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DEFORMATION OF KÄHLER MANIFOLDS

JUNYAN CAO

Abstract. It has been shown by Claire Voisin in 2003 that one cannot
always deform a compact Kähler manifold into a projective algebraic
manifold, thereby answering negatively a question raised by Kodaira.
In this article, we prove that under an additional semipositivity or sem-
inegativity condition on the canonical bundle, the answer becomes pos-
itive, namely such a compact Kähler manifold can be approximated by
deformations of projective manifolds.
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1. Introduction

It is well known that the curvature of the canonical bundle controls the
structure of projective varieties. C.Voisin has given a counterexample to
the Kodaira conjecture which states that one cannot always deform a com-
pact Kähler manifold to a projective manifold. In her counterexample one
can see that the canonical bundle is neither nef nor anti-nef. Therefore it
is interesting to ask whether for a Kähler manifold with a nef or anti-nef
canonical bundle, one can deform it to a projective variety. In this article,
we discuss the deformation properties of Kähler manifolds in the following
three cases:

(1) Compact Kähler manifolds with hermitian semipositive anticanonical
bundles.

(2) Compact Kähler manifolds with real analytic metrics and nonpositive
bisectional curvatures.
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2 JUNYAN CAO

(3) Compact Kähler manifolds with nef tangent bundles.

We first recall some definitions about numerical effective (nef) bundles
(cf. [DPS] for details).

Definition 1.1. A vector bundle E is said to be numerically effective (nef)
if the canonical bundle OE(1) is nef on P(E), the projective bundle of hy-
perplanes in the fibres of E. For a nef line bundle L on a compact Kähler
manifold, the numerical dimension nd(L) is defined to be the largest number
v, such that c1(L)

v 6= 0. A holomorphic vector bundle E over X is said
to be numerically flat if both E and E∗ are nef ( or equivalently if E and
(detE)−1 are nef).

Definition 1.2. Let X be a compact Kähler manifold. We say that X can
be approximated by projective varieties, if there exists a deformation of X:
X → ∆ such that the central fiber X0 is X, and there exists a sequence
ti → 0 in ∆ such that all the fibers Xti are projective.

The main result of this article is

Main Theorem. If X is a compact Kähler manifold in one of the above
three cases, then X can be approximated by projective varieties.

The proof for these three types of manifolds relies on their respective
structure theorems. We first sketch the strategy of the proof when X is a
compact Kähler manifold with hermitian semipositive anticanonical bundle.
We first recall that a compact Kähler manifold X is said to be deformation
unobstructed, if there exists a smooth deformation of X, π : X → ∆, such
that the Kodaira-Spencer map T∆ → H1(X,TX ) is surjective. For this type
of manifolds, we have the following proposition:

Proposition 3.3 in [Voi1]. Assume that a deformation unobstructed com-
pact Kähler manifold X has a Kähler class ω satisfying the following condi-
tion: the interior product

ω∧ : H1(X,TX) → H2(X,OX)

is surjective. Then X can be approximated by projective varieties.

In [DPS 96], it is proved that after a finite cover, a compact Kähler mani-
fold with hermitian semipositive anticanonical bundle has a smooth fibration
to a compact Kähler manifold with trivial canonical bundle and the fibers
Yt satisfy the vanishing property:

Hq(Yt,O) = 0 for q ≥ 1.

Therefore the Dolbeault cohomology of X is easy to calculate. One can thus
construct explicitly a deformation of X satisfying the surjectivity in Propo-
sition 3.3 in [Voi1]. Therefore this type of manifolds can be approximated
by projective varieties.
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When X is a compact Kähler manifold with nef tangent bundle, the proof
is more difficult. It is based on the structure theorem in [DPS] which can
be stated as follows.

Theorem 1.1. Let X be a compact Kähler manifold with nef tangent bun-

dle TX . Let X̃ be a finite étale cover of X of maximum irregularity q =

h1(X̃,OX̃). Then the Albanese map π : X̃ → T is a smooth fibration over a
q-dimensional torus, and −KX̃ is relatively ample.

Remark. We will prove that after passing to some finite Galois cover X̃ →
X with group G, there exists a commutative diagram

X̃ −−−−→ X
yπ̃

yπ

T −−−−→ T/G

and T/G is smooth.

In [DPS], when X is a projective variety with nef tangent bundle, it is
proved that π∗(−mKX) is numerically flat for all m ≥ 1. One of the main
ingredient of this article is to prove that this is also true whenX is a compact
Kähler manifold.

Theorem 1.2. Let X be a compact Kähler manifold of dimension n with
nef tangent bundle such that the Albanese map π : X → T is a smooth
fibration onto a torus T of dimension r, and −KX is relatively ample. Then
nd(−KX) = n− r, and π∗(−mKX) is numerically flat for all m ≥ 1.

We combine this with a result in [Sim] which states that any numerically
flat bundle over a compact Kähler manifold is in fact a local system 1 :

Theorem 1.3. Let E be a numerically flat holomorphic vector bundle on
a Galois quotient of a torus T , then the transformation matrices can be
choosen to be constant matrices.

Using Theorem 1.2 and 1.3, we will see that one can approximate Kähler
manifolds with nef tangent bundles by projective varieties.

We now sketch the proof of Theorem 1.2. Thanks to a formula in [Ber],
π∗(−mKX) is nef. Then using the argument in [DPS], the only difficult part
is to prove nd(−KX) = n − r. If X is projective, the equality nd(−KX) =
n− r comes directly from the Kawamata-Viehweg vanishing theorem. Since
X is just a compact Kähler manifold in our case, the proof is more difficult.
We get it by contradiction. Let π : X → T be the fibration in Theorem 1.2.
If nd(−KX) ≥ n− r + 1, there are two cases:
(i) The (1,1)-class π∗((−KX)

n−r+1) is trivial on T .

1If the base manifold is a torus, an explicite construction of the local system would be
found in the author’s forthcoming Phd thesis.



4 JUNYAN CAO

(ii) The (1,1)-class π∗((−KX)
n−r+1) is effective (non trivial) on T .

In the case (i), thanks to Corollary 2.6 in [DPS], we can prove that
π∗(−mKX) is numerically flat. By Theorem 1.3, we can thus deform X
to a projective manifold by preserving nd(−KX). Using the Kawamata-
Viehweg vanishing theorem in the projective case, we can therefore prove
that nd(−KX) = n− r. Thus we get a contradiction.

In the case (ii), the argument is more complicated. By solving a Monge-
Ampère equation, we can prove that−KX−cπ

∗(π∗((−KX)
n−r+1)) is pseudo-

effective for some c > 0. Therefore we can construct a singular metric h on
−KX with a good control on its eigenvalues and with I(h) = OX , where I(h)
is the multiplier ideal sheaf associated to the singular metric h (cf. [Dem2]
for the definition of multiplier ideal sheaf). Thanks to the construction of
the metric h, we can prove that

Hr(X, (KX −KX)⊗ I(h)) = 0,

where r = dimT . ThereforeHr(X,OX ) = 0, which implies thatHr(T,OT ) =
0 by the observation that −KX is relatively ample. Since the torus T is of
dimension r, we get a contradiction.

The organization of the article is as follows. Let π : X̃ → T be the smooth
fibration of Theorem 1.2. In Section 2, we gather some useful propositions.
In particular, we prove a nefness result by using the formula (4.8) of [Ber].
In Section 3, we prove our main theorem when X is in the case (1) or (2).
As an interesting application, the dual cone conjecture in [BDPP] is proved
for the case (1). In the following sections, we concentrate on the proof of
our main theorem when X is a compact Kähler manifold with nef tangent
bundle. In Section 4, we prove a deformation lemma which allows us to
deform a Kähler manifold to a projective variety under certain conditions
and discuss how one can deform X to a projective variety by keeping the
numerical dimension. In Section 5, we prove a very special Kawamata-
Viehweg vanishing theorem which will play a central role in the proof of
Theorem 1.2. Using the results in Section 4 and 5, we finally complete the
proof of our main theorem in Section 6.

Acknowledgements: I would like to thank my supervisor J-P.Demailly for
helpful discussions and his kindness in sharing his ideas. I would also like to
thank C.Voisin who explained to me that Proposition 3.3 in [Voi1] could be
used to prove certain approximation problems during a summer school in
Norway, and C.Simpson who told me that the results in [Sim] could largely
simplify the original proof of Theorem 1.3.

2. Preliminaries

We first prove some preparatory propositions which are useful in the proof
of our main theorem.

Proposition 2.1. Let X be a compact Kähler manifold possessing a smooth
submersion π : X → T to a compact Kähler manifold T . If −KX is nef on
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X and is relatively ample for π, then the direct image E = π∗(−mKX) is a
nef vector bundle for all m ∈ N.

Proof. Let us first show that the direct image E is locally free. Let Xt be
the fiber of π over t ∈ T . Thanks to the Kodaira vanishing theorem, we
have

Hq(Xt,−mKXt) = 0 for q ≥ 1.

By the Riemann-Roch theorem,
∑

q

(−1)qhq(Xt,−mKXt)

is a constant independent of t. Therefore h0(Xt,−mKXt) is also a constant
and by a standard result of H.Grauert, the direct image E = π∗(−mKX) is
locally free.

Since −KX is nef, for any ǫ > 0 fixed, there exists a smooth metric ϕ on
−mKX such that

iΘϕ(−mKX) ≥ −ǫωT .

Since E is known to be locally free, we can use formula (4.8) in [Ber]. In
particular, the Bergman Kernel on E gives a metric on E and we write its
curvature as

ΘE =
∑

j,k

ΘE
jk,ϕdtj ∧ dtk

where {ti} are the coordinates of T . Using the terminology in [Ber], we
assume that {ui} is a base of local holomorphic sections of E such that
D1,0ui = 0 at a given point. We now calculate the curvature at this point.
Let

Tu =
∑

j,k

(uj , uk)
̂dtj ∧ dtk.

Then

i∂∂Tu = −
∑

j,k

(ΘE
jk,ϕuj , uk)dVt.

By the formula (4.8) in [Ber], we obtain2

−i∂∂Tu ≥ cπ∗(û ∧ û ∧ i∂∂ϕe−ϕ)

where the constant c is independent of ϕ. Since i∂∂ϕ ≥ −ǫωT by the choice
of ϕ, we have

−i∂∂Tu ≥ −cǫπ∗(û ∧ û ∧ ωT e
−ϕ)

= −cǫ(

∫

Xt

∑

j

(uj , uj)e
−ϕ)dVt

= −cǫ‖u‖2dVt.

2The i∂∂ϕ below is just iΘϕ(−mKX).
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In other words, we have
∑

j,k

(ΘE
jk,ϕuj, uk) ≥ −cǫ‖u‖2.

Therefore we get the proposition.
�

Proposition 2.2. Let T = Cn/Γ be a complex torus of dimension n, and
α ∈ H1,1(T,Z) an effective non trivial element. Then T possess a submer-
sion

π : T → S

to an abelian variety S. Moreover α = π∗c1(A) for some ample line bundle
A on S.

Proof. Since T is a torus, we can suppose that α is a constant semipositive
(1, 1)-form. As α is an integral class, it defines a bilinear form

GQ : (Γ⊗Q)× (Γ⊗Q) → Q.

We denote its extension to Γ ⊗ R by GR. Let V be the maxium subspace
of Γ⊗ Q, on which GQ is zero. Therefore VR = V ⊗ R is also the kernel of
GR, and (Γ ∩ VR) ⊗ R = VR. Moreover, since α is an (1, 1)-form, VR is a
complex subspace of Cn. Hence VR/(Γ∩ VR) is a complex torus. We denote
it T1. Observing that T/T1 is also a complex torus, we have thus a natural
holomorphic submersion T → T/T1. We denote the complex torus T/T1 by
S. Since VR is the kernel of GR, α is well defined on S and is moreover
strictly positive on it. The proposition is proved. �

Proposition 2.3. Let E be a numerically flat bundle on a compact Kähler
manifold. Then E is a local system.

Proof. Thanks to Thoerem 1.18 in [DPS], all numerically flat vector bundles
are successive extensions of hermitian flat bundles. By the section 3 of [Sim],
all such types of bundles are local systems. The proposition is proved. �

Remark. This simple proof is due to C.Simpson. When X is just a finite
étale quotient of a torus, one can give a more elementary proof. Since that
proof is a bit long and technical, we omit the proof here and refer instead to
our forthcoming PhD thesis.

We need a partial vanishing theorem with multiplier ideal sheaf (cf.[Dem2]
for the definition of multiplier ideal sheaves and analytic singularities).

Proposition 2.4. Let L be a line bundle on a compact Kähler manifold
(X,ω) of dimension n and let ϕ be a metric on L with analytic singularities.
Let λ1(z) ≤ λ2(z) ≤ · · · ≤ λn(z) be the eigenvalues of i

2πΘϕ(L) with respect
to ω. If

(4.1)

p∑

i=1

λi(z) ≥ c
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for some constant c > 0 independent of z ∈ X, then

Hq(X,KX ⊗ L⊗ I(ϕ)) = 0 for q ≥ p.

Proof. Since ϕ has analytic singularities, there exists an analytic subvariety
Y such that ϕ is smooth on X \ Y . Moreover it is known that there exists
a quasi-psh function ψ on X, smooth on X \ Y such that (cf. [Dem1])

I(ϕ) = I(ϕ+ ψ)

and ω̃ = c1ω + i∂∂ψ is a complete metric on X \ Y for some fixed constant
c1 with 0 < c1 ≪ c. To prove the proposition, it is therefore equivalent to
prove that

(4.2) Hq(X,KX ⊗ L⊗ I(ϕ+ ψ)) = 0 for q ≥ p.

We consider the new metric φ = ϕ + ψ on L (i.e. the new metric is
‖ · ‖ϕe

−ψ). Then

(4.3)
i

2π
Θφ(L) =

i

2π
Θϕ(L) + ddcψ = (

i

2π
Θϕ(L)− c1ω) + ω̃.

We claim that the sum of p-smallest eigenvalues of i
2πΘφ(L) with respect to

ωτ = ω + τ ω̃ is larger than c
2 when τ is small enough with respect to c1.

Proof of the claim: By the minimax principle, it is sufficient to prove that
for any p-dimensional subspace V of (TX)x, we have

(4.4)

p∑

i=1

〈
i

2π
Θφ(L)ei, ei〉 ≥

c

2

where {ei} is an orthonormal basis of V with respect to ωτ .
We first consider the case when V contains an element e such that

ω̃(e, e) ≥
c1
τ

and |e|ω = 1.

Since ϕ is a quasi-psh function, there exists a constant M independent of τ
such that

(
i

2π
Θϕ(L)− c1ω) ≥ −Mω.

Thanks to (4.3), we have

〈
i

2π
Θφ(L)e, e〉 ≥ −M + ω̃(e, e) ≥

ω̃(e, e)

2
,

where the last inequality comes from the facts that τ is small enough with
respect to c1 and ω̃(e, e) ≥ c1

τ . Observing moreover that the construction of
ωτ implies

〈e, e〉ωτ ≤ 1 + τ · ω̃(e, e),

then

(4.5)
〈 i
2πΘφ(L)e, e〉

〈e, e〉ωτ
≥

ω̃(e, e)

2 + 2τ ω̃(e, e)
.
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Since τ is small enough with respect to c1, the inequality (4.5) implies that
〈 i
2π

Θφ(L)e,e〉

〈e,e〉ωτ
is large enough with respect to M and c. Noting that (4.3)

implies

〈
i

2π
Θφ(L)e

′, e′〉 ≥ −Mω(e′, e′) ≥ −Mωτ (e
′, e′)

for any e′ ∈ V , the inequality (4.5) implies thus the inequality (4.4).
In the case when

τ · ω̃(e, e) ≤ c1 for any e ∈ V with |e|ω = 1,

we have

(4.6) |ωτ − ω|ω ≤ c1 on V,

i.e. for considering just the restriction on V , the difference between ωτ and ω
is controled by c1ω. On the other hand, using again the minimax principle,
(4.1) implies that

p∑

i=1

〈
i

2π
Θϕ(L)ẽi, ẽi〉 ≥ c

for any orthonormal basis {ẽi} of V with respect to ω. Combining with (4.3)
and the smallness assumption on c1, we have

(4.7)

p∑

i=1

〈
i

2π
Θφ(L)ẽi, ẽi〉 ≥

3c

4
.

Since c1 is a fixed constant small enough with respect to c, (4.6) and (4.7)
imply the inequality (4.4). The claim is proved.

Let f be a L-valued closed (n, q)-form such that
∫

X
|f |2e−2ϕ−2ψωn < +∞.

To prove the proposition, it is equivalent to find a L-valued (n, q − 1)-form
g such that

f = ∂g and

∫

X
|g|2e−2ϕ−2ψωn < +∞.

Thanks to our claim, we can use the standard L2 estimate on

(X \ Y, ωτ , L, e
−ϕ−ψ).

In particular, we can find a gτ such that f = ∂gτ and 3

∫

X\Y
|g|2e−2φωnτ ≤ C

∫

X\Y
|f |2e−2φωnτ < +∞.

3It is known that
∫
X\Y

|f |2e−2φωnτ ≤
∫
X\Y

|f |2e−2φωn < +∞.
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for a constant C depending only on c (i.e. C is independent of τ). Letting
g = lim

τ→0
gτ , we get f = ∂g on X \ Y and

∫

X\Y
|g|2e−2φωn < +∞.

Lemma (11.10) in [Dem2] implies that such g can be extended to the whole
space X, and f = ∂g on X. Therefore (4.2) is proved. �

As a corollary of the main theorem in [DPS], we prove that every compact
Kähler manifold with nef tangent bundle admits a smooth fibration to an
étale Galois quotient of a torus.

Lemma 2.5. Let X be a compact Kähler manifold with nef tangent bundle

and let X̃ → X be an étale Galois cover with group G such that X̃ satisfies
Theorem 1.1 (i.e. Main theorem in [DPS]). Then G induces a free auto-

morphism group on T = Alb(X̃) and we have the following commutative
diagram

X̃ −−−−→ X
yπ̃

yπ

T −−−−→ T/G

where π̃ : X̃ → T is the Albanese map in Theorem 1.1, and T/G is an étale
Galois quotient of the torus T .

Proof. By the universal property of Albanese map, for any g ∈ G, g induces

an automorphism on T , and the action of g on X̃ maps fibers to fibers. We
need hence only to prove that G acts on T freely. Suppose by contradiction

that g(t0) = t0 for some t0 ∈ T and g ∈ G. Since g acts on X̃ without fixed

point, g induces an automorphism on X̃t0 without fixed points, where X̃t0 is

the fiber of π̃ over t0. Combining with the fact that X̃t0 is a Fano manifold,

the quotient X̃t0/g is hence also a Fano manifold. Thus the Nadel vanishing
theorem implies that

(5.1) χ(X̃t0 ,OX̃t0
) = χ(X̃t0/g,OX̃t0/g

) = 1.

(5.1) contradicts with the fact that the double cover X̃t0 → X̃t0/g implies

χ(X̃t0 ,OX̃t0
) = 2χ(X̃t0/g,OX̃t0/g

).

Then G factorizes to an étale Galois action on T , and the lemma is proved.
�
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3. Deformation of compact Kähler manifolds with hermitian

semipositive anticanonical bundles or nonpositive

bisectional curvatures

We first treat a special case, i.e., how to appproximate compact manifolds
with numerically trivial canonical bundles by projective varieties. To prove
the statement, we need the following two propositions.

Proposition 3.3 in [Voi1]. Assume that a deformation unobstructed com-
pact Kähler manifold X has a Kähler class ω satisfying the following condi-
tion: the interior product

ω∧ : H1(X,TX) → H2(X,OX)

is surjective. Then X can be approximated by projective varieties.

Remark. The proof of this proposition is based on a density criterion (cf.
Proposition 5.20 in [Voi2]) which will also be used in Proposition 3.3 and
Proposition 3.5. We need moreover a slightly generalized version of Propo-
sition 3.3 in [Voi1]. In fact, we can suppose ω to be a nef class in X, since
the surjectivity is preserved under small perturbation. Moreover, if X is not
necessarily unobstructed, we just need a deformation unobstructed subspace
V of H1(X,TX) such that

ω ∧ V → H2(X,OX )

is surjective. In summary, we have the following variant of the above propo-
sition.

Version B of Proposition 3.3 in [Voi1]. Let X → ∆ be a deformation of
a compact Kähler manifold X and V be the image of Kodaira-Spencer map
of this deformation. If there exists a nef class ω in H1,1(X) such that

ω ∧ V → H2(X,OX )

is surjective, then there exists a sequence ti → 0 in ∆ such that all the fibers
Xti are projective.

In general, it is difficult to check the surjectivity in the above proposition.
By a well-known observation communicated to us by J-P. Demailly, one
can prove that the above morphism is surjective when −KX is hermitian
semipositive by using the following Hard Lefschetz theorem.

Hard Lefschetz theorem. (cf. Corollary 15.2 in [Dem2]) Let (L, h) be
a semi-positive line bundle on a compact Kähler manifold (X,ω) of dimen-
sion n i.e., h is a smooth metric on L and iΘh(L) ≥ 0. Then the wedge
multiplication operator ωq∧ induces a surjective morphism

ωq∧ : H0(X,Ωn−qX ⊗ L) → Hq(X,ΩnX ⊗ L).

Using the above two propositions, we can reprove the following well-known
fact.



DEFORMATION OF KÄHLER MANIFOLDS 11

Proposition 3.1. Let X be a compact Kähler manifold with c1(X)R = 0.
Then it can be approximated by projective varieties.

Proof. By a theorem due to Beauville, there exists a finite Galois cover

X̃ → X such thatK
X̃

is trivial. ThenKX is a torsion line bundle. Using the
Tian-Todorov theorem (cf. the torsion version in [Ran]), X is unobstructed.
To use Proposition 3.3 in [Voi1], we just need to check that

(3.1) ω∧ : H1(X,TX) → H2(X,OX)

is surjective for some Kähler class ω.
In fact, since c1(KX)R = 0, there exists a smooth metric h on −KX

such that iΘh(−KX) = 0. Thus (−KX , h) is semipositive. Then the Hard
Lefschetz theorem above told us that for any Kähler metric ω, the morphism

ω2∧ : H0(X,Ωn−2 ⊗ (−KX)) → H2(X,KX ⊗ (−KX))

is surjective. Observing moreover that

ω2 ∧H0(X,Ωn−2 ⊗ (−KX))

is contained in the image of

ω ∧H1(X,Ωn−1 ⊗ (−KX)) = ω ∧H1(X,TX ),

(3.1) is thus surjective. Using Proposition 3.3 in [Voi1], the proposition is
proved. �

We now begin to prove the main proposition in this section, i.e., one can
approximate compact Kähler manifolds with hermitian semipositive anti-
canonical bundles by projective varieties. The main tool is the structure
theorem of [DPS 96]:

Structure Theorem. Let X be a compact Kähler manifold with −KX

hermitian semipositive. Then

(i) The universal cover X̃ admits a holomorphic and isometric splitting

X̃ = Cq × Y1 × Y2

with Y1 being the product of either Calabi-Yau manifolds or symplectic man-
ifolds, and Y2 being projective. Moreover H0(Y2,Ω

⊗q
Y2

) = 0 for q ≥ 1.

(ii) There is a normal subgroup Γ1 ⊂ π1(X) of finite index such that

X̃/Γ1 has a smooth fibration to a compact manifold: Z = (Cq×Y1)/Γ1, and
the fibers are Y2.

Remark. Since ΩqY2 ⊂ Ω⊗q
Y2

, the above structure theorem implies that

H0(Y2,Ω
q
Y2
) = 0.

Therefore Hq(Y2,O) = 0 by duality.

We need also the following lemma.
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Lemma 3.2. Let X be a compact Kähler manifold with KX = OX , and
G a finite subgroup of the biholomorphic group Aut(X). Then there exists
a local deformation of X: X → ∆ such that the image of the Kodaira-
Spencer map of this deformation is equal to H1(X,TX )G−inv and X admits
a holomorphic G-action fiberwise, where H1(X,TX )G−inv is the G-invariant
subspace of H1(X,TX).

Proof. By the Kuranishi deformation theory, it is sufficient to construct a
vector valued (0, 1)-form

ϕ(t) =
∑

ki≥0

ϕk1···kmt
k1
1 · · · tkmm

such that

(∗) ϕ(0) = 0 and ∂ϕ(t) =
1

2
[ϕ(t), ϕ(t)]

where ϕk1···km are G-invariant vector valued (0, 1)-forms, {ϕk1···km}
∑
ki=1

gives a basis of H1(X,TX )G−inv and t1, ..., tm are parameters of ∆. By
[MK], it is equivalent to find G-invariant vector valued (0, 1)-forms ϕµ such
that

(∗∗) ∂ϕµ =
1

2

∑

|λ|<|µ|

[ϕλ, ϕµ−λ]

for any µ.
Suppose that we have already found ϕµ for |µ| ≤ N such that (∗∗) is

satisfied for all |µ| ≤ N . If |µ| = N + 1, thanks to [Tian], there exists a
vector valued (0, 1)-form sµ satisfying

∂sµ =
1

2

∑

|λ|≤N

[ϕλ, ϕµ−λ].

Recall that if Y1, Y2 are two G-invariant vector valued (0, 1)-forms, then
[Y1, Y2] is also a G-invariant vector valued (0, 2)-form 4. Therefore ∂sµ is
a G-invariant vector valued (0, 2)-form. The finiteness of G and the above
G-invariance of ∂sµ imply hence that 1

|G|

∑
g∈G

g∗sµ is a G-invariant vector

valued (0, 1)-form satisfying (∗∗). The lemma is proved. �

The following proposition tells us that for a compact Kähler manifold with
numerically trivial canonical bundle, if it admits “more automorphisms”,
then it is “more algebraic”. More precisely, we have

Proposition 3.3. Let π : X → ∆ be the deformation constructed in Lemma
3.2. Then there exists a sequence ti → 0 ∈ ∆ such that Xti are projective
varieties.

4Let α ∈ G, f ∈ C∞(X) and x ∈ X. Using the G-invariance of Y1 and Y2, we have
α∗(Y1Y2)(f)(x) = Y1Y2(f ◦ α)(α−1(x)) = Y1(Y2(f) ◦ α)(α

−1(x)) = Y1(Y2(f))(x). Thus
[Y1, Y2] is also G-invariant.
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Proof. We first prove that H2(X,Q)G−inv admits a sub-Hodge structure of
H2(X,Q). In fact, we have the equalityH2(X,Q)G−inv⊗R = H2(X,R)G−inv

by observing that G acts continuous on H2(X,R). Combining with the
obvious Hodge decomposition

H2(X,C)G−inv = ⊕p+q=2H
p,q(X,C)G−inv,

H2(X,Q)G−inv is thus a sub-Hodge structure of H2(X,Q). Then π induces
a VHS of H2(X,Q)G−inv.

Let ωX be a G-invariant Kähler metric on X. (3.1) of Proposition 3.1
implies that

ωX ∧H1(X,TX) → H2(X,O)

is surjective. Thanks to the G-invariance of ωX ,

ωX ∧H1(X,TX )G−inv → H2(X,O)G−inv

is also surjective. Using the density criterion Proposition 5.20 in [Voi2] and
the same argument of Proposition 3.3 in [Voi1], the proposition is proved. �

We now prove the main result in this section.

Proposition 3.4. Let X be a compact Kähler manifold with −KX hermitian
semipositive. Then it can be approximated by projective varieties.

Proof. We prove it in three steps.
Step 1: We use the terminology of the Structure Theorem in this section.

Let G = π1(X)/Γ1 and X1 = X̃/Γ1. Then G acts on X1 and X = X1/G.
Thanks to (ii) of the Structure Theorem, we have the smooth fibration

(4.1) π : X1 → Z

with the fibers Y2. We prove in this step that

Hq(X1,O) = Hq(Z,O) and Hq(X1,O)G−inv = π∗(Hq(Z,O)G−inv).

Thanks to the smooth fibration (4.1), we can calculate Hq(X1,O) by the
Leray spectral sequence. Then the first equality comes directly from the
fact that

Hq(Y2,O) = 0 for q ≥ 1

(cf. the remark of the Structure Theorem in this section). As for the second
equality, we just need to check that the image of the injective map

(4.2) π∗ : Hq(Z,O)G−inv → Hq(X1,O)

is Hq(X1,O)G−inv. Let γ ∈ G and α a smooth differential form on Z. Since
π1(X) acts on Cq × Y1 and Y2 separately, we have the diagram

X1
γ

−−−−→ X1yπ
yπ

Z
γ

−−−−→ Z

.
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Then the equality

γ∗(π∗α) = π∗(γ∗α)

implies that the image of the morphism (4.2) is contained inHq(X1,O)G−inv.
As for the surjectivity, we suppose that β ∈ Hq(X1,O)G−inv. Thanks to the
proved equality

Hq(X1,O) = Hq(Z,O),

we can find an element µ ∈ Hq(Z,O) such that π∗µ = β as an element in
Hq(X1,O). Since

π∗(γ∗µ) = γ∗(π∗µ) = γ∗(β) = β = π∗(µ)

in Hq(X1,O), the injectivity of (4.2) implies that γ∗(µ) = µ in Hq(Z,O).
Then µ is G-invariant and (4.2) gives an isomorphism from Hq(Z,O)G−inv

to Hq(X1,O)G−inv.

Step 2: Let ωG−inv
Z be a G-invariant Kähler metric on Z. We construct

in this step a deformation of Z: Z → ∆ such that

ωG−inv
Z ∧ V → H2(Z,O)G−inv

is surjective, where V is the image of the Kodaira-Spencer map of this
deformation. Moreover, Z should admit a holomorphic G-action fiberwise.

Since c1(Z)R = 0 by construction, Proposition 3.1 implies that

ωG−inv
Z ∧H1(Z, TZ) → H2(Z,O)

is surjective. Then

(4.3) ωG−inv
Z ∧H1(Z, TZ)

G−inv → H2(Z,O)G−inv

is also surjective. Thanks to Lemma 3.2, there exists a deformation of Z
satisfying the requirements of deformation in this step, especially it admits
a holomorphic G-action fiberwise.

Step 3: Final conclusion.
SinceX1 is the quotient of Γ1 y Cq×Y1×Y2 and Γ1 acts on Cq×Y1 and Y2

separately, the deformation of (Cq×Y1)/Γ1 in Step 2 induces a deformation
of X1:

X1 → ∆

by preserving the complex structure of Y2. By construction, we have a
natural fibration

π̃ : X1 → Z.

Moreover, since G is holomorphic for every Zt, the quotient X = X1/G is a
smooth deformation of X. In summary, we have the following diagrams:

X1
G

−−−−→ X
yπ

Z

and

X1
G

−−−−→ X
yπ̃

Z

.
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Thanks to Proposition 3.3, there exists a sequence ti → 0 ∈ ∆ such that
Zti are projective. Since the fibers of π̃ are also projective by the Structure
Theorem, Xti are projective. The proposition is proved. �

Remark. For the further application, we need study the deformation X in
detail. Since π∗ωG−inv

Z is a G-invariant semipositive form on X1, it comes

from a nef class on X. We denote it also π∗ωG−inv
Z for simplicity. Let V

be the image of Kodaira-Spencer map of the deformation X → ∆. We now
prove that

(4.4) π∗ωG−inv
Z ∧ V → H2(X,O)

is surjective. Thanks to the construction of X1 and the surjectivity of (4.3),
the morphism

(4.5) π∗ωG−inv
Z ∧W → π∗(H2(Z,O)G−inv)

is surjective on X1, where W is the image of Kodaira-Spencer map of the
deformation X1 → ∆. Since

π∗(H2(Z,O)G−inv) = Hq(X1,O)G−inv

which is proved in Step 1, (4.5) implies that

π∗ωG−inv
Z ∧W → Hq(X1,O)G−inv

is surjective. Thus (4.4) is surjective.

As an application, we prove the Conjecture 2.3 and 10.1 in [BDPP] for
compact Kähler manifolds with hermitian semipositive anticanonical bun-
dles.

Proposition 3.5. If X is a compact Kähler manifold with −KX hermitian
semipositive, then the Conjecutre 2.3 and 10.1 in [BDPP] are all true.

Proof. By the remark of Proposition 3.4, there exists a local deformation of
X

π : X → ∆,

such that

(5.1) α ∧ V → H2(X,O)

is surjective for some nef class α ∈ H1,1(X,R), where V is the image of the
Kodaira-Spencer map of π.

Let β be any smooth closed (1, 1)-form on X. Thanks to the surjectivity
of (5.1),

(β + sα) ∧ V → H2(X,O)

is also surjective for any s 6= 0 small enough. By the proof of Proposition
5.20 in [Voi2], we can hence find a sequence of smooth closed 2-forms {βt}
on X, such that

lim
t→0

βt = β + sα

in C∞-topology and βt ∈ H1,1(Xt,Q). By the same argument as in Theorem
10.12 of [BDPP], the proposition is proved. �
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We now study the case when X has a real analytic metric and nonpositive
bisectional curvatures. Recall first the structure theorem E in [WZ]

Proposition 3.6. Let X be a compact Kähler manifold of dimension n with

real analytic metric and nonpositive bisectional curvature, and let X̃ be its
universal cover. Then

(i) There exists a holomorphically isometric decomposition X̃ = Cn−r ×
Y r, where Y r is a complete manifold with nonpositve bisectional curvature
and the Ricci tensor of Y r is strictly negative somewhere.

(ii) (cf. Claim 2 of Theorem E in [WZ]) There exists a finite index sub-
normal group Γ′ of Γ = π1(X) such that Y r/Γ′ is a compact manifold and

X̃/Γ′ possess the smooth fibrations to Y r/Γ′ and Cn−r/Γ′.

Remark. By Claim 2 of Theorem E in [WZ], Cn−r/Γ′ is a torus. We
should notice that in contrast to the case when −KX is semipositive, Y r is
not necessary compact in this proposition. The universal covers of curves
of genus g ≥ 2 are typical exemples. The good news here is that Y r/Γ′ is a
projective variety of general type thanks to (i).

Proposition 3.7. Let X be a compact Kähler manifold of dimension n with
real analytic metric and nonpositive bisectional curvature. Then it can be
approximated by projective varieties.

Proof. Keeping the notation in Proposition 3.6, T = Cn−r/Γ′ is a torus with
the finite group action G = Γ/Γ′. By Lemma 3.2, there exists a deformation
of T

π : T → ∆

such that G acts holomorphically fiberwise. Therefore this deformation in-

duces the deformations of X̃/Γ′ and X by preserving the complex structure
on Y r. We denote

X̃/Γ′ → ∆ and X → ∆.

Thanks to the construction, Xt is the G-quotient of X̃t/Γ
′, where Xt and

X̃t/Γ
′ are the fibers over t ∈ ∆ of the above deformations.

Let ti → 0 be the sequence in Proposition 3.3 such that Tti are projective.
By Proposition 3.6, we have two fibrations:

X̃ti/Γ
′ → Tti and X̃ti/Γ

′ → Y r/Γ′.

Thanks to the projectivity of Tti and the remark of Proposition 3.6, X̃ti/Γ
′

is thus projective. Therefore all Xti are projective and the proposition is
proved. �

4. A deformation proposition

The following sections are devoted to the deformation problem of compact
Kähler manifolds with nef tangent bundles. We discuss in this section how
to deform varieties that are defined by certain numerically flat fibrations.
We first prove a preparatory lemma.
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Lemma 4.1. Let T be a torus and let E be a numerical flat bundle on the
torus possessing a filtration

(1.1) 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that the quotients Ei/Ei−1 are irreducible hermitian flat vector bundles.
Then all elements in H0(T,E) are parallel with respect to the natural local
system induced by the filtration (1.1).

In particular, if there are two such filtrations, the transformation matrices
between these two filtrations should be locally constant.

Proof. Thanks to [Sim], the filtration (1.1) induces a natural local system
on E. If Ei/Ei−1 is a non trivial irreducible hermitian flat bundle. then
H0(T,Ei/Ei−1) = 0. Using the recurrence process, to prove that all elements
in H0(T,E) are parallel with respect to the local system, it is sufficient to
prove that if F is a non trivial extension

0 −−−−→ OT
i

−−−−→ F −−−−→ OT −−−−→ 0,

then H0(T, F ) = i(H0(T,OT )). In fact, we have the exact sequence

0 −−−−→ H0(T,OT )
i

−−−−→ H0(T, F ) −−−−→ H0(T,OT )
δ

−−−−→ H1(T,OT ).

Since h0(T,OT ) = 1 and F is a non trivial extension, δ is injective. Therefore
i(H0(T,OT )) = H0(T, F ). Then all elements in H0(T, F ) should be parallel
with respect to the natural local system induced by (1.1).

If there is another filtration

0 = E′
0 ⊂ E′

1 ⊂ · · · ⊂ E′
n = E,

then it induces a filtration on E∗. Using this filtration on E∗ and the filtra-
tion (1.1) on E, we get a natural filtration on Hom(E,E) = E∗⊗E. Apply-
ing this lemma, the natural identity element id ∈ H0(T,Hom(E,E)) should
be parallel with respect to the filtration. In other words, the transformation
matrices between these two filtrations should be locally constant. �

Proposition 4.2. Let X be a Kähler manifold possessing a submersion
π : X → T , where T is a finite étale quotient of a torus. Assume that −KX

is nef and relatively ample. If moreover Em = π∗(−mKX) is numerically
flat for any m > 0, then there is a smooth deformation of the fibration which
can be realized as:

X
π

−−−−→ T
π1−−−−→ ∆

such that π1 : T → ∆ is the local universal deformation of T and the central
fiber is X → T .

Moreover, let Ts be the fiber of π1 over s ∈ ∆, and let Xs be the fiber
of π ◦ π1 over s ∈ ∆. Then the anticanonical bundle of Xs is also nef and
relatively ample with respect to the fibration Xs → Ts for any s ∈ ∆.

Proof. Thanks to Theorem 3.20 of [DPS], we have the embeddings X →֒
P(Em) and Vm,p = π∗(IX ⊗ OP(Em)(p)) ⊂ SpEm for m, p large enough.
More importantly, Vm,p and SpEm are numerically flat vector bundles. By
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Proposition 2.3, SpEm is in fact a local system on T which be represented
by locally constant transformation matrices and its subbundle Vm,p can be
represented by the upper blocks of the transformation matrices.

Thanks to Proposition 2.3 of [Ran], the deformation of T is unobstructed.
Let π1 : T → ∆ be the local universal deformation of T . Then the trans-
formation matrices of SpEm, Vm,p are always holomorphic under the defor-
mation of the complex structure on T . Therefore we get the holomorphic
deformations of these vector bundles by changing the complex strucutre on
T :

Vm,p

##H
H

H

H

H

H

H

H

H

�

�

// SpEm

��

T

��

∆

and Vm,p × P(Em)

��

T

��

∆

.

Let U ⊂ T be any small open neighborhood. By the discussion after
Proposition 3.19 in [DPS], a local basis of Vm,p gives the determinant poly-
nomials of X in P(Em) over U . The proof of Proposition 2.3 also implies
that Vm,p is a sub-local system of SpEm. Now we have two filtrations on
Sp(Em), one is induced by the inclusion Vm,p ⊂ SpEm and the another is
induced by a filtration on Em. Thanks to Lemma 4.1, on the small open
set U , we can choose a local basis of Vm,p with constant coefficients with
respect to Em, i.e the coefficients of the defining polynomials of X in P(Em)
over U can be choosen as constants. Then the defining equations of (Vm,p)
over U × s are the same as (Vm,p) over U × {0} for s ∈ ∆. Therefore Vm,p
defines a smooth deformation of X, we denote it

X
π

−−−−→ T
π1−−−−→ ∆.

As for the second part of the proposition, we first prove that −KXt is
ample on Xt where Xt is the fiber of X → T over t ∈ T and t is in a
neighborhood of T in T . Since −KXt0

is ample for for t0 ∈ T , by [Yau]

there exists a Kähler metric ωt0 on Xt0 such that iΘωt0
(−KXt0

) > 0. By

a standard continuity argument (cf. Theorem 3.1 of [Sch] for exemple),
we can construct Kähler metrics ωt on Xt for t in a neighborhood of t0 in
T and by continuity the curvatures iΘωt(−KXt) are all positive for t in a
neighborhood of t0 in T . Therefore −KXt is ample on Xt for t near t0 in T .
Letting t0 run over T , then −KXt is ample for all t in a neighborhood of T
in T .

We need also prove that −KXs is nef on Xs, where Xs is the fiber of π◦π1
over s ∈ ∆. Let (Em)s be the fiber of Em → ∆ over s. By construction,
(Em)s is numerically flat on Ts, where Ts is fiber of π1 over s. ThenOP(Em)(1)
is nef on P(Em)s. Since Xs is embedded in P(Em)s, OP(Em)(1)|Xs is also nef
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for any s ∈ ∆. If s = 0, we have

OP(Em)(1)|Xs = −mKX .

Therefore

c1(OP(Em)(1)|Xs) = c1(−mKXs)

for s ∈ ∆ by the rigidity of integral classes. Then the nefness of OP(Em)(1)|Xs
implies that −mKXs is nef for all s ∈ ∆.

The proposition is proved.
�

Remark. In general, nefness is not an open condition in families (cf. The-
orem 1.2.17 [Laz]). Thanks to the above construction, nefness is preserved
under deformation in our special case.

Thanks to Proposition 4.2, we immediately get the following corollary.

Corollary 4.3. Let X be a compact Kähler manifold satisfying the condition
in Proposition 4.2. Then X can be approximated by projective varieties.
Moreover, nd(−KX) = n− dimT .

Proof. By Proposition 4.2, there exists a deformation of X → T :

X
π

−−−−→ T
π1−−−−→ ∆

such that T → ∆ is the local universal deformation of T and X → T is the
central fiber of this deformation. By Proposition 3.1, there exists a sequence
si → 0 in ∆ such that all Tsi are projective. Using Proposition 4.2, we know
that the fibers of

Xsi → Tsi

are Fano manifolds. Then all Xsi are projective and X can be approximated
by projective manifolds.

As for the second part of the corollary, by observing that −KX is relatively
ample, we have nd(−KX) ≥ n−r. If nd(−KX) ≥ n−r+1, by the definition
of numerical dimension we have

∫

X
(−KX)

n−r+1 ∧ ωr−1
X > 0.

By continuity,

(3.1)

∫

Xsi

(−KXsi
)n−r+1 ∧ ωr−1

Xsi
> 0

for |si| ≪ 1. Thanks to Proposition 4.2, −KXsi
are nef. Then (3.1) im-

plies the existence of a projective variety Xsi such that −KXsi
is nef and

nd(−KXsi
) ≥ n − r + 1, which contradicts with the Kawamata-Viehweg

vanishing theorem for projective varieties. We get a contradiction and the
corollary is proved. �
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5. A Kawamata-Viehweg vanishing theorem

As pointed out in the introduction, when X is a projective variety of
dimension n and L is a nef line bundle on X with nd(L) = k, we have the
Kawamata-Viehweg vanishing theorem:

Hr(X,KX + L) = 0 for r > n− k.

But it is probably a difficult problem to prove this vanishing theorem for
a non projective compact Kähler manifold. We will prove in this section a
Kawamata-Viehweg vanishing theorem for certain Kähler manifolds. More
precisely, we say that a compact Kähler manifold X of dimension n and a
nef line bundle L satisfy conditions (∗), if

Conditions (∗): Let L be a nef line bundle on a compact Kähler manifold
X of dimension n . We say that (X,L) satisfies conditions (∗), if

(i) There exists a smooth two steps tower fibration

X
π

−−−−→ T
π1−−−−→ S

where π is a submersion to a smooth variety T of dimension r, and π1 is a
submersion to a smooth curve S.

(ii) The nef line bundle L is relatively ample with respect to π and

π∗(L
n−r+1) = π∗1(OS(1))

(this implies that nd(L) > n− r) for some ample line bundle OS(1) on S.
(iii) Moreover, we suppose that 5

Ln−r+t ∧ π∗π∗1(OS(1)) = 0 where n− r + t = nd(L).

We will prove in this section that if (X,L) satisfies the conditions (∗),
then

Hp(X,KX + L) = 0 for p ≥ r.

Before the proof of this vanishing theorem, we first prove a useful lemma.

Lemma 5.1. Assume that (X,L) satisfies the conditions (∗). Then L −
cπ∗π∗1(OS(1)) is pseudo-effective for some constant c > 0.

Proof. We first explain the idea of the proof. By using a Monge-Ampère
equation, we can construct a sequence of metrics {ϕǫ} on L, such that

i

2π
Θϕǫ(L) ≥ cπ∗π∗1(OS(1)) for all small ǫ.

Then i
2πΘϕ(L) ≥ cπ∗π∗1OS(1), where ϕ is a limit of some subsequence of

{ϕǫ}. In this way, the lemma would therefore be proved. This idea comes
from [DP], but the proof here is in some sense much simpler because we do
not need their diagonal trick in our case.

5It is redundant when X is projective. See the remark after Lemma 5.1 for the expla-
nation of this assumption.
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Observing first that (ii) of the condition (∗) implies that nd(L) > n− r,
we can thus suppose that nd(L) = n− r+ t, for some t ≥ 1. For simplicity,
we denote π∗π∗1OS(1) by A. Let s ∈ S, and Xs the fiber of π ◦ π1 over s.
We first fix a smooth metric h0 on OS(1). Thanks to the semi-positivity of
A, we can choose a sequence of smooth functions ψǫ on X such that for the
metrics h0e

−ψǫ on A, the curvature forms i
2πΘψǫ(A) are semi-positive 6, and

(1.1)

∫

Vǫ

i

2π
Θψǫ(A) ∧ ω

n−1 ≥ C1 for ǫ→ 0

where Vǫ is an ǫ open neighborhood of Xs, and C1 > 0 is a uniform con-
stant. (All the constants Ci below will be uniformly strictly positive. When
the uniform boundedness comes from obvious reasons, we will not make it
explicit. )

Let τ1, τ2 two constants such that 1 ≫ τ1 ≫ τ2 > 0 which will be made
precise later. Let h be a fixed smooth metric on L. Thanks to the nefness
of L, we can solve a Monge-Ampère equation:

(1.2) (
i

2π
Θh(L) + τ1ω + ddcϕǫ)

n = C2,ǫ
τ r−t1

τn−1
2

(
i

2π
Θψǫ(A) + τ2ω)

n,

where

C2,ǫ =
( i
2πΘh(L) + τ1ω)

nτn−1
2

τ r−t1 ( i
2πΘψǫ(A) + τ2ω)n

.

Since nd(L) = n− r + t, we have inf
ǫ
C2,ǫ > 0.

Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of i
2πΘh(L)+ τ1ω+ ddcϕǫ with

respect to i
2πΘψǫ(A)+ τ2ω. Then the Monge-Ampère equation (1.2) implies

that

(1.3)

n∏

i=1

λi(z) = C2,ǫ
τ r−t1

τn−1
2

for any z ∈ X.

We claim that there exists a constant δ > 0 independent of ǫ, τ1, τ2, such
that

(1.4)

∫

Vǫ\Eδ,ǫ

i

2π
Θψǫ(A) ∧ ω

n−1 ≥
C1

2
for any ǫ,

where

Eδ,ǫ = {z ∈ Vǫ|

n∏

i=2

λi(z) ≥ C2,ǫ
τ r−t1

δτn−1
2

}.

We postphone the proof of the claim in Lemma 5.2 and finish the proof of
this lemma. Since

λ1(z) ≥
C2

τr−t
1

τn−1

2

C2
τr−t
1

δτn−1

2

= δ for z ∈ Vǫ \ Eδ,ǫ

6Note that here ψǫ are functions, but the ϕ’s in Proposition 2.1 are metrics! Therefore
in this lemma, i

2π
Θψǫ

(OS(1)) =
i
2π

Θh0(OS(1)) + ddcψǫ.
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by the definition of Eδ,ǫ and (1.3), (1.4) implies hence that
∫

Vǫ

(
i

2π
Θh(L) + τ1ω + ddcϕǫ) ∧ ω

n−1 ≥ C8

∫

Vǫ

λ1(z)
i

2π
Θψǫ(A) ∧ ω

n−1

(1.5) ≥ δC8

∫

Vǫ\Eδ,ǫ

i

2π
Θψǫ(A) ∧ ω

n−1 ≥ δ · C8 ·
C1

2
.

Letting ǫ→ 0, the choice of Vǫ and (1.5) imply that the weak limit of

i

2π
Θh(L) + τ1ω + ddcϕǫ

is more positive than C9[Xs]. Thus L+τ1ω−C9[Xs] is pseudo-effective. Since
C9 is independent of τ1, when τ1 → 0, we obtain that L−C9π

∗π∗1(OS(1)) is
pseudo-effective. The lemma is proved.

�

Remark. If one could generalize the Hovanskii-Teissier type inequality (5.4)
in [Dem93] to the Kähler case, the hypothesis

Ln−r+t ∧ π∗π∗1(OS(1)) = 0

made here would become redundant. When we prove the main theorem (The-
orem 6.2), we could easily exploit this hypothesis by induction on dimension.

Lemma 5.2. We now prove the claim in Lemma 5.1

Proof. By construction,

(2.1)

∫

X
(
n∏

i=2

λi(z))(
i

2π
Θψǫ(A) + τ2ω)

n

≤ C3

∫

X
(c1(L) + τ1ω + ddcϕǫ)

n−1 ∧ (
i

2π
Θψǫ(A) + τ2ω)

= C3

∫

X
(c1(L) + τ1ω)

n−1 ∧ (c1(A) + τ2ω).

On the other hand, using (iii) of the conditions (∗), we have

(2.2)

∫

X
(c1(L) + τ1ω)

n−1 ∧ (c1(A) + τ2ω)

= C4τ
r−t
1 c1(L)

n−r+t−1 ∧ c1(A) +O(τ2) ≤ C5τ
r−t
1 .

where the last inequality comes from the fact that τ2 ≪ τ1. Combining (2.1)
and (2.2), we have

(2.3)

∫

X
(
n∏

i=2

λi(z))(
i

2π
Θψǫ(A) + τ2ω)

n ≤ C6τ
r−t
1 .

For any δ fixed, (2.3) and the definition of Eδ,ǫ imply that
∫

Eδ

C2,ǫ
τ r−t1

δτn−1
2

(
i

2π
Θψǫ(A) + τ2ω)

n ≤ C6τ
r−t
1 .
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Combining with the fact that inf
ǫ
C2,ǫ > 0, we get

(2.4)

∫

Eδ,ǫ

(
i

2π
Θψǫ(A) + τ2ω)

n ≤ C7δτ
n−1
2 .

Since i
2πΘψǫ(A) is semi-positive, (2.4) implies that

(2.5)

∫

Eδ,ǫ

i

2π
Θψǫ(A) ∧ ω

n−1 ≤ C7δ.

By taking δ = C1

2C7
, (1.1) of Lemma 5.1 and (2.5) imply that

∫

Vǫ\Eδ,ǫ

i

2π
Θψǫ(A) ∧ ω

n−1 ≥
C1

2
.

The lemma is proved. �

Using Lemma 5.1, we would like to prove a Kawamata-Viehweg vanishing
theorem. Recall that T.Ohsawa proved in [Ohs] that if X → T is a smooth
fibration and (E, h) is a hermitian line bundle on X with i

2πΘh(E) ≥ π∗ωT .
Then

Hq(T,R0π∗(KX ⊗ E)) = 0

for q ≥ 1. In his proof, he uses the metrics π∗ωT +τωX on X and lets τ → 0
to preserve the information on T . The idea of our proof comes from this
technique.

Proposition 5.3. Assume that (X,L) satisfies the conditions (∗). Then

Hp(X,KX + L) = 0 for p ≥ r.

Proof. Thanks to the conditions (∗), we have a smooth fibration

X
π

−−−−→ T
π1−−−−→ S.

Using the fixed metric ωX , we have a C∞-decomposition of the tangent
bundle of X:

TX = TX/T ⊕ E1 ⊕ E2,

where TX/T is the relative tangent bundle of π : X → T , E1 is the relative
tangent bundle of π1 : T → S and E2 is the tangent bundle of S.

We first construct a metric h with analytic singularities on L such that
(i). iΘh(L) is strictly positive on TX/T .
(ii). The restrictions of iΘh(L) on E1 maybe negative, but the positivity

of the restrictions on E2 is large enough with respect to the negativity on
E1.

(iii). I(h) = OX .
By Lemma 5.1 and Demailly’s regularization theorem, for any ǫ > 0, there
is a singular metric h1 with analytic singularities such that

(3.1) iΘh1(L) ≥ cπ∗(ωS)− ǫωX .

We will make the choice of ǫ more explicit later on. Moreover, since L is
relatively ample, there is a smooth metric h2 on L, such that the restriction
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of iΘh2(L) on TX/T is strictly positive. Thanks to the nefness of L, we can
also choose a smooth metric hǫ on L such that

(3.2) iΘhǫ(L) ≥ −ǫωX .

We now define a new metric h on L by combining the above three metrics:

h = ǫ1h1 + ǫ2h2 + (1− ǫ1 − ǫ2)hǫ

for some 1 ≫ ǫ1 ≫ ǫ2 ≫ ǫ > 0.
We now check that the new metric h satisfies the above three conditions.

Since 1 ≫ ǫ1 ≫ ǫ2 and hǫ is smooth, Condition (iii) follows. To check the
first two properties, we first observe that (3.1) and (3.2) imply that

iΘh(L) ≥ cǫ1π
∗(ωS) + ǫ2iΘh2(L)− ǫωX .

Therefore it is enough to check the two conditions for cǫ1π
∗(ωS)+ǫ2iΘh2(L)−

ǫωX . Condition (i) follows by the observation that iΘh2 is strictly positive
on TX/T and ǫ2 ≫ ǫ. Since ǫ1 ≫ ǫ2, the positivity of iΘh(L) on the direction
of E2 is large enough with respect to the negativity on the directions of E1,
which comes from ǫ2iΘh2(L). Condition (ii) follows.

Let ωT be a Kähler metric on T and let ωτ = τωX + π∗(ωT ) for τ > 0.
When τ → 0, Condition (i) and Condition (ii) of h imply that the pair
(X,ωτ , L, h) satisfies the conditions in Proposition 2.4. Thus

Hp(X,KX + L⊗ I(h)) = 0 for p ≥ r.

Since I(h) = OX by our construction, we get

Hp(X,KX + L) = 0 for p ≥ r.

�

6. Deformation of compact Kähler manifolds with nef tangent

bundles

Before giving the proof of our main theorem, we need a technical lemma.

Lemma 6.1. Assume that X has a two step tower smooth fibration:

X
π

−−−−→ T
π1−−−−→ S,

where T is a torus of dimension r, and S is an abelian variety of dimension
s. We suppose also that the fibers of π are Fano manifolds. Let Sp be a
complete intersection of zero divisors of p general global sections of a very
ample line bundle OS(1) on S. Let Tp and Xp be the inverse images of Sp
in T and X. Then

Hr−p(Xp,KXp −KX) 6= 0 for 0 ≤ p ≤ s− 1.

Proof. By the adjunction formula −KXp+pπ
∗π∗1OS(1) = −KX |Xp , we have

(1.1) Hr−p(Xp,KXp −KX) = Hr−p(Xp, pπ
∗π∗1OS(1)).
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On the other hand, the assumption that the fibers of π are Fano manifolds
implies that

(1.2) Hr−p(Xp, pπ
∗π∗1OS(1)) = Hr−p(Tp, pπ

∗
1OS(1))

by using the Leray spectral sequence. Observing moreover that KTp =
pπ∗1OS(1), equalities (1.1) and (1.2) imply that

(1.3) Hr−p(Xp,KXp −KX) = Hr−p(Tp,KTp) for 0 ≤ p ≤ s− 1.

To prove the lemma, it is therefore enough to check the non vanishing of
Hr−p(Tp,KTp).

Since dimTp−dimSp = r− s for any p, by a standard vanishing theorem
(cf. Theorem 4.1 in Chapter VII of [Dem1]) we have

(1.4) Hr−s+i(Tp,KTp + π∗1OS(1)) = 0

for i ≥ 1 and p = 0, 1, ..., s − 1. Thanks to the exact sequence

0 → OTp−1
(KTp−1

) → OTp−1
(KTp−1

+ π∗1OS(1)) → OTp(KTp) → 0,

(1.4) implies that

(1.5) Hr−s+i(Tp,KTp) = Hr−s+i+1(Tp−1,KTp−1
) for i ≥ 1.

In particular, if we take i = s− p in (1.5), then

(1.6) Hr−p(Tp,KTp) = Hr−p+1(Tp−1,KTp−1
).

Since T0 = T is a torus, we have Hr(T0,KT0) 6= 0. Then (1.6) implies by
induction that

Hr−p(Tp,KTp) 6= 0 for 0 ≤ p ≤ s− 1.

Using (1.3), the lemma is proved. �

Theorem 6.2. Let X be a compact Kähler manifold of dimension n with
nef tangent bundle, and π : X → T a smooth fibration onto a torus T of
dimension r such that −KX is nef and relatively ample. Then nd(−KX) =
n− r.

Proof. We prove the theorem by contradiction. Observing that the relative
ampleness of −KX already implies that nd(−KX) ≥ n − r, we can thus
assume by contradiction that nd(−KX) ≥ n− r + 1. There are two cases.

Case 1: π∗((−KX)
n−r+1) is trivial on T .

Then

(2.1)

∫

X
c1(−KX)

n−r+1 ∧ (π∗ωT )
r−1 = 0,

where ωT is a Kähler form on T . Since TX is nef, by Corollary 2.6 in [DPS],
(2.1) implies that all degree n− r + 1 Chern polynomals P of TX satisfy

(2.2)

∫

X
P (TX) ∧ (π∗ωT )

r−1 = 0.
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Let Em = π∗(−mKX). By the Riemann-Roch-Grothendick theorem, we
have

(2.3) Ch(Em) = π∗(c1(−KX) · Todd(TX)).

Then (2.2) and (2.3) imply that c1(Em) ∧ (ωT )
r−1 = 0. But by Proposition

3.1, Em is nef on T . Therefore Em is numerically flat. By Corollary 4.3,
nd(−KX) = n− r. We get a contradiction.

Case 2: π∗((−KX)
n−r+1) is a non trivial effective class on T .

By Proposition 2.2, we have the following smooth fibration

X
π

−−−−→ T
π1−−−−→ S,

where S is an abelian variety of dimension m, and

(2.4) π∗((−KX)
n−r+1) = c · π∗1OS(1)

for some c > 0 and a very ample line bundle OS(1) on S. Let Sm−1 be a
complete intersection of m− 1 general global sections of H0(S,OS(1)). Let
Xm−1 and Tm−1 be the inverse images of Sm−1 in X and T . Then we have
a smooth fibration

(2.5) Xm−1
π̃

−−−−→ Tm−1
π̃1−−−−→ Sm−1

.

By (2.4), nd(−KX |Xm−1
) > n− r. We can thus suppose that

nd(−KX |Xm−1
) = n− r + t

for some t ≥ 1. We claim that (Xm−1,−KX |Xm−1
) satisfies the conditions

(∗) in Section 5 for the fibration (2.5).
Proof of the claim: All claims are obvious except for the fact that

(−KX)
n−r+t ∧ π̃∗π̃∗1(OSm−1

(1)) = 0.

Let s0 ∈ Sm−1. We denote its inverse image in T and X by Ts0 and Xs0 .
Then we have a fibration

π2 : Xs0 → Ts0 .

Since s0 is a point on the torus S, Ts0 is also a torus and Xs0 has nef
tangent bundle. Moreover, since −KX |Xs0 = −KXs0

, −KXs0
is also nef and

relatively ample for π2. Then Xs0 satisfies the conditions in this theorem.
By induction on dimension in this theorem, we get

(−KXs0
)n−r+t = 0.

Then

(2.6) (−KX |Xs0 )
n−r+t = (−KXs0

)n−r+t = 0.

Since [Xs0 ] = c · c1(OSm−1
(1)) in Xm−1, (2.6) implies that

(−KX |Xm−1
)n−r+t ∧ π̃∗π̃∗1OSm−1

(1) = 0.

The claim is proved.
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Since dimTm−1 = r − (m − 1), the claim and Proposition 5.2 imply
therefore that

Hr−(m−1)(Xm−1,KXm−1
−KX) = 0.

On the other hand, Lemma 6.1 implies that

Hr−(m−1)(Xm−1,KXm−1
−KX) 6= 0.

We obtain again a contradiction.
Since Case 1 and Case 2 are both impossible, we infer that nd(−KX) =

n− r.
�

Now we can prove our main result:

Theorem 6.3. Let X be a compact Kähler manifold of dimension n with
nef tangent bundle. Then X can be approximated by projective varieties.

Proof. By Lemma 2.5, there exists a finite étale Galois cover X̃ → X with
group G such that one has a commutative diagram

X̃ −−−−→ X
yπ̃

yπ

T −−−−→ T/G

where the fibers of π are Fano manifolds. We suppose that dimT = r.
Thanks to Theorem 6.2, we have nd(−KX̃) = n− r, which is equivalent to
say that nd(−KX) = n− d.

Let Em = π∗(−mKX), for m ≥ 1. By Proposition 2.1, Em is a nef vector
bundle. By the Riemann-Roch-Grothendick theorem, we have

Ch(Em) = π∗(Ch(−KX)Todd(TX)).

Since nd(−KX) = n−r, the above equality implies that c1(Em) = 0 by using
Corollary 2.6 of [DPS]. Combining the fact that Em is nef by Proposition 2.1,
Em is thus numerically flat by definition. Using Corollary 4.3, we conclude
that X can be approximated by projective varieties.

�
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