (1 -a) |α -+ β| m < 1 thus entail E| log 2 t | m < ∞ for the log-GARCH(1,1) model. Note that the condition ρ(C (m) ) < 1 takes the (more binding) form a (|α + | + |β|) m + (1 -a) (|α -| + |β|) m < 1
Now we study the existence of any log-moment. Let A (∞) = ess sup Abs(A 1 ) be the essential supremum of Abs(A 1 ) term by term.

Proposition 2.3 (Existence of log-moments at any order). Suppose that γ(C) < 0 and

ρ(A (∞) ) < 1 or, equivalently, r i=1 |α i+ + β i | ∨ |α i-+ β i | < 1.
(2.5)

Then E| log 2 t | m < ∞ at any order m such that E| log η 2 0 | m < ∞.

Leverage effect

A well-known stylized fact of financial markets is that negative shocks on the returns impact future volatilities more importantly than positive shocks of the same magnitude. In the log-GARCH(1,1) model with α -> max{0, α + }, the usual leverage effect holds for large shocks (at least larger than 1) but is reversed for small ones. A measure of the average leverage effect can be defined through the covariance between η t-1 and the current log-volatility. We restrict our study to the case p = q = 1, omitting subscripts to simplify notation.

Proposition 2.4 (Leverage effect in the log-GARCH(1,1) model). Consider the log-

GARCH(1,1) model under the condition ρ(A (∞) ) < 1. Assume that the innovations η t are symmet- rically distributed, E[| log η 0 | 2 ] < ∞ and |β| + 1 2 (|α + | + |α -|) < 1. Then cov(η t-1 , log σ 2 t ) = 1 2 (α + -α -) E(|η 0 |)τ + E(|η 0 | log η 2 0 ) , (2.6) 
where

τ = E log σ 2 t = ω + 1 2 (α + -α -)E(log η 2 0 ) 1 -β -1 2 (α + + α -)
.

Thus, if the left hand side of (2.6) is negative the leverage effect is present: past negative innovations tend to increase the log-volatility, and hence the volatility, more than past positive innovations. However, the sign of the covariance is more complicated to determine than for other asymmetric models: it depends on all the GARCH coefficients, but also on the properties of the innovations distribution. Interestingly, the leverage effect may hold with α + > α -.

3 Tail properties of the log-GARCH

In this section, we investigate differences between the EGARCH and the log-GARCH in terms of tail properties.

Existence of moments

We start by characterizing the existence of moments for the log-GARCH. The following result is an extension of Theorem 1 in [START_REF] Bauwens | The moments of log-ACD models[END_REF], to the asymmetric case (see also Theorem 2 in [START_REF] He | Moment structure of a family of first-order exponential GARCH models[END_REF] for the symmetric case with p = q = 1).

Proposition 3.1 (Existence of moments). Assume that γ(C) < 0 and that ρ A (∞) < 1.

Letting λ = max 1≤i≤q {|α i+ | ∨ |α i-|} ≥0 (A (∞) ) < ∞, assume that for some s > 0 E exp s λ ∨ 1 | log η 2 0 | < ∞, (3.1)
then the solution of the log-GARCH(p,q) model satisfies E| 0 | 2s < ∞.

Remark 3.1. In the case p = q = 1, condition (3.1) has a simpler form:

E exp s |α 1+ | ∨ |α 1-| 1 -|α 1+ + β 1 | ∨ |α 1-+ β 1 | ∨ 1 | log η 2 0 | < ∞.
The following result provides a sufficient condition for the Cramer's type condition (3.1).

Proposition 3.2. If E(|η 0 | s ) < ∞ for some s > 0 and η 0 admits a density f around 0 such that

f (y -1 ) = o(|y| δ ) for δ < 1 when |y| → ∞ then E exp(s 1 | log η 2 0 |) < ∞ for some s 1 > 0.
In the case p = q = 1, a very simple moment condition is given by the following result.

Proposition 3.3 (Moment condition for the log-GARCH(1,1) model). Consider the log-

GARCH(1,1) model. Assume that E log + | log η 2 0 | < ∞ and E|η 0 | 2s < ∞ for s > 0. Assume β 1 + α 1+ ∈ (0, 1), β 1 + α 1-∈ (0, 1) and α 1+ ∧ α 1-> 0. Then σ 2 0 and 0 have finite moments of order s/(α 1+ ∨ α 1-) and 2s/(α 1+ ∨ α 1-∨ 1) respectively.
It can be noted that, for a given log-GARCH(1,1) process, moments may exist at an arbitrarily large order. In this respect, log-GARCH differ from standard GARCH and other GARCH specifications. In such models the region of the parameter space such that m-th order moment exist reduces to the empty set as m increases. For an explicit expression of the unconditional moments in the case of symmetric log-GARCH(p, q) models, we refer the reader to [START_REF] Bauwens | The moments of log-ACD models[END_REF].

Regular variation of the log-GARCH(1,1)

Under the assumptions of Proposition 2.4 we have an explicit expression of the stationary solution.

Thus it is possible to establish the regular variation properties of the log-GARCH model. Recall that L is a slowly varying function iff L(xy)/L(x) → 1 as x → ∞ for any y > 0. A random variable X is said to be regularly varying of index s > 0 if there exists a slowly varying function L and

τ ∈ [0, 1] such that P (X > x) ∼ τ x -s L(x) and P (X ≤ -x) ∼ (1 -τ )x -s L(x) x → +∞.
The following proposition asserts the regular variation properties of the stationary solution of the log-GARCH(1,1) model. 

model. Assume that E log + | log η 2 0 | < ∞ that η 0 is regularly varying with index 2s > 0. Assume β 1 + α 1+ ∈ (0, 1), β 1 + α 1-∈ (0, 1) and α 1+ ∧ α 1-> 0.
Then σ 2 0 and 0 are regularly varying with index s /(α 1+ ∨ α 1-) and 2s /(α 1+ ∨ α 1-∨ 1) respectively.

The square root of the volatility, σ 0 , thus have heavier tails than the innovations when

α 1+ ∨ α 1-> 1.
Similarly, in the EGARCH(1,1) model the observations can have a much heavier tail than the innovations. Moreover, when the innovations are light tailed distributed (for instance exponentially distributed), the EGARCH can exhibit regular variation properties. It is not the case for the log-GARCH(1,1) model.

In this context of heavy tail, a natural way to deal with the dependence structure is to study the multivariate regular variation of a trajectory. As the innovations are independent, the dependence structure can only come from the volatility process. However, it is also independent in the extremes.

The following is a straightforward application of Lemma 3.4 of [START_REF] Mikosch | Stochastic volatility models with possible extremal clustering[END_REF].

Proposition 3.5 (Multivariate regular variation of the log-GARCH(1,1) model). Assume the conditions of Proposition 3.4 satisfied. Then the sequence (σ 2 t ) is regularly varying with index s /(α 1+ ∨ α 1-). The limit measure of the vector Σ 2 d = (σ 2 1 , . . . , σ 2 d ) is given by the following limiting relation on the Borel σ-field of (R ∪ {+∞}) d /{0 d }

P (x -1 Σ 2 d ∈ •) P (σ 2 > x) → s α 1+ ∨ α 1- d i=1 ∞ 1 y -s /(α 1+ ∨α 1-)-1 1 {ye i ∈•} dy, x → ∞.
where e i is the i-th unit vector in R d and the convergence holds vaguely.

As for the innovations, the limiting measure above is concentrated on the axes. Thus it is also the case for the log-GARCH(1,1) process and its extremes values do not cluster. It is a drawback for modeling stock returns when clusters of volatilities are stylized facts. This lack of clustering is also observed for the EGARCH(1,1) model in [START_REF] Mikosch | Stochastic volatility models with possible extremal clustering[END_REF], in contrast with the GARCH(1,1) model, see [START_REF] Mikosch | Limit theory for the sample autocorrelations and extremes of a GARCH (1,1) process[END_REF].

Estimating the log-GARCH by QML

We now consider the statistical inference. Let 1 , . . . , n be observations of the stationary solution of (1.1), where θ is equal to an unknown value θ 0 belonging to some parameter space Θ ⊂ R d , with

d = 2q + p + 1. A QMLE of θ 0 is defined as any measurable solution θ n of θ n = arg min θ∈Θ Q n (θ), (4.1) with Q n (θ) = n -1 n t=r 0 +1 t (θ), t (θ) = 2 t σ 2 t (θ) + log σ 2 t (θ),
where r 0 is a fixed integer and log σ 2 t (θ) is recursively defined, for t = 1, 2, . . . , n, by

log σ 2 t (θ) = ω + q i=1 α i+ 1 { t-i >0} + α i-1 { t-i <0} log 2 t-i + p j=1 β j log σ 2 t-j (θ),
using positive initial values for 2 0 , . . . , 2 1-q , σ 2 0 (θ), . . . , , σ 2 1-p (θ).

Remark 4.1 (On the choice of the initial values). It will be shown in the sequel that the choice of r 0 and of the initial values is unimportant for the asymptotic behavior of the QMLE, provided r 0 is fixed and there exists a real random variable K independent of n such that

sup θ∈Θ log σ 2 t (θ) -log σ 2 t (θ) < K, a.s. for t = q -p + 1, . . . , q, (4.2) 
where σ 2 t (θ) is defined by (7.4) below. These conditions are supposed to hold in the sequel.

Remark 4.2 (The empirical treatment of null returns). Under the assumptions of Theorem 2.1, almost surely 2 t = 0. However, it may happen that some observations are equal to zero or are so close to zero that θ n cannot be computed (the computation of the log 2 t 's being required). To solve this potential problem, we imposed a lower bound for the | t |'s. We took the lower bound 10 -8 , which is well inferior to a beep point, and we checked that nothing was changed in the numerical illustrations presented here when this lower bound was multiplied or divided by a factor of 100.

We now need to introduce some notation. For any θ ∈ Θ, let the polynomials

A + θ (z) = q i=1 α i,+ z i , A - θ (z) = q i=1 α i,-z i and B θ (z) = 1 -p j=1 β j z j . By convention, A + θ (z) = 0 and A - θ (z) = 0 if q = 0, and B θ (z) = 1 if p = 0.
We also write C(θ 0 ) instead of C to emphasize that the unknown parameter is θ 0 . The following assumptions are used to show the strong consistency of the QMLE.

A1:

θ 0 ∈ Θ and Θ is compact.

A2: γ {C(θ 0 )} < 0 and ∀θ ∈ Θ, |B θ (z)| = 0 ⇒ |z| > 1.

A3:

The support of η 0 contains at least two positive values and two negative values, Eη 2 0 = 1 and E| log η 2 0 | s 0 < ∞ for some s 0 > 0.

A4:

If p > 0, A + θ 0 (z) and A - θ 0 (z) have no common root with B θ 0 (z). Moreover A + θ 0 (1)+A - θ 0 (1) = 0 and

|α 0q+ | + |α 0q+ | + |β 0p | = 0. A5: E log 2 t < ∞.
Assumptions A1, A2 and A4 are similar to those required for the consistency of the QMLE in standard GARCH models (see Berkes et al. 2003, Francq andZakoian, 2004). Assumption A3

precludes a mass at zero for the innovation, and, for identifiability reasons, imposes non degeneracy of the positive and negative parts of η 0 . Note that, for other GARCH-type models, the absence of a lower bound for the volatility can entail inconsistency of the (Q)MLE (see Francq and Zakoïan (2010b) for a study of a finite-order version of the LARCH(∞) model introduced by Robinson ( 1991)). This is not the case for the log-GARCH under A5. Note that this assumption can be replaced by the sufficient conditions given in Proposition 2.2 (see also Example 2.3). Let us now study the asymptotic normality of the QMLE. We need the classical additional assumption:

A6: θ 0 ∈ • Θ and κ 4 := E(η 4 0 ) < ∞.
Because the volatility σ 2 t is not bounded away from 0, we also need the following non classical assumption.

A7: There exists

s 1 > 0 such that E exp(s 1 | log η 2 0 |) < ∞, and ρ(A (∞) ) < 1.
The Cramer condition on | log η 2 0 | in A7 is verified if η t admits a density f around 0 that does not explode too fast (see Proposition 3.2).

Let ∇Q = (∇ 1 Q, . . . , ∇ d Q) and HQ = (H 1. Q , . . . , H d. Q ) be the vector and matrix of the first-order and second-order partial derivatives of a function Q : Θ → R. It is worth noting that for the general EGARCH model, no similar results, establishing the consistency and the asymptotic normality, exist. See however [START_REF] Wintenberger | Continuous invertibility and stable QML estimation of the EGARCH(1,1) model[END_REF] for the EGARCH(1,1).

The difficulty with the EGARCH is to invert the volatility, that is to write σ 2 t (θ) as a well-defined function of the past observables. In the log-GARCH model, invertibility reduces to the standard assumption on B θ given in A2.

Asymmetric log-ACD model for duration data

The dynamics of duration between stock price changes has attracted much attention in the econometrics literature. Engle and Russel (1997) proposed the Autoregressive Conditional Duration (ACD) model, which assumes that the duration between price changes has the dynamics of the square of a GARCH. Bauwens and[START_REF] Bauwens | The logarithmic ACD model: An application to the bidask quote process of three NYSE stocks[END_REF]2003) introduced logarithmic versions of the ACD, that do not constrain the sign of the coefficients (see also [START_REF] Bauwens | A comparison of financial duration models via density forecast[END_REF] and [START_REF] Allen | Finite sample properties of the QMLE for the log-ACD model: application to Australian stocks[END_REF]). The asymmetric ACD of [START_REF] Bauwens | Asymmetric ACD models: introducing price information in ACD models[END_REF] applies to pairs of observation (x i , y i ), where x i is the duration between two changes of the bid-ask quotes posted by a market maker and y i is a variable indicating the direction of change of the mid price defined as the average of the bid and ask prices (y i = 1 if the mid price increased over duration x i , and y i = -1 otherwise). The asymmetric log-ACD proposed by [START_REF] Bauwens | Asymmetric ACD models: introducing price information in ACD models[END_REF] can be written as

         x i = ψ i z i , log ψ i = ω + q k=1 α k+ 1 {y i-k =1} + α k-1 {y i-k =-1} log x i-k + p j=1 β j log ψ i-j , (5.1) 
where (z i ) is an iid sequence of positive variables with mean 1 (so that ψ i can be interpreted as the conditional mean of the duration x i ). Note that t := √ x t y t follows the log-GARCH model (1.1), with η t = √ z t y t . Consequently, the results of the present paper also apply to log-ACD models. In particular, the parameters of (5.1) can be estimated by fitting model (1.1) on t = √ x t y t .

6 Numerical Applications

An application to exchange rates

We consider returns series of the daily exchange rates of the American Dollar (USD), the Japanese Yen (JPY), the British Pound (BGP), the Swiss Franc (CHF) and Canadian Dollar (CAD) with respect to the Euro. The observations cover the period from January 5, 1999 to January 18, 2012, which corresponds to 3344 observations. The data were obtained from the web site http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html.

Table 1 displays the estimated log-GARCH(1,1) and EGARCH(1,1) models for each series. As in [START_REF] Wintenberger | Continuous invertibility and stable QML estimation of the EGARCH(1,1) model[END_REF], the optimization of the EGARCH(1,1) models has been performed under the constraints δ ≥ |γ| and

n t=1 log max β, 1 2 (γ t-1 + δ| t-1 |) exp - 1 2 α 1 -β -β < 0.
These constraints guarantee the invertibility of the model, which is essential to obtain a model that can be safely used for prediction (see [START_REF] Wintenberger | Continuous invertibility and stable QML estimation of the EGARCH(1,1) model[END_REF] for details). For all series, except the CHF, condition (2.5) ensuring the existence of any log-moment for the log-GARCH is satisfied. For all models, the persistence parameter β is very high. The last column shows that for the USD and the GBP, the log-GARCH has a higher (quasi) log-likelihood than the EGARCH. The converse is true for the three other assets. A study of the residuals, not reported here, is in accordance with the better fit of one particular model for each series. It is also interesting to see that the two models do not detect asymmetry for the same series. Moreover, models for which the symmetry assumption is rejected (EGARCH for the JPY and CHF, log-GARCH for the USD series) is also the preferred one in terms of log-likelihood. This study confirms that the models do not capture exactly the same empirical properties, and are thus not perfectly substitutable.

A Monte Carlo experiment

To evaluate the finite sample performance of the QML for the two models we made the following numerical experiments. We first simulated the log-GARCH(1,1) model, with n = 3344, η t ∼ N (0, 1), and a parameter close to those of Table 1, that is θ 0 = (0.024, 0.027, 0.016, 0.971). Notice that assumptions A1-A4 required for the consistency are clearly satisfied. Since

|β 0 | + 1 2 (|α 0+ | + |α 0-|) < 1, A5 is
also satisfied in view of Example 2.3. The assumptions A6-A7 required for the asymptotic normality are also satisfied, noting that |α 0+ + β 0 | ∨ |α 0-+ β 0 | < 1 and using Proposition 2.3. The Table 1: Log-GARCH(1,1) and EGARCH(1,1) models fitted by QMLE on daily returns of exchange rates. The estimated standard deviation are displayed into brackets. The 6th column gives the pvalues of the Wald test for symmetry (α + = α -for the log-GARCH and γ = 0 for the EGARCH), in bold face when the null hypothesis is rejected at level greater than 1%. The last column gives the log-likelihoods (up to a constant) for the two models with the largest in bold face. shows that the log-GARCH(1,1) is accurately estimated. Note that the estimated models satisfy also the assumptions A1-A7 used to show the consistency and asymptotic normality. We also estimated EGARCH(1,1) models on the same simulations. The results are presented in the second part of Table 2. Comparing the log-likelihood given in the last column of Table 2, one can see that, as expected, the likelihood of the log-GARCH model is greater than that of the (misspecified)

Log

EGARCH model, for all the simulations.

In a second time, we repeated the same experiments for simulations of an EGARCH(1,1) model of parameter (ω 0 , γ 0 , δ 0 , β 0 ) = (-0.204, -0.012, 0.227, 0.963). Table 3 is the analog of Table 2 for the simulations of this EGARCH model instead of the log-GARCH. The EGARCH are satisfactorily estimated, and, once again, the simulated model has a higher likelihood than the misspecified model.

From this simulation experiment, we draw the conclusion that it makes sense to select the model with the higher likelihood, as we did for the series of exchange rates. Since the random variable C 0 is bounded, we have E log + C 0 < ∞. The moment condition on η t entails that we also have E log + b 0 < ∞. When γ(C) < 0, Cauchy's root test shows that, almost surely (a.s.), the series

z t = b t + ∞ n=0 C t C t-1 • • • C t-n b t-n-1 (7.1)
converges absolutely for all t and satisfies (2.2). A strictly stationary solution to model (1.1) is then obtained as t = exp 1 2 z 2q+1,t η t , where z i,t denotes the i-th element of z t . This solution is non anticipative and ergodic, as a measurable function of {η u , u ≤ t}.

We now prove that (7.1) is the unique nonanticipative solution of (2.2) when γ(C) < 0. Let (z * t ) be a strictly stationary process satisfying

z * t = C t z * t-1 + b t . For all N ≥ 0, z * t = z t (N ) + C t . . . C t-N z * t-N -1 , z t (N ) = b t + N n=0 C t C t-1 • • • C t-n b t-n-1 .
We then have

z t -z * t ≤ ∞ n=N +1 C t C t-1 • • • C t-n b t-n-1 + C t . . . C t-N z * t-N -1 .
The first term in the right-hand side tends to 0 a.s. when N → ∞. The second term tends to 0 in probability because γ(C) < 0 entails that C t . . . C t-N → 0 a.s. and the distribution of z * t-N -1 is independent of N by stationarity. We have shown that z t -z * t → 0 in probability when N → ∞. This quantity being independent of N we have z t = z * t a.s. for any t. 2

Proof of Proposition 2.1

Let X be a random variable such that X > 0 a.s. and EX r < ∞ for some r > 0. If E log X < 0, then there exists s > 0 such that EX s < 1 (see e.g. Lemma 2.3 in [START_REF] Berkes | GARCH processes: structure and estimation[END_REF]. Noting that

E C t • • • C 1 ≤ (E C 1 ) t < ∞
for all t, the previous result shows that when

γ(C) < 0 we have E C k 0 • • • C 1 s < 1
for some s > 0 and some k 0 ≥ 1. One can always assume that s < 1. In view of (7.1), the c r -inequality and standard arguments (see e.g. Corollary 2.3 in Francq and Zakoïan, 2010a) entail that E z t s < ∞, provided E b t s < ∞, which holds true when s ≤ s 0 . The conclusion follows. 2

Proof of Proposition 2.2

By (2.4), componentwise we have

Abs(σ t,r ) ≤ Abs(u t ) + ∞ =0 A t, Abs(u t--1 ), A t, := j=0 Abs(A t-j ), (7.2) 
where each element of the series is defined a priori in [0, ∞]. In view of the form (2.3) of the matrices

A t , each element of A t, Abs(u t--1 ) = |u t--1 | j=0 Abs(A t-j )e 1 is a sum of products of the form |u t--1 | k j=0 |µ j (η t-i j )| with 0 ≤ k ≤ and 0 ≤ i 0 < • • • < i k ≤ + 1.
To give more detail, consider for instance the case r = 3. We then have

A t,1 Abs(u t-2 ) =      |µ 1 (η t-1 )||µ 1 (η t-2 )||u t-2 | + |µ 2 (η t-2 )||u t-2 | |µ 1 (η t-2 )||u t-2 | |u t-2 |      . Noting that |u t--1 | is a function of η t--2
and its past values, we obtain EA t,1 Abs(u t-2 ) = EAbs(A t )EAbs(A t-1 )EAbs(u t-2 ). More generally, it can be shown by induction on that the i-th element of the vector A t-1, -1 Abs(u t--1 ) is independent of the i-th element of the first row of Abs(A t ). It follows that EA t, Abs(u t--1 ) = EAbs(A t )EA t-1, -1 Abs(u t--1 ). The property extends to r = 3. Therefore, although the matrices involved in the product A t, Abs(u t--1 ) are not independent (in the case r > 1), we have

EA t, Abs(u t--1 ) = j=0 EAbs(A t-j )EAbs(u t--1 ) = A (1) +1
EAbs(u 1 ).

In view of (7.2), the condition ρ(A (1) ) < 1 then entails that EAbs(σ t,r ) is finite.

The case r = 1 is treated by noting that A t, Abs(u t--1 ) is a product of independent random variables.

To deal with the cases r = 1 and m = 1, we work with (2.2) instead of (2.4). This Markovian representation has an higher dimension but involves independent coefficients C t . Define C t, by replacing A t-j by C t-j in A t, . We then have

EC ⊗m t, Abs(b t--1 ) ⊗m = C (m) +1 EAbs(b 1 ) ⊗m . For all m ≥ 1, let M m = (E M m ) 1/m
where M is the sum of the absolute values of the elements of the matrix M . Using the elementary relations M N = M ⊗ N and E Abs(M ) = EAbs(M ) for any matrices M and N , the condition ρ(C (m) ) < 1 entails

E C t, Abs(b t--1 ) m = EC ⊗m t,
Abs(b t--1 ) ⊗m → 0 at the exponential rate as → ∞, and thus

Abs(z t ) m ≤ Abs(b t ) m + ∞ =0 C t, Abs(b t--1 ) m < ∞,
which allows to conclude. 2

Proof of Proposition 2.3

It follows from (7.2) that componentwise we have

Abs(σ t,r ) ≤ ∞ =0 (A (∞) ) Abs(u t-). (7.3)
Therefore, the condition ρ(A (∞) ) < 1 ensures the existence of E| log 2 t | m at any order m, provided γ(C) < 0 and E| log η 2 0 | m < ∞. Now in view of the companion form of the matrix A (∞) (see e.g. Corollary 2.2 in Francq and Zakoïan, 2010a), the equivalence in (2.5) holds. 2

Proof of Proposition 2.4

By the concavity of the logarithm function, the condition |α + + β||α -+ β| < 1 is satisfied. By Example 2.1 and the symmetry of the distribution of η 0 , the existence of a strictly stationary

solution ( t ) satisfying E| log 2 t | < ∞ is thus guaranteed. Let a t = (α + 1 {ηt>0} + α -1 {ηt<0} )η t , b t = (α + 1 {ηt>0} + α -1 {ηt<0} )η t log η 2 t .
We have Ea t = (α + -α -)E(η 0 1 {η 0 >0} ) and Eb t = (α + -α -)E(η 0 log η 2 0 1 {η 0 >0} ), using the symmetry assumption for the second equality. Thus

cov(η t-1 , log(σ 2 t )) = E[a t-1 log(σ 2 t-1 ) + b t-1 ],
and the conclusion follows. 2

Proof of Proposition 3.1

By definition, | log(σ 2 t )| ≤ σ t,r = Abs(σ t,r ) . Then, we have

E|σ 2 t | s ≤ E {exp(s Abs(σ t,r ) )} = ∞ k=0 s k Abs(σ t,r ) k k k! ≤ ∞ k=0 s k Abs(u 0 ) k k ∞ =0 (A (∞) ) k k! = E exp s Abs(u 0 ) ∞ =0 (A (∞) ) ,
where the last inequality comes from (7.3). By definition u 0 = (u 0 , 0 r-1 ) with

u 0 = ω + q i=1 (α i+ 1 η -i >0 + α i-1 η -i <0 ) log η 2 -i . Thus Abs(u 0 ) ≤ |u 0 | ≤ |ω| + max 1≤i≤q |α i+ | ∨ |α i-| q j=1 | log η 2 -j | and it follows that E|σ 2 t | s ≤ exp s|ω| ∞ =0 (A (∞) ) E exp sλ| log η 2 0 | q < ∞ under (3.1). 2 
7.7 Proof of Proposition 3.2

Without loss of generality assume that f exists on [-1, 1]. Then there exists M > 0 such that f (1/y) ≤ M |y| δ for all y ≥ 1 and we obtain

E exp(s 1 | log η 2 0 |) ≤ |x|<1 exp(2s 1 log(1/x))f (x)dx + exp(s 1 log(x 2 ))dP η (x) ≤ 2M ∞ 1 y 2(s 1 -1)+δ dy + E(|η 0 | 2s 1 ).
The upper bound is finite for sufficiently small s 1 and the result is proved. 2

7.8 Proof of Proposition 3.3

We will use Tweedie's (1988) criterion, which we recall for the reader's convenience. Let (X t ) denote a temporally homogeneous Markov chain on a state space E, endowed with a σ-field F.

Lemma 7.1 (adapted from Tweedie (1988), Theorem 1). Suppose µ is a subinvariant measure, that is,

µ(B) ≥ E µ(dy)P (y, B), ∀B ∈ F
and A ∈ F is such that 0 < µ(A) < ∞. Suppose there exist a nonnegative measurable function V on E, and constants K > 0 and c ∈ (0, 1)

such that i) E[V (X t ) | X t-1 = x] ≤ K, x ∈ A, ii) E[V (X t ) | X t-1 = x] ≤ (1 -c)V (x), x ∈ A c .
Then, µ is a finite invariant measure for the chain (X t ) and E V dµ < ∞.

It should be noted that this criterion does not make any irreducibility assumption. We have

u t = ω + (α 1+ 1 {η t-1 >0} + α 1-1 {η t-1 <0} ) log(η 2 t-1
), and

σ 2 t = e ut σ 2(β+α 1+ ) t-1 1 η t-1 >0 + σ 2(β+α 1-) t-1 1 η t-1 <0 ,
which shows that (σ 2 t ) is a temporally homogeneous Markov chain on R + * . By Example 2.1, the conditions ensuring the existence of a strictly stationary solution are satisfied. The stationary distribution thus defines an invariant probability µ for the Markov chain (σ 2 t ). Let A = [0, K] for some K > 0 such that µ(A) > 0.

The existence of a s-order moment for η 2 0 entails that e u 1 admits a moment of order s 0 := s/(α 1+ ∨ α 1-). Let V (x) = 1 + x s 0 for x > 0. For any x > 0 and for 0 < c < 1, we have for x ∈ A c with K sufficiently large,

E[V (σ 2 t ) | σ 2 t-1 = x] = 1 + x (β 1 +α 1+ )s 0 E[e s 0 u 1 1 η 0 >0 ] + x (β 1 +α 1-)s 0 E[e s 0 u 1 1 η 0 <0 ] ≤ (1 -c)V (x), because β 1 + α 1+ < 1 and β 1 + α 1-< 1. On the other hand it is clear that E[V (σ 2 t ) | σ 2 t-1 =
x] is bounded for x belonging to A. It follows by the above lemma that E µ [V (σ 2 t )] < ∞ where the expectation is computed with the stationary distribution. 2

7.9 Proof of Proposition 3.4

To prove the first assertion, note that if η 0 is regularly varying of index 2s then η 2 0 is regularly varying of index s . Thus

u 1 = ω + (α 1+ 1 {η 0 >0} + α 1-1 {η 0 <0} ) log(η 2 0 ) is such that P (e u 1 > x) = P (η 0 > 0)P (η 2 0 ) α 1+ > xe -ω | η 0 > 0 +P (η 0 < 0)P (η 2 0 ) α 1-> xe -ω | η 0 < 0 .
Then e u 1 is also regularly varying with index s 0 := s/(α 1+ ∨ α 1-). Note that

P (σ 2 1 ≥ x) = P (η 0 > 0)P e u 1 σ 2(β+α 1+ ) 0 ≥ x | η 0 > 0 +P (η 0 < 0)P e u 1 σ 2(β+α 1-) 0 ≥ x | η 0 < 0 .
As e u 1 admits regular variation of order s 0 , it admits a moment of order s 0 (β +α 1+ ) < s 0 . Note that E|η 0 | 2s < ∞ for any s < s . An application of Proposition 3.3 thus gives E σ 2(β+α 1+ )(s 0 +ι) 0 < ∞ for ι > 0 small enough. By independence between u 1 and σ 2 0 conditionally on η 0 > 0, we may apply a result by [START_REF] Breiman | On some limit theorems similar to the arc-sin law[END_REF] to conclude that

P e u 1 σ 2(β+α 1+ ) 0 ≥ x | η 0 > 0 ∼ E σ 2(β+α 1+ )s 0 0 P (e u 1 > x | η 0 > 0),
as x → ∞. Applying the same arguments to P e u 1 σ 2(β+α 1-) 0

≥ x | η 0 < 0 we obtain

P (σ 2 1 ≥ x) ∼ P (η 0 > 0)E σ 2(β+α 1+ )s 0 0 P (e u 1 > x | η 0 > 0) +P (η 0 < 0)E σ 2(β+α 1-)s 0 0 P (e u 1 > x | η 0 < 0)
and the first assertion follows. The second assertion follows easily by independence of η 0 and σ 0 , with respective regularly variation indexes s and s 0 . 2 7.10 Proof of Theorem 4.1

We will use the following standard result (see e.g. Exercise 2.11 in Francq and Zakoian, 2010a).

Lemma 7.2. Let (X n ) be a sequence of random variables. If sup n E|X n | < ∞, then almost surely n -1 X n → 0 as n → ∞. The almost sure convergence may fail when

sup n E|X n | = ∞. If the sequence (X n ) is bounded in probability, then n -1 X n → 0 in probability.
Turning to the proof of Theorem 4.1, first note that A2, A3 and Proposition 2.1 ensure the a.s.

absolute convergence of the series

log σ 2 t (θ) := B -1 θ (B) ω + q i=1 α i+ 1 { t-i >0} + α i-1 { t-i <0} log 2 t-i . (7.4) Let Q n (θ) = n -1 n t=r 0 +1 t (θ), t (θ) = 2 t σ 2 t (θ)
+ log σ 2 t (θ).

(7.5)

Using standard arguments, as in the proof of Theorem 2.1 in Francq and Zakoian (2004) (hereafter FZ), the consistency is obtained by showing the following intermediate results

i) lim n→∞ sup θ∈Θ |Q n (θ) -Q n (θ)| = 0 a.s.; ii) if σ 2 1 (θ) = σ 2 1 (θ 0 ) a.s. then θ = θ 0 ; iii) if θ = θ 0 , E t (θ) > E t (θ 0 ); iv) any θ = θ 0 has a neighborhood V (θ) such that lim inf n→∞ inf θ * ∈V (θ) Q n (θ * ) > E t (θ 0 ) a.s.
Because of the multiplicative form of the volatility, the step i) is more delicate than in the standard GARCH case. In the case p = q = 1, we have

log σ 2 t (θ) -log σ 2 t (θ) = β t-1 log σ 2 1 (θ) -log σ 2 1 (θ) , ∀t ≥ 1.
In the general case, as in FZ, using (4.2) one can show that for almost all trajectories,

sup θ∈Θ log σ 2 t (θ) -log σ 2 t (θ) ≤ Kρ t , (7.6) 
where ρ ∈ (0, 1) and K > 0. First, we complete the proof of i) in the case p = q = 1 and α + = α -, for which the notation is more explicit. In view of the multiplicative form of the volatility

σ 2 t (θ) = e β t-1 log σ 2 1 (θ) t-2 i=0 e β i {ω+α log 2 t-1-i } , (7.7)
we have

1 t log 1 σ 2 t (θ) - 1 σ 2 t (θ) = -1 t t-2 i=0 β i ω + α log 2 t-1-i + 1 t log e -β t-1 log σ 2 1 (θ) -e -β t-1 log σ 2 1 (θ) .
Applying Lemma 7.2, the first term of the right-hand side of the equality tends almost surely to zero because it is bounded by a variable of the form

|X t |/t, with E|X t | < ∞, under A5. The second term is equal to 1 t log log σ 2 1 (θ) -log σ 2 1 (θ) β t-1 e -β t-1 x * ,
where x * is between log σ 2 1 (θ) and log σ 2 1 (θ). This second term thus tends to log |β| < 0 when t → ∞. It follows that (7.8) where K and ρ are as in (7.6). Now consider the general case. Iterating (1.1), using the compactness of Θ and the second part of A2, we have

sup θ∈Θ 1 σ 2 t (θ) - 1 σ 2 t (θ) ≤ Kρ t ,
log σ 2 t (θ) = t-1 i=1 c i (θ) + c i+ (θ)1 { t-i >0} log 2 t-i + c i-(θ)1 { t-i <0} log 2 t-i + p j=1 c t,j (θ) log σ 2 q+1-j (θ) with sup θ∈Θ max{|c i (θ)|, |c i+ (θ)|, |c i-(θ)|, |c i,1 (θ)|, . . . , |c i,p (θ)|} ≤ Kρ i , ρ ∈ (0, 1). (7.9)
We then obtain a multiplicative form for σ 2 t (θ) which generalizes (7.7), and deduce that

1 t log 1 σ 2 t (θ) - 1 σ 2 t (θ) = a 1 + a 2 ,
where

a 1 = -1 t t-1 i=1 c i (θ) + c i+ (θ)1 { t-i >0} log 2 t-i + c i-(θ)1 { t-i <0} log 2 t-i → 0 a.s.
in view of (7.9) and Lemma 7.2, and for x * j 's between log σ 2 q+1-j (θ) and log σ 2 q+1-j (θ),

a 2 = 1 t log exp    - p j=1 c t,j (θ) log σ 2 q+1-j (θ)    -exp    - p j=1 c t,j (θ) log σ 2 q+1-j (θ)    = 1 t log - p j=1 c t,j (θ) log σ 2 q+1-j (θ) -log σ 2 q+1-j (θ) exp - p k=1 c t,k (θ) log x * k = 1 t log - p j=1 c t,j (θ) + o(1) a.s.
using (4.2) and (7.9). Using again (4.2), it follows that lim sup n→∞ a 2 ≤ log ρ < 0. We conclude that (7.8) holds true in the general case. The proof of i) then follows from (7.6)-(7.8), as in FZ.

To show ii), note that we have

B θ (B) log σ 2 t (θ) = ω + A + θ (B)1 { t>0} log 2 t + A - θ (B)1 { t<0} log 2 t . (7.10) If log σ 2 1 (θ) = log σ 2 1 (θ 0 ) a.s.
, by stationarity we have log σ 2 t (θ) = log σ 2 t (θ 0 ) for all t, and thus we have almost surely

A + θ (B) B θ (B) - A + θ 0 (B) B θ 0 (B) 1 { t>0} log 2 t + A - θ (B) B θ (B) - A - θ 0 (B) B θ 0 (B) 1 { t<0} log 2 t = ω 0 B θ 0 (1) - ω B θ (1)
.

Denote by R t any random variable which is measurable with respect to σ ({η u , u ≤ t}). If

A + θ (B) B θ (B) = A + θ 0 (B) B θ 0 (B) or A - θ (B) B θ (B) = A - θ 0 (B) B θ 0 (B) , (7.11) there exists a non null (c + , c -) ∈ R 2 , such that c + 1 {ηt>0} log 2 t + c -1 {ηt<0} log 2 t + R t-1 = 0 a.s.
This is equivalent to the two equations

c + log η 2 t + c + log σ 2 t + R t-1 1 {ηt>0} = 0 and c -log η 2 t + c -log σ 2 t + R t-1 1 {ηt<0} = 0.
Note that if an equation of the form a log x 2 1 {x>0} + b1 {x>0} = 0 admits two positive solutions then a = 0. This result, A3, and the independence between η t and (σ 2 t , R t-1 ) imply that c + = 0. Similarly we obtain c -= 0, which leads to a contradiction. We conclude that (7.11) cannot hold true, and the conclusion follows from A4.

Since σ 2 t (θ) is not bounded away from zero, the beginning of the proof of iii) slightly differs from that given by FZ in the standard GARCH case. In view of (7.10), the second part of A2 and A5 entail that E| log σ 2 t (θ)| < ∞ for all θ ∈ Θ. It follows that E - t (θ) < ∞ and E| t (θ 0 )| < ∞. The rest of the proof of iii), as well as that of iv), are identical to those given in FZ. 2

7.11 Proof of Theorem 4.2 A Taylor expansion gives

∇ i Q n ( θ n ) -∇ i Q n (θ 0 ) = H i. Q n ( θ n,i )( θ n -θ 0 ) for all 1 ≤ i ≤ d,
where the θ n,i 's are such that θ n,i -θ 0 ≤ θ n -θ 0 . As in Section 5 of [START_REF] Bardet | Asymptotic normality of the Quasi Maximum Likelihood estimator for multidimensional causal processes[END_REF], the asymptotic normality is obtained by showing:

1. n 1/2 ∇Q n (θ 0 ) → N (0, (κ 4 -1)J),

2. HQ n ( θ n ) -J converges a.s. to 0 for any sequence ( θ n ) converging a.s. to θ 0 and J is invertible,

3. n 1/2 ∇ Q n ( θ n ) -∇Q n ( θ n ) converges a.s. to 0.
1)E(∇ log σ 2 t (θ 0 )∇ log σ 2 t (θ 0 ) ) exists. For any θ ∈

• Θ, the random vector ∇ log σ 2 t (θ) is the stationary solution of the equation

∇ log σ 2 t (θ) = p j=1 β j ∇ log σ 2 t-j (θ) +         1 + t-1,q - t-1,q σ 2 t-1,p (θ)         , (7.12)
where σ 2 t,p (θ) = (log σ 2 t (θ), . . . , log σ 2 t-p+1 (θ)) . Assumption A2 entails that ∇ log σ 2 t (θ) is a linear combination of + t-i,q , - t-i,q and log σ 2 t-i (θ) for i ≥ 1. Lemma 7.3 ensures that, for any m > 0, there exists a neighborhood

V of θ 0 such that E[sup V | log σ 2 t-i (θ)| m ] < ∞.
By Proposition 2.3, + t-i,q and - t-i,q admit moments of any order. Thus, for any m > 0 there exists V such that E[sup V ∇ log σ 2 t (θ) m ] < ∞. In particular, ∇ log σ 2 t (θ 0 ) admits moments of any order. Thus point 1. is proved. Turning to point 2., we have

HQ n (θ) = n -1 n t=r 0 +1 H t (θ),
where

H t (θ) = 1 - η 2 t σ 2 t (θ 0 ) σ 2 t (θ)
H log σ 2 t (θ) +

η 2 t σ 2 t (θ 0 ) σ 2 t (θ)
∇ log σ 2 t (θ)∇ log σ 2 t (θ) . (7.13) By Lemma 7.3, the term σ 2 t (θ 0 )/σ 2 t (θ) admits moments of order as large as we need uniformly on a well chosen neighborhood V of θ 0 . Let us prove that it is also the case for H log σ 2 t (θ). Computation gives H log σ 2 t (θ) = From this relation and A2 we obtain

H log σ 2 t (θ) =   0 (2q+1)×d B θ (B) -1 ∇ σ 2 t-1,p (θ)   +   0 (2q+1)×d B θ (B) -1 ∇ σ 2 t-1,p (θ)   .
Thus H log σ 2 t (θ) belongs to C(V) and is integrable because we can always choose V such that sup V ∇ σ 2 t-1,p (θ) ∈ L m (see the proof of point 1. above). An application of the Cauchy-Schwarz inequality in the RHS term of (7.13) yields the integrability of sup V H t (θ). The first assertion of point 2. is proved by an application of the ergodic theorem on (H t (θ)) in the Banach space C(V) equipped with the supremum norm: From (7.12) and an equivalent representation for ∇ log σ 2 t (θ), we have d t,j (θ)∇ log σ 2 p+1-j (θ).

∇
The sequences of functions (d i ), (d i,j ), 1 ≤ j ≤ p, satisfy the same uniform rate of convergence as the functions c i , c i+ , c 1-and c i,j in (7.9). An application of (7.6) yields the existence of K > 0 and ρ ∈ (0, 1) such that sup Θ ∇ log σ 2 t (θ) -∇ log σ 2 t (θ) ≤ Kρ t , for almost all trajectories. Point 3. easily follows and the asymptotic normality is proved. 2

Conclusion

In this paper, we investigated the probabilistic properties of the log-GARCH(p, q) model. We found sufficient conditions for the existence of moments and log-moments of the strictly stationary solutions. We analyzed the dependence structure through the leverage effect and the regular variation properties, and we compared this structure with that of the EGARCH model.

As far as the estimation is concerned, it should be emphasized that the log-GARCH model appears to be much more tractable than the EGARCH. Indeed, we established the strong consistency and the asymptotic normality of the QMLE under mild assumptions. For EGARCH models, such 29 properties have only been established for the first-order model and with strong invertibility constraints (see [START_REF] Wintenberger | Continuous invertibility and stable QML estimation of the EGARCH(1,1) model[END_REF]. By comparison with standard GARCH, the log-GARCH model is not more difficult to handle: on the one hand, the fact that the volatility is not bounded below requires an additional log-moment assumption, but on the other hand the parameters are nor positively constrained.

A natural extension of this work, aiming at pursuing the comparison between the two classes of models, would rely on statistical tests. By embedding the log-GARCH model in a more general framework including the log-GARCH, it should be possible to consider a LM test of the log-GARCH null assumption. Another problem of interest would be to check validity of the estimated models.

We leave these issues for further investigation, viewing the results of this paper as a first step in these directions. 

  Proposition 3.4 (Regular variation of the log-GARCH(1,1) model). Consider the log-GARCH(1,1)

Theorem 4. 1 (

 1 Strong consistency of the QMLE). Let ( θ n ) be a sequence of QMLE satisfying (4.1), where the t 's follow the asymmetric log-GARCH model of parameter θ 0 . Under the assumptions (4.2) and A1-A5, almost surely θ n → θ 0 as n → ∞.

  Theorem 4.2 (Asymptotic normality of the QMLE). Under the assumptions of Theorem 4.1 and A6-A7, we have√ n( θ n -θ 0 ) d → N (0, (κ 4 -1)J -1 ) as n → ∞, where J = E[∇ log σ 2 t (θ 0 )∇ log σ 2 t (θ 0 )] is a positive definite matrix and d → denotes convergence in distribution.

  sup V HQ n (θ) -E[H 0 (θ)] → 0 a.s.An application of Theorem 4.1 ensures that θn belongs a.s. to V for sufficiently large n. ThusHQ n ( θn ) -E[H 0 (θ 0 )] ≤ sup V HQ n (θ) -E[H 0 (θ)] + E[H 0 ( θn )] -E[H 0 (θ 0 )]converges a.s. to 0 by continuity of θ → E[H 0 (θ)] at θ 0 as a consequence of a dominating argument on V. The first assertion of point 2. is proved. The invertibility of matrix J follows from arguments used in the proof of Theorem 4.1, ii).

Figure 1 :

 1 Figure 1: Curves of the impact of shocks on volatility. 33

Table 2 :

 2 1) and EGARCH(1,1) models fitted on 5 simulations of a log-GARCH(1,1) model. The estimated standard deviation are displayed into brackets. The larger log-likelihood is displayed in bold face.

	Log-GARCH				
	Iter	ω	α +	α -	β	Log-Lik.
	1	0.025 (0.004) 0.028 (0.004) 0.018 (0.004) 0.968 (0.005) -0.415
	2	0.021 (0.003) 0.023 (0.003) 0.013 (0.003) 0.976 (0.004) -0.634
	3	0.026 (0.003) 0.028 (0.004) 0.017 (0.003) 0.969 (0.004) -0.754
	4	0.022 (0.003) 0.024 (0.004) 0.018 (0.003) 0.972 (0.004) -0.389
	5	0.024 (0.003) 0.028 (0.004) 0.014 (0.003) 0.974 (0.003) -0.822
	EGARCH				
	Iter	ω	γ	δ	β	Log-Lik.
	1	-0.095 (0.016) -0.014 (0.009) 0.104 (0.017) 0.976 (0.006)	-0.424
	2	-0.127 (0.018) 0.009 (0.010) 0.148 (0.021) 0.976 (0.007)	-0.645
	3	-0.147 (0.018) 0.001 (0.010) 0.177 (0.022) 0.971 (0.007)	-0.770
	4	-0.136 (0.019) -0.012 (0.010) 0.155 (0.022) 0.976 (0.007)	-0.404
	5	-0.146 (0.019) -0.009 (0.010) 0.177 (0.023) 0.971 (0.007)	-0.842

Table 3 :

 3 As Table2, but for 5 simulations of an EGARCH(1,1) model.

	Log-GARCH				
	Iter	ω	α +	α -	β	Log-Lik.
	1	0.039 (0.008) 0.071 (0.008) 0.052 (0.007) 0.874 (0.015)	-0.350
	2	0.055 (0.006) 0.058 (0.007) 0.052 (0.006) 0.913 (0.010)	-0.476
	3	0.052 (0.008) 0.070 (0.008) 0.060 (0.007) 0.873 (0.015)	-0.468
	4	0.051 (0.008) 0.076 (0.008) 0.056 (0.007) 0.878 (0.014)	-0.416
	5	0.056 (0.007) 0.061 (0.007) 0.060 (0.007) 0.896 (0.012)	-0.517
	EGARCH				
	Iter	ω	γ	δ	β	Log-Lik.
	1	-0.220 (0.022) -0.024 (0.013) 0.235 (0.023) 0.950 (0.010) -0.335
	2	-0.196 (0.020) -0.029 (0.012) 0.219 (0.022) 0.961 (0.008) -0.468
	3	-0.222 (0.022) -0.005 (0.013) 0.241 (0.024) 0.947 (0.010) -0.448
	4	-0.227 (0.022) -0.025 (0.012) 0.248 (0.023) 0.950 (0.010) -0.402
	5	-0.209 (0.021) -0.003 (0.012) 0.234 (0.023) 0.955 (0.009) -0.504

  log σ 2 t (θ) -∇ log σ 2 t (θ) = is defined as σ 2 t,p . Thus, there exist continuous functions d i and d t,i defined on Θ such that∇ log σ 2 t (θ) -∇ log σ 2 t (θ) =

	p			
		β j (∇ log σ 2 t-j (θ) -∇ log σ 2 t-j (θ))
	j=1		
	+	 	0 2q+1 t-1,p (θ) -σ 2 σ 2 t-1,p (θ)	 
	where σ 2 t,p t-1		
			d	
	i=1		

i (θ)(log σ 2 t-i (θ) -log σ 2 t-i (θ)) + p j=1

However, some desirable properties may determine the sign of coefficients. For instance, the present volatility is generally thought of as an increasing function of its past values, which entails βj > 0. The difference with standard GARCH models is that such constraints are not required for the existence of the process and, thus, do not complicate estimation procedures.

See their Definition 2.3.

In order to prove the points 1-3 we will use the following Lemma Lemma 7.3. Under the assumptions of Theorem 4.1 and A7, for any m > 0 there exists a neighborhood

Proof. We have

Under A2, we then have

Under A7 the assumptions of Proposition 3.1 hold. From the proof of that proposition, we thus have that E exp(δ Abs(σ t,r ) ) is finite for some δ > 0.

Now, note that V θ , A + θ (1) and A + θ (1) are continuous functions of θ. Choosing a sufficiently small neighborhood V of θ 0 , one can make sup

) )] are finite for an appropriate choice of V depending on m. We conclude that E exp m sup V log σ 2 t (θ 0 )/σ 2 t (θ) < ∞ and the first assertion of the lemma is proved.

Consider now the second assertion. We have

We have already shown that the second term admits a finite moment of order m. So does the first term, under A7, by Proposition 2.3. Now let us prove the point 1. In view of (7.5) we have

Because η t and log σ 2 t (θ 0 ) are independent, and since Eη 2 t = 1, the Central Limit Theorem for martingale differences applies (see [START_REF] Billingsley | The Lindeberg-Levy theorem for martingales[END_REF]) whenever Q = (κ 4 -