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GARCH models without positivity constraints: Exponential or

Log GARCH?
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Abstract

This paper provides a probabilistic and statistical comparison of the log-GARCH and

EGARCH models, which both rely on multiplicative volatility dynamics without positivity con-

straints. We compare the main probabilistic properties (strict stationarity, existence of moments,

tails) of the EGARCH model, which are already known, with those of an asymmetric version

of the log-GARCH. The quasi-maximum likelihood estimation of the log-GARCH parameters

is shown to be strongly consistent and asymptotically normal. Similar estimation results are

only available for particular EGARCH models, and under much stronger assumptions. The

comparison is pursued via simulation experiments and estimation on real data.
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1 Preliminaries

Since their introduction by Engle (1982) and Bollerslev (1986), GARCH models have attracted much

attention and have been widely investigated in the literature. Many extensions have been suggested

and, among them, the EGARCH (Exponential GARCH) introduced and studied by Nelson (1991)

is very popular. In this model, the log-volatility is expressed as a linear combination of its past

values and past values of the positive and negative parts of the innovations. Two main reasons

for the success of this formulation are that (i) it allows for asymmetries in volatility (the so-called

leverage effect: negative shocks tend to have more impact on volatility than positive shocks of the

same magnitude), and (ii) it does not impose any positivity restrictions on the volatility coefficients.

Another class of GARCH-type models, which received less attention, seems to share the same

characteristics. The log-GARCH(p,q) model has been introduced, in slightly different forms, by

Geweke (1986), Pantula (1986) and Milhøj (1987). For more recent works on this class of models,

the reader is referred to Sucarrat and Escribano (2010) and the references therein. The (asymmetric)

log-GARCH(p, q) model takes the form





ǫt = σtηt,

log σ2t = ω +
∑q

i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i

+
∑p

j=1 βj log σ
2
t−j

(1.1)

where σt > 0 and (ηt) is a sequence of independent and identically distributed (iid) variables such

that Eη0 = 0 and Eη20 = 1. The usual symmetric log-GARCH corresponds to the case α+ = α−,

with α+ = (α1+, . . . , αq+) and α− = (α1−, . . . , αq−).

Interesting features of the log-GARCH specification are the following.

(a) Absence of positivity constraints. An advantage of modeling the log-volatility rather

than the volatility is that the vector θ = (ω,α+,α−,β) with β = (β1, . . . , βp) is not a priori subject

to positivity constraints1. This property seems particularly appealing when exogenous variables are

included in the volatility specification (see Sucarrat and Escribano, 2012).

(b) Asymmetries. Except when αi+ = αi− for all i, positive and negative past values of

ǫt have different impact on the current log-volatility, hence on the current volatility. However,

given that log ǫ2t−i can be positive or negative, the usual leverage effect does not have a simple

1However, some desirable properties may determine the sign of coefficients. For instance, the present volatility is

generally thought of as an increasing function of its past values, which entails βj > 0. The difference with standard

GARCH models is that such constraints are not required for the existence of the process and, thus, do not complicate

estimation procedures.
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characterization, like αi+ < αi− say. Other asymmetries could be introduced, for instance by

replacing ω by
∑q

i=1 αi+1{ǫt−i>0}+αi−1{ǫt−i<0}. The model would thus be stable by scaling, which

is not the case of Model (1.1) except in the symmetric case.

(c) The volatility is not bounded below. Contrary to standard GARCH models and most

of their extensions, there is no minimum value for the volatility. The existence of such a bound

can be problematic because, for instance in a GARCH(1,1), the minimum value is determined

by the intercept ω. On the other hand, the unconditional variance is proportional to ω. Log-

volatility models allow to disentangle these two properties (minimum value and expected value of

the volatility).

(d) Small values can have persistent effects on volatility. In usual GARCH models,

a large value (in modulus) of the volatility will be followed by other large values (through the

coefficient β in the GARCH(1,1), with standard notation). A sudden rise of returns (in module)

will also be followed by large volatility values if the coefficient α is not too small. We thus have

persistence of large returns and volatility. But small returns (in module) and small volatilities are

not persistent. In a period of large volatility, a sudden drop of the return due to a small innovation,

will not much alter the subsequent volatilities (because β is close to 1 in general). By contrast, as

will illustrated in the sequel, the log-GARCH provides persistence of large and small values.

(e) Power-invariance of the volatility specification. An interesting potential property

of time series models is their stability with respect to certain transformations of the observations.

Contemporaneous aggregation and temporal aggregation of GARCH models have, in particular,

been studied by several authors (see Drost and Nijman (1993)). On the other hand, the choice of

a power-transformation is an issue for the volatility specification. For instance, the volatility can

be expressed in terms of past squared values (as in the usual GARCH) or in terms of past absolute

values (as in the symmetric TGARCH) but such specifications are incompatible. On the contrary,

any power transformation |σt|s (for s 6= 0) of a log-GARCH volatility has a log-GARCH form (with

the same coefficients in θ, except the intercept ω which is multiplied by s/2).

The log-GARCH model has apparent similarities with the EGARCH(p, ℓ) model defined by




ǫt = σtηt,

log σ2t = ω +
∑p

j=1 βj log σ
2
t−j +

∑ℓ
k=1 γkη

+
t−k + δk|ηt−k|,

(1.2)

under the same assumptions on the sequence (ηt) as in Model (1.1). These models have in common

the above properties (a), (b), (c) and (e). Concerning the property in (d), and more generally

the impact of shocks on the volatility dynamics, Figure 1 illustrates the differences between the two
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models (and also with the standard GARCH). The model coefficients have been chosen to ensure

the same long-term variances when the squared innovations are equal to 1. Interestingly, a shock

close to zero has a very persistent impact on the log-GARCH volatility, contrary to the EGARCH

and GARCH volatilities. However, a sequence of shocks close to zero does impact the EGARCH

volatility (but not the GARCH volatility).
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Figure 1: Curves of the impact of shocks on volatility. The top-left graph shows that a large shock

has a (relatively) small impact on the log-GARCH, a large but transitory effect on the EGARCH,

and a large and very persistent effect on the classical GARCH volatility. The top-right graph shows

the effect of a sequence of tiny innovations: for the log-GARCH, contrary to the GARCH and

EGARCH, the effect is persistent. The bottom graph shows that even one tiny innovation causes

this persistence of small volatilities for the log-GARCH.

This article provides a probability and statistical study of the log-GARCH, together with a

comparison with the EGARCH. While the stationarity properties of the EGARCH are well-known,

those of the asymmetric log-GARCH(p, q) model (1.1) have not yet been established, to our knowl-

edge. As for the quasi-maximum likelihood estimator (QMLE), the consistency and asymptotic

normality have only been proved in particular cases and under cumbersome assumptions for the
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EGARCH, and have not yet been established for the log-GARCH. Finally, it seems important to

compare the two classes of models on typical financial series. The distinctive features of the two

models may render one or the other formulation more adequate for certain types of series.

The remainder of the paper is organized as follows. Section 2 studies the existence of a solution

to Model (1.1). Conditions for the existence of log-moments are derived, and we characterize the

leverage effect. Section 3 is devoted to the tail properties of the solution. In Section 4, the strong

consistency and the asymptotic normality of the QMLE are established under mild conditions.

Section 6 presents some numerical applications on simulated and real data. Proofs are collected in

Section 7. Section 8 concludes.

2 Stationarity, moments and asymmetries of the log-GARCH

We start by studying the existence of solutions to Model (1.1).

2.1 Strict stationarity

Let 0k denote a k-dimensional vector of zeroes, and let Ik denote the k-dimensional identity matrix.

Introducing the vectors

ǫ+t,q = (1{ǫt>0} log ǫ
2
t , . . . , 1{ǫt−q+1>0} log ǫ

2
t−q+1)

′ ∈ R
q,

ǫ−t,q = (1{ǫt<0} log ǫ
2
t , . . . , 1{ǫt−q+1<0} log ǫ

2
t−q+1)

′ ∈ R
q,

zt = (ǫ+t,q, ǫ
−
t,q, log σ

2
t , . . . , log σ

2
t−p+1)

′ ∈ R
2q+p,

bt =
(
(ω + log η2t )1{ηt>0},0

′
q−1, (ω + log η2t )1{ηt<0},0

′
q−1, ω,0

′
p−1

)′ ∈ R
2q+p,

and the matrix

Ct =




1{ηt>0}α+ 1{ηt>0}α− 1{ηt>0}β

Iq−1 0q−1 0(q−1)×q 0(q−1)×p

1{ηt<0}α+ 1{ηt<0}α− 1{ηt<0}β

0(q−1)×q Iq−1 0q−1 0(q−1)×p

α+ α− β

0(p−1)×q 0(p−1)×q Ip−1 0p−1




, (2.1)

we rewrite Model (1.1) in matrix form as

zt = Ctzt−1 + bt. (2.2)
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We have implicitly assumed p > 1 and q > 1 to write Ct and bt, but obvious changes of notation

can be employed when p ≤ 1 or q ≤ 1. Let γ(C) be the top Lyapunov exponent of the sequence

C = {Ct, t ∈ Z},

γ(C) = lim
t→∞

1

t
E (log ‖CtCt−1 . . .C1‖) = inf

t≥1

1

t
E(log ‖CtCt−1 . . .C1‖).

The choice of the norm is obviously unimportant for the value of the top Lyapunov exponent.

However, in the sequel, the matrix norm will be assumed to be multiplicative. Bougerol and Picard

(1992a) showed that if an equation of the form (2.2) with iid coefficients (Ct, bt) is irreducible2

and if E log+ ‖C0‖ and E log+ ‖b0‖ are finite, γ(C) < 0 is the necessary and sufficient condition

for the existence of a stationary solution to (2.2). Bougerol and Picard (1992b) showed that, for

the univariate GARCH(p, q) model, there exists a representation of the form (2.2) with positive

coefficients, and for which the necessary and sufficient condition for the existence of a stationary

GARCH model is γ(C) < 0. The result can be extended to more general classes of GARCH models

(see e.g. Francq and Zakoïan, 2010a). The problem is more delicate with the log-GARCH because

the coefficients of (2.2) are not constrained to be positive. The following result and Remark 2.1

below show that γ(C) < 0 is only sufficient. The condition is however necessary under the mild

additional assumption that (2.2) is irreducible.

Theorem 2.1. Assume that E log+ | log η20 | < ∞. A sufficient condition for the existence of a

strictly stationary solution to the log-GARCH model (1.1) is γ(C) < 0. When γ(C) < 0 there exists

only one stationary solution, which is non anticipative and ergodic.

Example 2.1 (The log-GARCH(1,1) case). In the case p = q = 1, omitting subscripts, we

have

CtCt−1 . . .C1 =




1{ηt>0}

1{ηt<0}

1




(
α+ α− β

) t−1∏

i=1

(
α+1{ηi>0} + α−1{ηi<0} + β

)
.

Assume that E log+ | log η20 | <∞, which entails P (η0 = 0) = 0. Thus,

γ(C) = E log
∣∣α+1{η0>0} + α−1{η0<0} + β

∣∣ = log |β + α+|a|β + α−|1−a,

where a = P (η0 > 0). The condition |α+ + β|a|α− + β|1−a < 1 thus guarantees the existence of a

stationary solution to the log-GARCH(1,1) model.

2See their Definition 2.3.
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Example 2.2 (The symmetric case). In the case α+ = α− = α, one can see directly from (1.1)

that log σ2t satisfies an ARMA-type equation of the form

{
1−

r∑

i=1

(αi + βi)B
i

}
log σ2t = c+

q∑

i=1

αiB
ivt

where B denotes the backshift operator, vt = log η2t , r = max {p, q}, αi = 0 for i > q and βi = 0 for

i > p. This equation is a standard ARMA(r, q) equation under the moment condition E(log η2t )
2 <

∞, but this assumption is not needed. It is well known that this equation admits a non degenerated

and non anticipative stationary solution if and only if the roots of the AR polynomial lie outside

the unit circle.

We now show that this condition is equivalent to the condition γ(C) < 0 in the case q = 1.

Let P be the permutation matrix obtained by permuting the first and second rows of I2+p. Note

that Ct = C+1{ηt>0} +C−1{ηt<0} with C− = PC+. Since α+ = α−, we have C+P = C+. Thus

C+C− = C+PC+ = C+C+ and ‖Ct · · ·C1‖ = ‖(C+)t‖. It follows that γ(C) = log ρ(C+). In

view of the companion form of C+, it can be seen that the condition ρ(C+) < 1 is equivalent to

the condition z −∑r
i=1(αi + βi)z

i = 0 ⇒ |z| > 1.

Remark 2.1 (The condition γ(C) < 0 is not necessary). Assume for instance that p = q = 1

and α+ = α− = α. In that case γ(C) < 0 is equivalent to |α + β| < 1. In addition, assume

that η20 = 1 a.s. Then, when α + β 6= 1, there exists a stationary solution to (1.1) defined by

ǫt = exp(c/2)ηt, with c = ω/(1− α− β).

2.2 Existence of log-moments

It is well known that for GARCH-type models, the strict stationarity condition entails the existence

of a moment of order s > 0 for |ǫt|. The following Lemma shows that this is also the case for | log ǫ2t |
in the log-GARCH model, when the condition E log+ | log η20 | < ∞ of Theorem 2.1 is slightly

reinforced.

Proposition 2.1 (Existence of a fractional log-moment). Assume that γ(C) < 0 and that

E| log η20 |s0 < ∞ for some s0 > 0. Let ǫt be the strict stationary solution of (1.1). There exists

s > 0 such that E| log ǫ2t |s <∞ and E| log σ2t |s <∞.

In order to give conditions for the existence of higher-order moments, we introduce some addi-

tional notation. Let ei be the i-th column of Ir, let σt,r = (log σ2t , . . . , log σ
2
t−r+1)

′, r = max {p, q},
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and let the companion matrix

At =


 µ1(ηt−1) . . . µr−1(ηt−r+1) µr(ηt−r)

Ir−1 0r−1


 , (2.3)

where µi(ηt) = αi+1{ηt>0}+αi−1{ηt<0}+βi with the convention αi+ = αi− = 0 for i > p and βi = 0

for i > q. We have the Markovian representation

σt,r = Atσt−1,r + ut, (2.4)

where ut = ute1, with

ut = ω +

q∑

i=1

(
αi+1{ηt−i>0} + αi−1{ηt−i<0}

)
log η2t−i.

The Kronecker matrix product is denoted by ⊗, and the spectral radius of a square matrix M is

denoted by ρ(M ). For any (random) vector or matrix M , let Abs(M) be the matrix, of same size

as M , whose elements are the absolute values of the corresponding elements of M .

Proposition 2.2 (Existence of log-moments). Let m be a positive integer. Assume that γ(C) <

0 and that E| log η20|m <∞. Let A(m) = EAbs(A1)
⊗m where At is defined by (2.3).

• If m = 1 or r = 1, then ρ(A(m)) < 1 implies that the strict stationary solution of (1.1) is such

that E| log ǫ2t |m <∞ and E| log σ2t |m <∞.

• If ρ(C(m)) < 1, then E| log ǫ2t |m <∞ and E| log σ2t |m <∞.

Remark 2.2 (A sufficient condition for the existence of any log-moment). Let A(∞) =

ess supAbs(A1) be the essential supremum of Abs(A1) term by term. Then, it follows from (7.2)

in the proof that componentwise we have

Abs(σt,r) ≤
∞∑

ℓ=0

(A(∞))ℓAbs(ut−ℓ). (2.5)

Therefore, the condition

ρ(A(∞)) < 1 (2.6)

ensures the existence of E| log ǫ2t |m at any order m, provided γ(C) < 0 and E| log η20 |m < ∞. Now

in view of the companion form of the matrix A(∞) (see e.g. Corollary 2.2 in Francq and Zakoïan,

2010a), (2.6) holds if and only if

r∑

i=1

|αi+ + βi| ∨ |αi− + βi| < 1. (2.7)
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Example 2.3 (Log-GARCH(1,1) continued). In the case p = q = 1, we have

At = α+1{ηt−1>0} + α−1{ηt−1<0} + β and A(m) = E (|A1|)m .

The conditions E| log η20 |m <∞ and

m∑

k=0


 m

k




(
a |α+|k + (1− a) |α−|k

)
|β|m−k < 1

thus entail E| log ǫ2t |m <∞ for the log-GARCH(1,1) model.

Example 2.4 (Symmetric case continued). When α+ = α− = α, the matrix At is no more

random:

A(∞) = A(1) = Abs(A1) =


 |α1 + β1| · · · |αr + βr|

Ir−1 0r−1


 .

In view of the companion form of this matrix we have ρ
(
A(1)

)
< 1 if and only if

r∑

i=1

|αi + βi| < 1.

The previous condition ensures E| log ǫ2t |m <∞ for all m such that E| log η20 |m <∞.

2.3 Leverage effect

A well-known stylized fact of financial markets is that negative shocks on the returns impact future

volatilities more importantly than positive shocks of the same magnitude. In the Log-GARCH(1,1)

model with α− > max{0, α+}, the usual leverage effect holds for large shocks (at least larger than 1)

but is reversed for small ones. A measure of the average leverage effect can be defined through the

covariance between ηt−1 and the current log-volatility. We restrict our study to the case p = q = 1,

omitting subscripts to simplify notation.

Proposition 2.3 (Leverage effect in the log-GARCH(1,1) model). Consider the log-

GARCH(1,1) model under (2.6). Assume that the innovations ηt are symmetrically distributed,

E[| log η0|2] <∞ and |β|+ 1
2 (|α+|+ |α−|) < 1. Then

cov(ηt−1, log σ
2
t ) =

1

2
(α+ − α−)

{
E(|η0|)τ + E(|η0| log η20)

}
, (2.8)

where

τ = E log σ2t =
ω + 1

2(α+ − α−)E(log η20)

1− β − 1
2(α+ + α−)

.
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Thus, if the left hand side of (2.8) is negative the leverage effect is present: past negative innova-

tions tend to increase the log-volatility, and hence the volatility, more than past positive innovations.

However, the sign of the covariance is more complicated to determine than for other asymmetric

models: it depends on all the GARCH coefficients, but also on the properties of the innovations

distribution. Interestingly, the leverage effect may hold with α+ > α−. Simple calculation shows

that for the EGARCH(1,1) model, cov(ηt−1, log σ
2
t ) = γ1.

3 Tail properties of the log-GARCH

In this section, we investigate differences between the EGARCH and the log-GARCH in terms of

tail properties.

3.1 Existence of moments

We start by characterizing the existence of moments for the log-GARCH. The following result is an

extension of Theorem 1 in Bauwens et al., 2008, to the asymmetric case (see also Theorem 2 in He

et al., 2002 for the symmetric case with p = q = 1).

Proposition 3.1 (Existence of moments). Assume that γ(C) < 0 and that ρ
(
A(∞)

)
< 1.

Letting λ = max1≤i≤q{|αi+| ∨ |αi−|}
∑

ℓ≥0 ‖(A(∞))ℓ‖ <∞, assume that for some s > 0

E
[
exp

{
s
(
λ ∨ 1

)
| log η20 |

}]
<∞, (3.1)

then the solution of the log-GARCH(p,q) model satisfies E|ǫ0|2s <∞.

Remark 3.1. In the case p = q = 1, condition (3.1) has a simpler form:

E
[
exp

{
s
( |α1+| ∨ |α1−|
1− |α1+ + β1| ∨ |α1− + β1|

∨ 1
)
| log η20 |

}]
<∞.

The following result provides a sufficient condition for the Cramer’s type condition (3.1).

Proposition 3.2. If E(|η0|s) < ∞ for some s > 0 and η0 admits a density f around 0 such that

f(y−1) = o(|y|δ) for δ < 1 when |y| → ∞ then E exp(s1| log η20 |) <∞ for some s1 > 0.

In the case p = q = 1, a very simple moment condition is given by the following result.

Proposition 3.3 (Moment condition for the log-GARCH(1,1) model). Consider the log-

GARCH(1,1) model. Assume that E log+ | log η20 | < ∞ and E|η0|2s < ∞ for s > 0. Assume

β1 + α1+ ∈ (0, 1), β1 + α1− ∈ (0, 1) and α1+ ∧ α1− > 0. Then σ20 and ǫ0 have finite moments of

order s/(α1+ ∨ α1−) and 2s/(α1+ ∨ α1− ∨ 1) respectively.
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For an explicit expression of the unconditional moments in the case of symmetric log-

GARCH(p, q) models, we refer the reader to Bauwens et al. (2008).

3.2 Regular variation of the log-GARCH(1,1)

Under the assumptions of Proposition 2.3 we have an explicit expression of the stationary solution.

Thus it is possible to establish the regular variation properties of the log-GARCH model. Recall

that L is a slowly varying function iff L(xy)/L(x) → 1 as x→ ∞ for any y > 0. A random variable

X is said to be regularly varying of index s > 0 if there exists a slowly varying function L and

τ ∈ [0, 1] such that

P (X > x) ∼ τx−sL(x) and P (X ≤ −x) ∼ (1− τ)x−sL(x) x→ +∞.

The following proposition asserts the regular variation properties of the stationary solution of the

log-GARCH(1,1) model.

Proposition 3.4 (Regular variation of the log-GARCH(1,1) model). Consider the log-GARCH(1,1)

model. Assume that E log+ | log η20 | < ∞ that η0 is regularly varying with index 2s′ > 0. Assume

β1 + α1+ ∈ (0, 1), β1 + α1− ∈ (0, 1) and α1+ ∧ α1− > 0. Then σ20 and ǫ0 are regularly varying with

index s′/(α1+ ∨ α1−) and 2s′/(α1+ ∨ α1− ∨ 1) respectively.

The square root of the volatility, σ0, thus have heavier tails than the innovations when

α1+ ∨ α1− > 1. Similarly, in the EGARCH(1,1) model the observations can have a much heavier

tail than the innovations. Moreover, when the innovations are light tailed distributed (for instance

exponentially distributed), the EGARCH can exhibit regular variation properties. It is not the

case for the log-GARCH(1,1) model.

In this context of heavy tail, a natural way to deal with the dependence structure is to study the

multivariate regular variation of a trajectory. As the innovations are independent, the dependence

structure can only come from the volatility process. However, it is also independent in the extremes.

The following is a straightforward application of Lemma 3.4 of Mikosch and Rezapour (2012).

Proposition 3.5 (Multivariate regular variation of the log-GARCH(1,1) model). Assume the

conditions of Proposition 3.4 satisfied. Then the sequence (σ2t ) is regularly varying with index
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s′/(α1+∨α1−). The limit measure of the vector Σ2
d = (σ21 , . . . , σ

2
d)

′ is given by the following limiting

relation on the Borel σ-field of (R ∪ {+∞})d/{0d}

P (x−1Σ2
d ∈ ·)

P (σ2 > x)
→ s′

α1+ ∨ α1−

d∑

i=1

∫ ∞

1
y−s′/(α1+∨α1−)−11{yei∈·}dy, x→ ∞.

where ei is the i-th unit vector in Rd and the convergence holds vaguely.

As for the innovations, the limiting measure above is concentrated on the axes. Thus it is also

the case for the log-GARCH(1,1) process and its extremes values do not cluster. It is a drawback

for modeling stock returns when clusters of volatilities are stylized facts. This lack of clustering is

also observed for the EGARCH(1,1) model in Mikosch and Rezapour (2012), in contrast with the

GARCH(1,1) model, see Mikosch and Starica (2000).

We have seen that the extremal behavior of the log-GARCH model is similar to that of the

EGARCH(1,1) model, except that it has a much lighter tail for the same innovations. It is the

contrary for the extremely small values. Let us consider the inverse (ǫ−1
t ) of the solution (ǫt) of

a log-GARCH model. Then, if the variance of (η−1
t ) exists and E(η−1

t ) = 0, the process (ǫ−1
t )

satisfies a log-GARCH model. Under the assumptions of Proposition 3.4, the extremal behavior of

ǫ−1
0 is driven by the innovation η−1

0 which, in the gaussian case, is inverse-gamma distributed with

parameter (1/2, 1/2). Thus ǫ−1
0 is regularly varying with index r = 1/2, implying that extremely

small values of ǫ0 are likely to occur. The time to return to the stationary regime from extremely

small values is much longer than from extremely large values.

If now we consider the case of an EGARCH model, the invertibility condition obtained by

Wintenberger and Cai (2011) imposes that the volatility σ20 be bounded from below. Thus, its

inverse is bounded from above and the extremal behavior of the return ǫ0 is the same as that of

the innovation η0. As the innovations have lighter tails than the returns, extremely small values

are not observed. This explains why the time to return to the stationary regime from extremely

small values is much shorter than from extremely large values, see Figure 1 (the same reasoning

also holds for GARCH(1,1) model).

4 Estimating the log-GARCH by QML

We now consider the statistical inference. Let ǫ1, . . . , ǫn be observations of the stationary solution

of (1.1), where θ is equal to an unknown value θ0 belonging to some parameter space Θ ⊂ R
d, with

12



d = 2q + p+ 1. A QMLE of θ0 is defined as any measurable solution θ̂n of

θ̂n = arg min
θ∈Θ

Q̃n(θ), (4.1)

with

Q̃n(θ) = n−1
n∑

t=r0+1

ℓ̃t(θ), ℓ̃t(θ) =
ǫ2t

σ̃2t (θ)
+ log σ̃2t (θ),

where r0 is a fixed integer and log σ̃2t (θ) is recursively defined, for t = 1, 2, . . . , n, by

log σ̃2t (θ) = ω +

q∑

i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i +

p∑

j=1

βj log σ̃
2
t−j(θ),

using positive initial values for ǫ20, . . . , ǫ
2
1−q, σ̃

2
0(θ), . . . , , σ̃

2
1−p(θ).

Remark 4.1 (On the choice of the initial values). The initial values can be arbitrary positive

numbers, for instance ǫ0 = · · · = ǫ1−q = σ̃0(θ) = · · · = σ̃1−p(θ) =
√
2 (for daily returns of stock

market indices, in percentage, the empirical variance is often close to 2). They can also depend on

the parameter, for instance ǫ0 = · · · = ǫ1−q = σ̃0(θ) = · · · = σ̃1−p(θ) = exp(ω/2). It is also possible

to take initial values depending on the observations, for instance ǫ0 = · · · = ǫ1−q = σ̃0(θ) = · · · =
σ̃1−p(θ) =

√
n−1

∑n
t=1 ǫ

2
t . It will be shown in the sequel that the choice of r0 and of the initial

values is unimportant for the asymptotic behavior of the QMLE, provided r0 is fixed and there

exists a real random variable K independent of n such that

sup
θ∈Θ

∣∣log σ2t (θ)− log σ̃2t (θ)
∣∣ < K, a.s. for t = q − p+ 1, . . . , q, (4.2)

where σ2t (θ) is defined by (7.3) below. These conditions are supposed to hold in the sequel.

Remark 4.2 (Our choice of the initial values). Even if the initial values do not affect the

asymptotic behavior of the QMLE, the finite sample value of θ̂n is however quite sensitive to these

values. Based on simulation experiments and on illustrations on real data, for estimating log-

GARCH(1,1) models we used the empirical variance of the first 5 values (i.e. a week for daily data)

as proxi for the unknown value of σ21 . These initial values allow to compute σ̃2t for t ≥ 2. In order

to attenuate the influence of the initial value without loosing too much data, we chose r0 = 10.

Remark 4.3 (The empirical treatment of null returns). Under the assumptions of Theo-

rem 2.1, almost surely ǫ2t 6= 0. However, it may happen that some observations are equal to zero or

are so close to zero that θ̂n cannot be computed (the computation of the log ǫ2t ’s being required).

To solve this potential problem, we imposed a lower bound for the |ǫt|’s. We took the lower bound
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10−8, which is well inferior to a beep point, and we checked that nothing was changed in the nu-

merical illustrations presented here when this lower bound was multiplied or divided by a factor of

100.

We now need to introduce some notation. For any θ ∈ Θ, let the polynomials A+
θ
(z) =

∑q
i=1 αi,+z

i, A−
θ
(z) =

∑q
i=1 αi,−z

i and Bθ(z) = 1 − ∑p
j=1 βjz

j . By convention, A+
θ
(z) = 0 and

A−
θ
(z) = 0 if q = 0, and Bθ(z) = 1 if p = 0. We also write C(θ0) instead of C to emphasize that

the unknown parameter is θ0. The following assumptions are used to show the strong consistency

of the QMLE.

A1: θ0 ∈ Θ and Θ is compact.

A2: γ {C(θ0)} < 0 and ∀θ ∈ Θ, |Bθ(z)| = 0 ⇒ |z| > 1.

A3: The support of η0 contains at least two positive values and two negative values, Eη20 = 1

and E| log η20 |s0 <∞ for some s0 > 0.

A4: If p > 0, A+
θ0
(z) and A−

θ0
(z) have no common root with Bθ0

(z). Moreover A+
θ0
(1)+A−

θ0
(1) 6=

0 and |α0q+|+ |α0q+|+ |β0p| 6= 0.

A5: E
∣∣log ǫ2t

∣∣ <∞.

Assumptions A1, A2 and A4 are similar to those required for the consistency of the QMLE in

standard GARCH models (see Berkes et al. 2003, Francq and Zakoian, 2004). Assumption A3

precludes a mass at zero for the innovation, and, for identifiability reasons, imposes non degeneracy

of the positive and negative parts of η0. Note that, for other GARCH-type models, the absence of

a lower bound for the volatility can entail inconsistency of the (Q)MLE (see Francq and Zakoïan

(2010b) for a study of a finite-order version of the LARCH(∞) model introduced by Robinson

(1991)). This is not the case for the log-GARCH under A5. Note that this assumption can be

replaced by the sufficient conditions given in Proposition 2.2 (see also Examples 2.3 and 2.4).

Theorem 4.1 (Strong consistency of the QMLE). Let (θ̂n) be a sequence of QMLE satis-

fying (4.1), where the ǫt’s follow the asymmetric log-GARCH model of parameter θ0. Under the

assumptions (4.2) and A1-A5, almost surely θ̂n → θ0 as n→ ∞.

Let us now study the asymptotic normality of the QMLE. We need the classical additional

assumption:
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A6: θ0 ∈
◦
Θ and κ4 := E(η40) <∞.

Because the volatility σ2t is not bounded away from 0, we also need the following non classical

assumption.

A7: There exists s1 > 0 such that E exp(s1| log η20 |) <∞, and ρ(A(∞)) < 1.

The Cramer condition on | log η20 | in A7 is verified if ηt admits a density f around 0 that does not

explode too fast (see Proposition 3.2).

Let ∇Q = (∇1Q, . . . ,∇dQ)′ and HQ = (H1.Q
′, . . . ,Hd.Q

′)′ be the vector and matrix of the

first-order and second-order partial derivatives of a function Q : Θ → R.

Theorem 4.2 (Asymptotic normality of the QMLE). Under the assumptions of Theo-

rem 4.1 and A6-A7, we have
√
n(θ̂n − θ0)

d→ N (0, (κ4 − 1)J−1) as n → ∞, where J =

E[∇ log σ2t (θ0)∇ log σ2t (θ0)
′] is a positive definite matrix and

d→ denotes convergence in distribu-

tion.

It is worth noting that for the general EGARCH model, no similar results, establishing the

consistency and the asymptotic normality, exist. See however Wintenberger and Cai (2011) for the

EGARCH(1,1). The difficulty with the EGARCH is to invert the volatility, that is to write σ2t (θ)

as a well-defined function of the past observables. In the log-GARCH model, invertibility reduces

to the standard assumption on Bθ given in A2.

5 Asymmetric log-ACD model for duration data

The dynamics of duration between stock price changes has attracted much attention in the econo-

metrics literature. Engle and Russel (1997) proposed the Autoregressive Conditional Duration

(ACD) model, which assumes that the duration between price changes has the dynamics of the

square of a GARCH. Bauwens and Giot (2000 and 2003) introduced logarithmic versions of the

ACD, that do not constrain the sign of the coefficients (see also Bauwens, Giot, Grammig and

Veredas (2004) and Allen, Chan, McAleer and Peiris (2008)). The asymmetric ACD of Bauwens

and Giot (2003) applies to pairs of observation (xi, yi), where xi is the duration between two changes

of the bid-ask quotes posted by a market maker and yi is a variable indicating the direction of change

of the mid price defined as the average of the bid and ask prices (yi = 1 if the mid price increased

over duration xi, and yi = −1 otherwise). The asymmetric log-ACD proposed by Bauwens and
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Giot (2003) can be written as





xi = ψizi,

logψi = ω +
∑q

k=1

(
αk+1{yi−k=1} + αk−1{yi−k=−1}

)
log xi−k

+
∑p

j=1 βj logψi−j ,

(5.1)

where (zi) is an iid sequence of positive variables with mean 1 (so that ψi can be interpreted as the

conditional mean of the duration xi). Note that ǫt :=
√
xtyt follows the log-GARCH model (1.1),

with ηt =
√
ztyt. Consequently, the results of the present paper also apply to log-ACD models. In

particular, the parameters of (5.1) can be estimated by fitting model (1.1) on ǫt =
√
xtyt.

6 Numerical Applications

6.1 An application to exchange rates

We consider returns series of the daily exchange rates of the American Dollar (USD), the Japanese

Yen (JPY), the British Pound (BGP), the Swiss Franc (CHF) and Canadian Dollar (CAD) with

respect to the Euro. The observations cover the period from January 5, 1999 to January 18, 2012,

which corresponds to 3344 observations. The data were obtained from the web site

http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html.

Table 1 displays the estimated log-GARCH(1,1) and EGARCH(1,1) models for each series. For

all series, except the CHF, condition (2.7) ensuring the existence of any log-moment is satisfied.

Most of the estimated models present asymmetries. However, the leverage effect is more visible in

the EGARCH than in the log-GARCH models. This is particularly apparent for the JPY model

for which γ̂ is clearly negative. For all models, the persistence parameter β is very high. The last

column shows that for the USD and the GBP, the log-GARCH has a higher (quasi) log-likelihood

than the EGARCH. The converse is true for the three other assets. A study of the residuals, not

reported here, is in accordance with the better fit of one particular model for each series. This study

confirms that the models do not capture exactly the same empirical properties, and are thus not

perfectly substitutable.

6.2 A Monte Carlo experiment

To evaluate the finite sample performance of the QML for the two models we made the following nu-

merical experiments. We first simulated the log-GARCH(1,1) model, with n = 3344, ηt ∼ N (0, 1),

16

http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html


Table 1: Log-GARCH(1,1) and EGARCH(1,1) models fitted by QMLE on daily returns of exchange
rates. The estimated standard deviation are displayed into brackets. The larger log-likelihood is
displayed in bold face.

Log-GARCH

ω̂ α̂+ α̂− β̂ Log-Lik.
USD 0.024 (0.005) 0.027 (0.004) 0.016 (0.004) 0.971 (0.005) -0.104
JPY 0.051 (0.007) 0.037 (0.006) 0.042 (0.006) 0.952 (0.006) -0.354
GBP 0.032 (0.006) 0.030 (0.005) 0.029 (0.005) 0.964 (0.006) 0.547
CHF 0.057 (0.012) 0.046 (0.008) 0.036 (0.007) 0.954 (0.008) 1.477
CAD 0.021 (0.005) 0.025 (0.004) 0.017 (0.004) 0.969 (0.006) -0.170

EGARCH

ω̂ γ̂ δ̂ β̂ Log-Lik.
USD -0.202 (0.030) -0.015 (0.014) 0.218 (0.031) 0.961 (0.010) -0.116
JPY -0.152 (0.021) -0.061 (0.014) 0.171 (0.024) 0.970 (0.006) -0.334
GBP -0.447 (0.048) -0.029 (0.021) 0.420 (0.041) 0.913 (0.017) 0.503
CHF -0.246 (0.046) -0.071 (0.022) 0.195 (0.035) 0.962 (0.009) 1.568
CAD -0.091 (0.017) -0.008 (0.010) 0.103 (0.019) 0.986 (0.005) -0.161

and a parameter close to those of Table 1, that is θ0 = (0.024, 0.027, 0.016, 0.971). Notice that as-

sumptions A1–A4 required for the consistency are clearly satisfied. Since |β0|+ 1
2 (|α0+|+ |α0−|) <

1, A5 is also satisfied in view of Example 2.3. The assumptions A6-A7 required for the asymptotic

normality are also satisfied, noting that |α0++β0|∨ |α0−+β0| < 1 and using Remark 2.2. The first

part of Table 2 displays the log-GARCH(1,1) models fitted on these simulations. This table shows

that the log-GARCH(1,1) is accurately estimated. Note that the estimated models satisfy also the

assumptions A1-A7 used to show the consistency and asymptotic normality. We also estimated

EGARCH(1,1) models on the same simulations. The results are presented in the second part of

Table 2. As in Wintenberger and Cai (2011), the optimization of the EGARCH(1,1) models has

been performed under the constraints δ ≥ |γ| and

n∑

t=1

log

[
max

{
β,

1

2
(γǫt−1 + δ|ǫt−1|) exp

(
−1

2

α

1− β

)}
− β

]
< 0.

These constraints guarantee the invertibility of the model, which is essential to obtain a model that

can be safely used for prediction (see Wintenberger and Cai (2011) for details). Comparing the

log-likelihood given in the last column of Table 2, one can see that, as expected, the likelihood

of the log-GARCH model is greater than that of the (misspecified) EGARCH model, for all the

simulations.

17



Table 2: Log-GARCH(1,1) and EGARCH(1,1) models fitted on 5 simulations of a log-GARCH(1,1)
model. The estimated standard deviation are displayed into brackets. The larger log-likelihood is
displayed in bold face.

Log-GARCH

Iter ω̂ α̂+ α̂− β̂ Log-Lik.
1 0.025 (0.004) 0.028 (0.004) 0.018 (0.004) 0.968 (0.005) -0.415
2 0.021 (0.003) 0.023 (0.003) 0.013 (0.003) 0.976 (0.004) -0.634
3 0.026 (0.003) 0.028 (0.004) 0.017 (0.003) 0.969 (0.004) -0.754
4 0.022 (0.003) 0.024 (0.004) 0.018 (0.003) 0.972 (0.004) -0.389
5 0.024 (0.003) 0.028 (0.004) 0.014 (0.003) 0.974 (0.003) -0.822

EGARCH

Iter ω̂ γ̂ δ̂ β̂ Log-Lik.
1 -0.095 (0.016) -0.014 (0.009) 0.104 (0.017) 0.976 (0.006) -0.424
2 -0.127 (0.018) 0.009 (0.010) 0.148 (0.021) 0.976 (0.007) -0.645
3 -0.147 (0.018) 0.001 (0.010) 0.177 (0.022) 0.971 (0.007) -0.770
4 -0.136 (0.019) -0.012 (0.010) 0.155 (0.022) 0.976 (0.007) -0.404
5 -0.146 (0.019) -0.009 (0.010) 0.177 (0.023) 0.971 (0.007) -0.842

In a second time, we repeated the same experiments for simulations of an EGARCH(1,1) model

of parameter (ω0, γ0, δ0, β0) = (−0.204,−0.012, 0.227, 0.963). Table 3 is the analog of Table 2 for

the simulations of this EGARCH model instead of the log-GARCH. The EGARCH are satisfactorily

estimated, and, once again, the simulated model has a higher likelihood than the misspecified model.

From this simulation experiment, we draw the conclusion that it makes sense to select the model

with the higher likelihood, as we did for the series of exchange rates.

7 Proofs

7.1 Proof of Theorem 2.1

Since the random variable ‖C0‖ is bounded, we have E log+ ‖C0‖ < ∞. The moment condition

on ηt entails that we also have E log+ ‖b0‖ < ∞. When γ(C) < 0, Cauchy’s root test shows that,

almost surely (a.s.), the series

zt = bt +

∞∑

n=0

CtCt−1 · · ·Ct−nbt−n−1 (7.1)

converges absolutely for all t and satisfies (2.2). A strictly stationary solution to model (1.1) is then

obtained as ǫt = exp
{
1
2z2q+1,t

}
ηt, where zi,t denotes the i-th element of zt. This solution is non
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Table 3: As Table 2, but for 5 simulations of an EGARCH(1,1) model.

Log-GARCH

Iter ω̂ α̂+ α̂− β̂ Log-Lik.
1 0.039 (0.008) 0.071 (0.008) 0.052 (0.007) 0.874 (0.015) -0.350
2 0.055 (0.006) 0.058 (0.007) 0.052 (0.006) 0.913 (0.010) -0.476
3 0.052 (0.008) 0.070 (0.008) 0.060 (0.007) 0.873 (0.015) -0.468
4 0.051 (0.008) 0.076 (0.008) 0.056 (0.007) 0.878 (0.014) -0.416
5 0.056 (0.007) 0.061 (0.007) 0.060 (0.007) 0.896 (0.012) -0.517

EGARCH

Iter ω̂ γ̂ δ̂ β̂ Log-Lik.
1 -0.220 (0.022) -0.024 (0.013) 0.235 (0.023) 0.950 (0.010) -0.335
2 -0.196 (0.020) -0.029 (0.012) 0.219 (0.022) 0.961 (0.008) -0.468
3 -0.222 (0.022) -0.005 (0.013) 0.241 (0.024) 0.947 (0.010) -0.448
4 -0.227 (0.022) -0.025 (0.012) 0.248 (0.023) 0.950 (0.010) -0.402
5 -0.209 (0.021) -0.003 (0.012) 0.234 (0.023) 0.955 (0.009) -0.504

anticipative and ergodic, as a measurable function of {ηu, u ≤ t}.
We now prove that (7.1) is the unique nonanticipative solution of (2.2) when γ(C) < 0. Let

(z∗
t ) be a strictly stationary process satisfying z∗

t = Ctz
∗
t−1 + bt. For all N ≥ 0,

z∗
t = zt(N) +Ct . . .Ct−Nz∗

t−N−1, zt(N) = bt +
N∑

n=0

CtCt−1 · · ·Ct−nbt−n−1.

We then have

‖zt − z∗
t‖ ≤

∥∥∥∥∥

∞∑

n=N+1

CtCt−1 · · ·Ct−nbt−n−1

∥∥∥∥∥+ ‖Ct . . .Ct−N‖‖z∗
t−N−1‖.

The first term in the right-hand side tends to 0 a.s. when N → ∞. The second term tends to 0 in

probability because γ(C) < 0 entails that ‖Ct . . .Ct−N‖ → 0 a.s. and the distribution of ‖z∗
t−N−1‖

is independent of N by stationarity. We have shown that zt− z∗
t → 0 in probability when N → ∞.

This quantity being independent of N we have zt = z∗
t a.s. for any t. 2

7.2 Proof of Proposition 2.1

Let X be a random variable such that X > 0 a.s. and EXr < ∞ for some r > 0. If E logX < 0,

then there exists s > 0 such that EXs < 1 (see e.g. Lemma 2.3 in Berkes, Horváth and Kokoszka,

2003). Noting that E ‖Ct · · ·C1‖ ≤ (E ‖C1‖)t < ∞ for all t, the previous result shows that when

γ(C) < 0 we have E‖Ck0 · · ·C1‖s < 1 for some s > 0 and some k0 ≥ 1. One can always assume
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that s < 1. In view of (7.1), the cr-inequality and standard arguments (see e.g. Corollary 2.3 in

Francq and Zakoïan, 2010a) entail that E‖zt‖s <∞, provided E‖bt‖s <∞, which holds true when

s ≤ s0. The conclusion follows. 2

7.3 Proof of Proposition 2.2

By (2.4), componentwise we have

Abs(σt,r) ≤ Abs(ut) +

∞∑

ℓ=0

At,ℓAbs(ut−ℓ−1), At,ℓ :=

ℓ∏

j=0

Abs(At−j), (7.2)

where each element of the series is defined a priori in [0,∞]. In view of the form (2.3) of the matrices

At, each element of

At,ℓAbs(ut−ℓ−1) = |ut−ℓ−1|
ℓ∏

j=0

Abs(At−j)e1

is a sum of products of the form |ut−ℓ−1|
∏k

j=0 |µℓj(ηt−ij )| with 0 ≤ k ≤ ℓ and 0 ≤ i0 < · · · < ik ≤
ℓ+ 1. To give more detail, consider for instance the case r = 3. We then have

At,1Abs(ut−2) =




|µ1(ηt−1)||µ1(ηt−2)||ut−2|+ |µ2(ηt−2)||ut−2|
|µ1(ηt−2)||ut−2|

|ut−2|


 .

Noting that |ut−ℓ−1| is a function of ηt−ℓ−2 and its past values, we obtain EAt,1Abs(ut−2) =

EAbs(At)EAbs(At−1)EAbs(ut−2). More generally, it can be shown by induction on ℓ that the

i-th element of the vector At−1,ℓ−1Abs(ut−ℓ−1) is independent of the i-th element of the first row

of Abs(At). It follows that EAt,ℓAbs(ut−ℓ−1) = EAbs(At)EAt−1,ℓ−1Abs(ut−ℓ−1). The property

extends to r 6= 3. Therefore, although the matrices involved in the product At,ℓAbs(ut−ℓ−1) are

not independent (in the case r > 1), we have

EAt,ℓAbs(ut−ℓ−1) =

ℓ∏

j=0

EAbs(At−j)EAbs(ut−ℓ−1)

=
(
A(1)

)ℓ+1
EAbs(u1).

In view of (7.2), the condition ρ(A(1)) < 1 then entails that EAbs(σt,r) is finite.

The case r = 1 is treated by noting that At,ℓAbs(ut−ℓ−1) is a product of independent random

variables.
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To deal with the cases r 6= 1 and m 6= 1, we work with (2.2) instead of (2.4). This Markovian

representation has an higher dimension but involves independent coefficients Ct. Define Ct,ℓ by

replacing At−j by Ct−j in At,ℓ. We then have

EC⊗m
t,ℓ Abs(bt−ℓ−1)

⊗m =
(
C(m)

)ℓ+1
EAbs(b1)

⊗m.

For all m ≥ 1, let ‖M‖m = (E‖M‖m)1/m where ‖M‖ is the sum of the absolute values of

the elements of the matrix M . Using the elementary relations ‖M‖‖N‖ = ‖M ⊗ N‖ and

E‖Abs(M )‖ = ‖EAbs(M )‖ for any matrices M and N , the condition ρ(C(m)) < 1 entails

E ‖Ct,ℓAbs(bt−ℓ−1)‖m = ‖EC⊗m
t,ℓ Abs(bt−ℓ−1)

⊗m‖ → 0 at the exponential rate as ℓ → ∞, and

thus

‖Abs(zt)‖m ≤ ‖Abs(bt)‖m +

∞∑

ℓ=0

‖Ct,ℓAbs(bt−ℓ−1)‖m <∞,

which allows to conclude. 2

7.4 Proof of Proposition 2.3

By the concavity of the logarithm function, the condition |α+ + β||α− + β| < 1 is satisfied. By

Example 2.1 and the symmetry of the distribution of η0, the existence of a strictly stationary

solution process (ǫt) is thus guaranteed. By 2.3, this solution satisfies E| log ǫ2t | <∞. Let

at = (α+1{ηt>0} + α−1{ηt<0})ηt, bt = (α+1{ηt>0} + α−1{ηt<0})ηt log η
2
t .

We have

Eat = (α+ − α−)E(η01{η0>0}), Ebt = (α+ − α−)E(η0 log η
2
01{η0>0}),

using the symmetry assumption for the second equality. Thus

cov(ηt−1, log(σ
2
t )) = E[at−1 log(σ

2
t−1) + bt−1],

and the conclusion follows. 2
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7.5 Proof of Proposition 3.1

By definition, | log(σ2t )| ≤ ‖σt,r‖ = ‖Abs(σt,r)‖. Then, we have

E|σ2t |s ≤ E {exp(s‖Abs(σt,r)‖)} =

∞∑

k=0

sk‖Abs(σt,r)‖kk
k!

≤
∞∑

k=0

sk‖Abs(u0)‖kk
{∑∞

ℓ=0 ‖(A(∞))ℓ‖
}k

k!

= E exp

{
s‖Abs(u0)‖

∞∑

ℓ=0

‖(A(∞))ℓ‖
}
,

where the last inequality comes from (2.5). By definition u0 = (u0, 0
′
r−1)

′ with

u0 = ω +

q∑

i=1

(αi+1η−i>0 + αi−1η−i<0) log η
2
−i.

Thus ‖Abs(u0)‖ ≤ |u0| ≤ |ω|+max1≤i≤q |αi+| ∨ |αi−|
∑q

j=1 | log η2−j | and it follows that

E|σ2t |s ≤ exp

{
s|ω|

∞∑

ℓ=0

‖(A(∞))ℓ‖
}
{
E exp

(
sλ| log η20 |

)}q
<∞

under (3.1). 2

7.6 Proof of Proposition 3.2

Without loss of generality assume that f exists on [−1, 1]. Then there exists M > 0 such that

f(1/y) ≤M |y|δ for all y ≥ 1 and we obtain

E exp(s1| log η20 |) ≤
∫

|x|<1
exp(2s1 log(1/x))f(x)dx +

∫
exp(s1 log(x

2))dPη(x)

≤ 2M

∫ ∞

1
y2(s1−1)+δdy + E(|η0|2s1).

The upper bound is finite for sufficiently small s1 and the result is proved. 2

7.7 Proof of Proposition 3.3

We will use Tweedie’s (1988) criterion, which we recall for the reader’s convenience. Let (Xt) denote

a temporally homogeneous Markov chain on a state space E, endowed with a σ-field F .

Lemma 7.1 (adapted from Tweedie (1988), Theorem 1). Suppose µ is a subinvariant measure, that

is,

µ(B) ≥
∫

E
µ(dy)P (y,B), ∀B ∈ F
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and A ∈ F is such that 0 < µ(A) < ∞. Suppose there exist a nonnegative measurable function V

on E, and constants K > 0 and c ∈ (0, 1) such that

i) E[V (Xt) | Xt−1 = x] ≤ K, x ∈ A,

ii) E[V (Xt) | Xt−1 = x] ≤ (1− c)V (x), x ∈ Ac.

Then, µ is a finite invariant measure for the chain (Xt) and
∫
E V dµ <∞.

It should be noted that this criterion does not make any irreducibility assumption. We have ut =

ω + (α1+1{ηt−1>0} + α1−1{ηt−1<0}) log(η
2
t−1), and

σ2t = eut

(
σ
2(β+α1+)
t−1 1ηt−1>0 + σ

2(β+α1−)
t−1 1ηt−1<0

)
,

which shows that (σ2t ) is a temporally homogeneous Markov chain on R
+∗. By Example 2.1, the

conditions ensuring the existence of a strictly stationary solution are satisfied. The stationary

distribution thus defines an invariant probability µ for the Markov chain (σ2t ). Let A = [0,K] for

some K > 0 such that µ(A) > 0.

The existence of a s-order moment for η20 entails that eu1 admits a moment of order s0 :=

s/(α1+ ∨ α1−). Let V (x) = 1 + xs0 for x > 0. For any x > 0 and for 0 < c < 1, we have for x ∈ Ac

with K sufficiently large,

E[V (σ2t ) | σ2t−1 = x] = 1 + x(β1+α1+)s0E[es0u11η0>0] + x(β1+α1−)s0E[es0u11η0<0]

≤ (1− c)V (x),

because β1 + α1+ < 1 and β1 + α1− < 1. On the other hand it is clear that E[V (σ2t ) | σ2t−1 = x]

is bounded for x belonging to A. It follows by the above lemma that Eµ[V (σ2t )] < ∞ where the

expectation is computed with the stationary distribution. 2

7.8 Proof of Proposition 3.4

To prove the first assertion, note that if η0 is regularly varying of index 2s′ then η20 is regularly

varying of index s′. Thus u1 = ω + (α1+1{η0>0} + α1−1{η0<0}) log(η
2
0) is such that

P (eu1 > x) = P (η0 > 0)P
{
(η20)

α1+ > xe−ω | η0 > 0
}

+P (η0 < 0)P
{
(η20)

α1− > xe−ω | η0 < 0
}
.
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Then eu1 is also regularly varying with index s′0 := s/(α1+ ∨ α1−). Note that

P (σ21 ≥ x) = P (η0 > 0)P
(
eu1σ

2(β+α1+)
0 ≥ x | η0 > 0

)

+P (η0 < 0)P
(
eu1σ

2(β+α1−)
0 ≥ x | η0 < 0

)
.

As eu1 admits regular variation of order s′0, it admits a moment of order s′0(β+α1+) < s0. Note that

E|η0|2s < ∞ for any s < s′. An application of Proposition 3.3 thus gives E
(
σ
2(β+α1+)(s′

0
+ι)

0

)
< ∞

for ι > 0 small enough. By independence between u1 and σ20 conditionally on η0 > 0, we may apply

a result by Breiman (1965) to conclude that

P
(
eu1σ

2(β+α1+)
0 ≥ x | η0 > 0

)
∼ E

(
σ
2(β+α1+)s′0
0

)
P (eu1 > x | η0 > 0),

as x→ ∞. Applying the same arguments to P
(
eu1σ

2(β+α1−)
0 ≥ x | η0 < 0

)
we obtain

P (σ21 ≥ x) ∼ P (η0 > 0)E
(
σ
2(β+α1+)s′

0

0

)
P (eu1 > x | η0 > 0)

+P (η0 < 0)E
(
σ
2(β+α1−)s′

0

0

)
P (eu1 > x | η0 < 0)

and the first assertion follows. The second assertion follows easily by independence of η0 and σ0,

with respective regularly variation indexes s′ and s′0. 2

7.9 Proof of Theorem 4.1

We will use the following standard result (see e.g. Exercise 2.11 in Francq and Zakoian, 2010a).

Lemma 7.2. Let (Xn) be a sequence of random variables. If supn E|Xn| < ∞, then almost surely

n−1Xn → 0 as n → ∞. The almost sure convergence may fail when supnE|Xn| = ∞. If the

sequence (Xn) is bounded in probability, then n−1Xn → 0 in probability.

Turning to the proof of Theorem 4.1, first note that A2, A3 and Proposition 2.1 ensure the a.s.

absolute convergence of the series

log σ2t (θ) := B−1
θ

(B)

{
ω +

q∑

i=1

(
αi+1{ǫt−i>0} + αi−1{ǫt−i<0}

)
log ǫ2t−i

}
. (7.3)

Let

Qn(θ) = n−1
n∑

t=s0+1

ℓt(θ), ℓt(θ) =
ǫ2t

σ2t (θ)
+ log σ2t (θ).
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Using standard arguments, as in the proof of Theorem 2.1 in Francq and Zakoian (2004) (here-

after FZ), the consistency is obtained by showing the following intermediate results

i) lim
n→∞

sup
θ∈Θ

|Qn(θ)− Q̃n(θ)| = 0 a.s.;

ii) if σ21(θ) = σ21(θ0) a.s. then θ = θ0;

iii) Eℓt(θ0) <∞ and if θ 6= θ0 , Eℓt(θ) > Eℓt(θ0);

iv) any θ 6= θ0 has a neighborhood V (θ) such that

lim inf
n→∞

inf
θ
∗∈V (θ)

Q̃n(θ
∗) > Eℓt(θ0) a.s.

Because of the multiplicative form of the volatility, the step i) is more delicate than in the standard

GARCH case. In the case p = q = 1, we have

log σ2t (θ)− log σ̃2t (θ) = βt−1
{
log σ21(θ)− log σ̃21(θ)

}
, ∀t ≥ 1.

In the general case, as in FZ, using (4.2) one can show that for almost all trajectories,

sup
θ∈Θ

∣∣log σ2t (θ)− log σ̃2t (θ)
∣∣ ≤ Kρt, (7.4)

where ρ ∈ (0, 1) and K > 0. When the initial values are chosen as suggested by Remark 4.2, K

is the realization of a random variable which is measurable with respect to σ ({ηu, u ≤ 5}). First

complete the proof of i) in the case p = q = 1 and α+ = α−, for which the notation is more explicit.

In view of the multiplicative form of the volatility

σ2t (θ) = eβ
t−1 log σ2

1(θ)
t−2∏

i=0

eβ
i{ω+α log ǫ2t−1−i}, (7.5)

we have

1

t
log

∣∣∣∣
1

σ2t (θ)
− 1

σ̃2t (θ)

∣∣∣∣ =
−1

t

t−2∑

i=0

βi
{
ω + α log ǫ2t−1−i

}

+
1

t
log

∣∣∣e−βt−1 log σ2
1
(θ) − e−βt−1 log σ̃2

1
(θ)

∣∣∣ .

Applying Lemma 7.2, the first term of the right-hand side of the equality tends almost surely to

zero because it is bounded by a variable of the form |Xt|/t, with E|Xt| <∞, under A5. The second

term is equal to
1

t
log

∣∣∣
{
log σ21(θ)− log σ̃21(θ)

}
βt−1e−βt−1x∗

∣∣∣ ,

where x∗ is between log σ21(θ) and log σ̃21(θ). This second term thus tends to log |β| < 0 when

t→ ∞. It follows that

sup
θ∈Θ

∣∣∣∣
1

σ2t (θ)
− 1

σ̃2t (θ)

∣∣∣∣ ≤ Kρt, (7.6)
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where K and ρ are as in (7.4). Now consider the general case. Iterating (1.1), using the compactness

of Θ and the second part of A2, we have

log σ2t (θ) =

t−1∑

i=1

ci(θ) + ci+(θ)1{ǫt−i>0} log ǫ
2
t−i + ci−(θ)1{ǫt−i<0} log ǫ

2
t−i

+

p∑

j=1

ct,j(θ) log σ
2
q+1−j(θ)

with

sup
θ∈Θ

max{|ci(θ)|, |ci+(θ)|, |ci−(θ)|, |ci,1(θ)|, . . . , |ci,p(θ)|} ≤ Kρi, ρ ∈ (0, 1). (7.7)

We then obtain a multiplicative form for σ2t (θ) which generalizes (7.5), and deduce that

1

t
log

∣∣∣∣
1

σ2t (θ)
− 1

σ̃2t (θ)

∣∣∣∣ = a1 + a2,

where

a1 =
−1

t

t−1∑

i=1

ci(θ) + ci+(θ)1{ǫt−i>0} log ǫ
2
t−i + ci−(θ)1{ǫt−i<0} log ǫ

2
t−i → 0 a.s.

in view of (7.7) and Lemma 7.2, and for x∗j ’s between log σ2q+1−j(θ) and log σ̃2q+1−j(θ),

a2 =
1

t
log

∣∣∣∣∣∣
exp



−

p∑

j=1

ct,j(θ) log σ
2
q+1−j(θ)



− exp



−

p∑

j=1

ct,j(θ) log σ̃
2
q+1−j(θ)





∣∣∣∣∣∣

=
1

t
log

∣∣∣∣∣∣
−

p∑

j=1

ct,j(θ)
{
log σ2

q+1−j(θ)− log σ2
q+1−j(θ)

}
exp

{
−

p∑

k=1

ct,k(θ) log x
∗

k

}∣∣∣∣∣∣

=
1

t
log

∣∣∣∣∣∣
−

p∑

j=1

ct,j(θ)

∣∣∣∣∣∣
+ o(1) a.s.

using (4.2) and (7.7). Using again (4.2), it follows that lim supn→∞ a2 ≤ log ρ < 0. We conclude

that (7.6) holds true in the general case. The proof of i) then follows from (7.4)-(7.6), as in FZ.

To show ii), note that we have

Bθ(B) log σ2t (θ) = ω +A+
θ
(B)1{ǫt>0} log ǫ

2
t +A−

θ
(B)1{ǫt<0} log ǫ

2
t . (7.8)

If log σ21(θ) = log σ21(θ0) a.s., by stationarity we have log σ2t (θ) = log σ2t (θ0) for all t, and thus we

have almost surely

{
A+

θ
(B)

Bθ(B)
−

A+
θ0
(B)

Bθ0
(B)

}
1{ǫt>0} log ǫ

2
t +

{
A−

θ
(B)

Bθ(B)
−

A−
θ0
(B)

Bθ0
(B)

}
1{ǫt<0} log ǫ

2
t

=
ω0

Bθ0
(1)

− ω

Bθ(1)
.
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Denote by Rt any random variable which is measurable with respect to σ ({ηu, u ≤ t}). If

A+
θ
(B)

Bθ(B)
6=

A+
θ0
(B)

Bθ0
(B)

or
A−

θ
(B)

Bθ(B)
6=

A−
θ0
(B)

Bθ0
(B)

, (7.9)

there exists a non null (c+, c−)
′ ∈ R

2, such that

c+1{ηt>0} log ǫ
2
t + c−1{ηt<0} log ǫ

2
t +Rt−1 = 0 a.s.

This is equivalent to the two equations

(
c+ log η2t + c+ log σ2t +Rt−1

)
1{ηt>0} = 0

and
(
c− log η2t + c− log σ2t +Rt−1

)
1{ηt<0} = 0.

Note that if an equation of the form a log x21{x>0} + b1{x>0} = 0 admits two positive solutions

then a = 0. This result, A3, and the independence between ηt and (σ2t , Rt−1) imply that c+ = 0.

Similarly we obtain c− = 0, which leads to a contradiction. We conclude that (7.9) cannot hold

true, and the conclusion follows from A4.

Since σ2t (θ) is not bounded away from zero, the beginning of the proof of iii) slightly differs

from that given by FZ in the standard GARCH case. In view of (7.8), the second part of A2 and

A5 entail that E| log σ2t (θ)| <∞ for all θ ∈ Θ. It follows that Eℓ−t (θ) <∞ and E|ℓt(θ0)| <∞.

The rest of the proof of iii), as well as that of iv), are identical to those given in FZ. 2

7.10 Proof of Theorem 4.2

A Taylor expansion gives

∇iQn(θ̂n)−∇iQn(θ0) = Hi.Qn(θ̃n,i)(θ̂n − θ0) for all 1 ≤ i ≤ d,

where the θ̃n,i’s are such that ‖θ̃n,i−θ0‖ ≤ ‖θ̂n−θ0‖. As in Section 5 of Bardet and Wintenberger

(2009), the asymptotic normality is obtained by showing:

1. n1/2∇Qn(θ0) → N (0, (κ4 − 1)J),

2. ‖HQn(θ̃n) − J‖ converges a.s. to 0 for any sequence (θ̃n) converging a.s. to θ0 and J is

invertible,

3. n1/2‖∇Q̃n(θ̂n)−∇Qn(θ̂n)‖ converges a.s. to 0.
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In order to prove the points 1-3 we will use the following Lemma

Lemma 7.3. Under the assumptions of Theorem 4.1 and A7, for any m > 0 there exists a neigh-

borhood V of θ0 such that E[supV(σ
2
t /σ

2
t (θ))

m] <∞ and E[supV | log σ2t (θ)|m] <∞.

Proof. We have

log σ2t (θ0)− log σ2t (θ) = ω0 − ω +

p∑

j=1

βj{log σ2t−j(θ0)− log σ2t−j(θ)}

+Vθ0−θσt−1,r +A+
θ0−θ

(B)1ηt>0 log η
2
t +A−

θ0−θ
(B)1ηt<0 log η

2
t

with σt,r = (log σ2t (θ0), . . . , log σ
2
t−r+1(θ0))

′,

Vθ = (α1+1{ηt−1>0} + α1−1{ηt−1<0} + β1, . . . , αr+1{ηt−r>0} + αr−1{ηt−r<0} + βr).

Under A2, we then have

log σ2t (θ0)− log σ2t (θ) = B−1
θ

(B) {ω0 − ω +Vθ0−θσt−1,r

+(A+
θ0−θ

(B)1ηt>0 log η
2
t +A−

θ0−θ
(B)1ηt<0 log η

2
t

}
.

Under A7 the assumptions of Proposition 3.1 hold. From the proof of that proposition, we thus

have that E exp(δ‖Abs(σt,r)‖) is finite for some δ > 0.

Now, note that Vθ, A+
θ
(1) and A+

θ
(1) are continuous functions of θ. Choosing a sufficiently

small neighborhood V of θ0, one can make supV ‖Vθ0−θ‖, supV |A+
θ0−θ

(1)| and supV |A+
θ0−θ

(1)|
arbitrarily small. Thus E[exp(m supV ‖Vθ0−θσt,r‖)] and E[exp(m supV ‖(A+

θ0−θ
(B)1ηt−1>0 +

A−
θ0−θ

(B)1ηt−1<0) log(η
2
t−1)‖)] are finite for an appropriate choice of V depending onm. We conclude

that E
[
exp

(
m supV

∣∣log
{
σ2t (θ0)/σ

2
t (θ)

}∣∣)] <∞ and the first assertion of the lemma is proved.

Consider now the second assertion. We have

sup
V

| log σ2t (θ)| ≤ | log σ2t |+ sup
V

| log(σ2t (θ0)/σ
2
t (θ))|.

We have already shown that the second term admits a finite moment of order m. So does the first

term, under A7, by Remark 2.2. �

Now let us prove that the point 1. follows from the fact that ∇Qn(θ0) is a martingale in L2.

Indeed

∇Qn(θ0) = n−1
n∑

t=r0+1

(1− η2t )∇ log σ2t (θ0).
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As ηt is independent of log σ2t (θ0) and Eη2t = 1 the Central Limit Theorem for martingale differences

applies whenever Q = (κ4−1)E(∇ log σ2t (θ0)∇ log σ2t (θ0)
′) exists. For any θ ∈

◦
Θ, the random vector

∇ log σ2t (θ) is the stationary solution of the equation

∇ log σ2t (θ) =

p∑

j=1

βj∇ log σ2t−j(θ) +




1

ǫ+t−1,q

ǫ−t−1,q

σ2
t−1,p(θ)



, (7.10)

where σ2
t,p(θ) = (log σ2t (θ), . . . , log σ

2
t−p+1(θ))

′.

Assumption A2 entails that ∇ log σ2t (θ) is a linear combination of ǫ+t−i,q, ǫ
−
t−i,q and log σ2t−i(θ)

for i ≥ 1. Lemma 7.3 ensures that, for any m > 0, there exists a neighborhood V of θ0 such that

E[supV | log σ2t−i(θ)|m] < ∞. By Remark 2.2, ǫ+t−i,q and ǫ−t−i,q admit moments of any order. Thus,

for any m > 0 there exists V such that E[supV ‖∇ log σ2t (θ)‖m] < ∞. In particular, ∇ log σ2t (θ0)

admits moments of any order. Thus point 1. is proved.

Turning to point 2., we have

HQn(θ) = n−1
n∑

t=r0+1

Hℓt(θ),

where

Hℓt(θ) =

(
1− η2t σ

2
t (θ0)

σ2t (θ)

)
H log σ2t (θ) +

η2t σ
2
t (θ0)

σ2t (θ)
∇ log σ2t (θ)∇ log σ2t (θ)

′. (7.11)

By Lemma 7.3, the term σ2t (θ0)/σ
2
t (θ) admits moments of order as large as we need uniformly on a

well chosen neighborhood V of θ0. Let us prove that it is also the case for H log σ2t (θ). Computation

gives

H log σ2t (θ) =

p∑

j=1

βjH log σ2t−j(θ) +


 0(2q+1)×d

∇′σ2
t−1,p(θ)


+


 0(2q+1)×d

∇′σ2
t−1,p(θ)




′

.

From this relation and A2 we obtain

H log σ2t (θ) =


 0(2q+1)×d

Bθ(B)−1∇′σ2
t−1,p(θ)


+


 0(2q+1)×d

Bθ(B)−1∇′σ2
t−1,p(θ)




′

.

Thus H log σ2t (θ) belongs to C(V) and is integrable because we can always choose V such that

supV ‖∇′σ2
t−1,p(θ)‖ ∈ Lm (see the proof of point 1. above).

An application of the Cauchy-Schwarz inequality in the RHS term of (7.11) yields the integra-

bility of supV Hℓt(θ). The first assertion of point 2. is proved by an application of the ergodic
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theorem on (Hℓt(θ)) in the Banach space C(V) equipped with the supremum norm:

sup
V

‖HQn(θ)− E[Hℓ0(θ)]‖ → 0 a.s.

An application of Theorem 4.1 ensures that θ̂n belongs a.s. to V for sufficiently large n. Thus

‖HQn(θ̂n)− E[Hℓ0(θ0)]‖ ≤ sup
V

‖HQn(θ)− E[Hℓ0(θ)]‖+ ‖E[Hℓ0(θ̂n)]− E[Hℓ0(θ0)]‖

converges a.s. to 0 by continuity of θ → E[Hℓ0(θ)] at θ0 as a consequence of a dominating

argument on V. The first assertion of point 2. is proved.

The matrix J is non invertible iff there exists a non null deterministic vector λ =

(λ0, λ1, . . . , λp+2q)
′ such that λ′∇ log σ2t (θ0) = 0 a.s. If the latter equality holds, (7.10) entails

(1, ǫ+t,q, ǫ
−
t,q,σ

2
t,p(θ0))λ = 0 a.s. By A3 and arguments used for proving the point (ii) in the proof

of Theorem 4.1, we deduce λp+1 = λp+q+1 = 0. For the same reason if λ1 = · · · = λi = 0 then

λp+2 = · · · = λp+1+i = 0 and λp+q+2 = · · · = λp+q+1+i = 0 for 1 ≤ i ≤ p ∧ q. Thus as λ 6= 0

there exists λk 6= 0 for 1 ≤ k ≤ q such that λj = 0 for j < k. Then, log(σ2t−k) is a linear combi-

nation of (log(σ2t−j))k<j≤q, (1{ǫt−j>0} log(ǫ
2
t−j))k<j≤p and (1{ǫt−j<0} log(ǫ

2
t−j))k<j≤p. We thus find

a log-GARCH(p′, q′) representation with p′ < p and q′ < q, in contradiction with A4. Thus J is

invertible.

From (7.10) and an equivalent representation for ∇ log σ̃2t (θ), we have

∇ log σ2t (θ)−∇ log σ̃2t (θ) =

p∑

j=1

βj(∇ log σ2t−j(θ)−∇ log σ̃2t−j(θ))

+


 02q+1

σ2
t−1,p(θ)− σ̃2

t−1,p(θ)




where σ̃2
t,p is defined as σ2

t,p. Thus, there exist continuous functions di and dt,i defined on Θ such

that

∇ log σ2t (θ)−∇ log σ̃2t (θ) =

t−1∑

i=1

di(θ)(log σ
2
t−i(θ)− log σ̃2t−i(θ))

+

p∑

j=1

dt,j(θ)∇ log σ2p+1−j(θ).

The sequences of functions (di), (di,j), 1 ≤ j ≤ p, satisfy the same uniform rate of convergence as

the functions ci, ci+, c1− and ci,j in (7.7). An application of (7.4) yields to the existence of K > 0

and ρ ∈ (0, 1) such that supΘ ‖∇ log σ2t (θ)−∇ log σ̃2t (θ)‖ ≤ Kρt, for almost all trajectories. Point

3. follows easily and the asymptotic normality is proved. 2
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8 Conclusion

In this paper, we investigated the probabilistic properties of the log-GARCH(p, q) model. We found

sufficient conditions for the existence of moments and log-moments of the strictly stationary solu-

tions. We analyzed the dependence structure through the leverage effect and the regular variation

properties, and we compared this structure with that of the EGARCH model.

As far as the estimation is concerned, it should be emphasized that the log-GARCH model ap-

pears to be much more tractable than the EGARCH. Indeed, we established the strong consistency

and the asymptotic normality of the QMLE under mild assumptions. For EGARCH models, such

properties have only been established for the first-order model and with strong invertibility con-

straints (see Wintenberger and Cai, 2011). By comparison with standard GARCH, the log-GARCH

model is not more difficult to handle: on the one hand, the fact that the volatility is not bounded

below requires an additional log-moment assumption, but on the other hand the parameters are nor

positively constrained.

A natural extension of this work, aiming at pursuing the comparison between the two classes

of models, would rely on statistical tests. By embedding the log-GARCH model in a more general

framework including the log-GARCH, it should be possible to consider a LM test of the log-GARCH

null assumption. Another problem of interest would be to check validity of the estimated models.

We leave these issues for further investigation, viewing the results of this paper as a first step in

these directions.
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